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Abstract. In order to extend the notion of convergence of sequences, sta-
tistical convergence of sequences was introduced by Fast [5] and Schoen-
berg [26]. The main aim of this article is to study the concept of statistical
convergence from difference sequence spaces point of view which are de-
fined over real linear 2-normed spaces.
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1 Introduction

Throughout the article w(X), c(X), c0(X), c̄(X), c̄0(X), `∞(X), m(X) and m0(X)
will represent the spaces of all, convergent, null, statistically convergent, statistically
null, bounded, bounded statistically convergent and bounded statistically null X val-
ued sequences spaces, where (X, ‖., .‖) is a real linear 2-normed space. The zero
sequence is denoted by θ̄ = (θ, θ, θ, . . . ), where θ is the zero element of X.

The notion of difference sequence space was introduced by Kizmaz [18], who stud-
ied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was further
generalized by Et and Colak [2] by introducing the spaces `∞(∆n), c(∆n) and c0(∆n).
Another type of generalization of the difference sequence spaces is due to Tripathy
and Esi [31], who studied the spaces `∞(∆m), c(∆m) and c0(∆m).

Tripathy, Esi and Tripathy [32] generalized the above notions and unified these as
follows:

Let m, n be non- negative integers, then for Z a given sequence space we have

Z(∆n
m) = {x = (xk) ∈ w : (∆n

mxk) ∈ Z} ,

where ∆n
mx = (∆n

mxk) = (∆n−1
m xk − ∆n−1

m xk+m) and ∆0
mxk = xk for all k ∈ N ,

which is equivalent to the following binomial representation:

∆n
mxk =

n∑
v=0

(−1)v

(
n

v

)
xk+mv.
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Taking m = 1, we get the spaces `∞(∆n), c(∆n) and c0(∆n) studied by Et and
Colak [2]. Taking n = 1, we get the spaces `∞(∆m), c(∆m) and c0(∆m) studied by
Tripathy and Esi [31]. Taking m = n = 1, we get the spaces `∞(∆), c(∆) and c0(∆)
introduced and studied by Kizmaz [18].

Recently H. Dutta introduced another type of difference operator ∆n
(v,m), where

m,n are non-negative integers and v = (vk) is a sequence of non-zero scalars. For
details, one may refer to Dutta [4].

The concept of 2-normed spaces was introduced and studied by Gähler, a German
Mathematician who worked at German Academy of Science, Berlin, in a series of
paper in German language published in Mathematische Nachrichten, see for example
references [3, 9, 10, 11, 12]. This notion which seems to be a two dimensional analogue
of a normed space got the attention of a wider audience after the publication of a
paper by Albert George, White Jr. [34] of USA in 1969 entitled 2-Banach spaces. In
the same year Gähler [12] published another paper on this theme in the same journal.
A.H. Siddiqi delivered a series of lectures on this theme in various conferences in
India and Iran. His joint paper with S. Gähler and S.C. Gupta [17] of 1975 also
provide valuable results related to the theme of this paper. Results up to 1977 were
summarized in the survey paper by A.H. Siddiqi [28]. For other works in this direction
one may refer to [7, 8, 13, 16, 24, 29]. In the recent years, a number of articles devoted
to statistical convergence (see Gürdal and Pehlivan [14]) and its generalization, ideal
convergence(see Gürdal and Şahiner [15]) using 2-norm, have been published.

Let X be a real vector space of dimension d, where 2 ≤ d. A real-valued function
‖., .‖ on X2 satisfying the following four conditions:

(1) ‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent,
(2) ‖x1, x2‖ is invariant under permutation,
(3) ‖αx1, x2‖ = |α|‖x1, x2‖, for any α ∈ R,
(4) ‖x + x′, x2‖ ≤ ‖x, x2‖+ ‖x′, x2‖

is called a 2-norm on X, and the pair (X, ‖., .‖) is called a 2-normed space.
The notion of statistical convergence was studied at the initial stage by Fast [5]

and Schoenberg [26] independently. Later on it was further investigated by S̆alàt [25],
Fridy [6], Buck [1], Sen and Tripathy [33] and many others. Gürdal and Pehlivan [14]
studied statistical convergence in 2-Banach space.

A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1
n

n∑

k=1

χE(k) exists,

where χE is the characteristic function of E.
The following inequality will be used throughout the article:
Let p = (pk) be a positive sequence of real numbers with 0 < pk ≤ sup pk = G,

D = max
{
1, 2G−1

}
. Then for all ak, bk ∈ C for all k ∈ N , we have

|ak + bk|pk ≤ D {|ak|pk + |bk|pk}

and for λ ∈ C,
|λ|pk ≤ max

{
1, |λ|G}

.
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The notion of paranormed sequence space was studied at the initial stage by
Simons [27] and Nakano [22]. Later on it was further investigated by Maddox [21],
Lascarides [19], Lascarides and Maddox [20], Nanda [23], B.c. Tripathy [30], Tripathy
and Sen [33] and a number of workers in the field of sequence spaces.

2 Definitions and background

A sequence space E is said to be solid (or normal) if (xk) ∈ E implies (αkxk) ∈ E
for all sequences of scalars (αk) with |αk| ≤ 1 for all k ∈ N .

A sequence space E is said to be symmetric if
(
xπ(k)

) ∈ E whenever (xk) ∈ E,
where π is a permutation on N .

A sequence (xk) is said to be statistically convergent to L if for every ε > 0,
δ ({k ∈ N : |xk − L| ≥ ε}) = 0.

For L = 0, we say this is statistically null.
Throughout c̄, c̄0 denote the classes of all statistically convergent and statistically

null sequences respectively.
A sequence (xk) in a 2-normed space (X, ‖., .‖) is said to converge to some L ∈ X

in the 2-norm if
lim

k→∞
‖xk − L, u1‖ = 0, for every u1 ∈ X.

A sequence (xk) in a 2-normed space (X, ‖., .‖) is said to be Cauchy with respect
to the 2-norm if

lim
k, l→∞

‖xk − xl, u1‖ = 0, for every u1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the 2-norm. Any complete 2-normed space is said to be
2-Banach space.

We introduce the following definitions in this article. Let m and n be two non-
negative integers and p = (pk) be a sequence of strictly positive real numbers. Then

c̄
(
‖., .‖,∆n

(m), p
)

=

{
(xk) ∈ w(X) : (‖∆n

(m)xk − L, z‖)pk
stat−−→ 0, for every z ∈ X and some L ∈ X

}
,

c̄0

(
‖., .‖, ∆n

(m), p
)

=
{

(xk) ∈ w(X) : (‖∆n
(m)xk, z‖)pk

stat−−→ 0, for every z ∈ X
}

,

We procure the following definition for the sake of completeness:

`∞
(
‖., .‖, ∆n

(m), p
)

=
{

(xk) ∈ w(X) : sup
k≥1

(‖∆n
(m)xk, z‖)pk < ∞, for every z ∈ X

}
,

The following definition is introduced:

W
(
‖., .‖,∆n

(m), p
)

=

{
(xk) ∈ w(X) : lim

j→∞

j∑

k=1

(‖∆n
(m)xk − L, z‖)pk = 0, for every z ∈ X and some L ∈ X

}
.
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We write

m
(
‖., .‖, ∆n

(m), p
)

= c̄
(
‖., .‖, ∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)

and
m0

(
‖., .‖, ∆n

(m), p
)

= c̄0

(
‖., .‖,∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)

,

where (∆n
(m)xk) = (∆n−1

(m) xk −∆n−1
(m) xk−m) and ∆0

(m)xk = xk for all k ∈ N , which is
equivalent to the following binomial representation:

∆n
(m)xk =

n∑
v=0

(−1)v

(
n

v

)
xk−mv.

In the above expansion we take xk = 0 for non-positive values of k.
The main aim behind considering the generalized difference operator ∆n

(m) is that
we can derive several other spaces from the above constructed spaces for particular
values of m and n. In particular for n = 0, the above spaces reduce to the spaces
c̄ (‖., .‖, p), c̄0 (‖., .‖, p), `∞ (‖., .‖, p), W (‖., .‖, p), m (‖., .‖, p) and m0 (‖., .‖, p) respec-
tively.

Again if we replace the base space X, which is a real linear 2-normed space
by C, complete normed linear space, we get the spaces c̄

(
∆n

(m), p
)
, c̄0

(
∆n

(m), p
)
,

`∞
(
∆n

(m), p
)
, W

(
∆n

(m), p
)
, m

(
∆n

(m), p
)

and m0

(
∆n

(m), p
)

respectively.
Further if we take X = C, pk = l, a constant for all k ∈ N and n = 0, we get the

spaces c̄, c̄0, `∞, W , m and m0 respectively.
First we procure some known results; those will help in establishing the results of

this article.

Lemma 2.1. ([33]) For two sequences pk and (tk) we have m0(p) ⊇ m0(t) if and
only if lim inf

k∈K

pk

tk
> 0, where K⊆ N such that δ(K) = 1.

Lemma 2.2. ([33]) Let h = inf pk and G = sup pk, then the following are equivalent:
(i) G < ∞ and h> 0,
(ii) m(p) = m.

We now cite the following two known 2-normed spaces.

Example 2.1. Consider the spaces Z where Z=`∞, c and c0 of real sequences. Let
us define:

‖x, y‖ = sup
i∈N

sup
j∈N

|xiyj − xjyi|, where x = (x1, x2, . . . ) and y = (y1, y2, . . . ) ∈ Z.

Then ‖., .‖E is a 2-norm on Z.

Example 2.2. Let us take X = R2 and consider the function on X defined as:

‖x1, x2‖E = abs
(∣∣∣∣

x11 x12

x21 x22

∣∣∣∣
)

, where xi = (xi1, xi2) ∈ R2 for each i = 1, 2.

Then ‖., .‖E is a 2-norm on X known as Euclidean 2-norm.

Remark 2.1. Every closed linear subspace of an arbitrary linear normed space E,
different from E, is a nowhere dense set in E.
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3 Main results

In this section we mainly investigate several linear topological and algebraic properties
relevant to the spaces c̄0

(
‖., .‖, ∆n

(m), p
)
, c̄

(
‖., .‖,∆n

(m), p
)
, m

(
‖., .‖, ∆n

(m), p
)

and

m0

(
‖., .‖, ∆n

(m), p
)

respectively.

Theorem 3.1. Let p = (pk) be a bounded sequence of strictly positive real numbers.
Then the classes of sequences c̄0

(
‖., .‖, ∆n

(m), p
)
, c̄

(
‖., .‖,∆n

(m), p
)
, m0

(
‖., .‖, ∆n

(m), p
)

and m
(
‖., .‖,∆n

(m), p
)

are linear spaces.

Proof. We prove the theorem only for the space c̄
(
‖., .‖, ∆n

(m), p
)

and for the other
spaces it will follow on applying similar arguments.

Let (xk), (yk) ∈ c̄
(
‖., .‖, ∆n

(m), p
)
. Then there exist L, J ∈ X such that for every

z ∈ X (
‖∆n

(m)xk − L, z‖
)pk stat−−→ 0

and (
‖∆n

(m)yk − J, z‖
)pk stat−−→ 0.

Let α, β be scalars. Then we have for every z ∈ X
(
‖∆n

(m)(αxk + βyk)− (αL + βJ), z‖
)pk

=
(
‖∆n

(m)α(xk − L) + ∆n
(m)β(yk − J), z‖

)pk

≤
(
|α|‖∆n

(m)xk − L, z‖+ |β|‖∆n
(m)yk − J, z‖

)pk

≤ D|α|G
(
‖∆n

(m)xk − L, z‖
)pk

+ D|β|G
(
‖∆n

(m)yk − J, z‖
)pk

, where G = sup pk.

stat−−→ 0, as k →∞.

Hence c̄
(
‖., .‖, ∆n

(m), p
)

is a linear space. ¤

Theorem 3.2. The spaces m0

(
‖., .‖,∆n

(m), p
)

and m
(
‖., .‖, ∆n

(m), p
)

are paranormed
spaces, paranormed by

g(x) = sup
k∈N, z∈X

(
‖∆n

(m)xk, z‖
) pk

H

, where H = max{1, sup
k

pk}.

Proof. Clearly g(x) = g(−x); x = θ implies g(θ) = 0. Now

g(x + y) = sup
k∈N, z∈X

(
‖∆n

(m)(xk + yk), z‖
) pk

H

.

≤ sup
k∈N, z∈X

(
‖∆n

(m)xk, z‖
) pk

H

+ sup
k∈N, z∈X

(
‖∆n

(m)yk, z‖
) pk

H

.

This implies that
g(x + y) ≤ g(x) + g(y).
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The continuity of the scalar multiplication follows from the following equality:

g(λx) = sup
k∈N, z∈X

(
‖∆n

(m)(λxk), z‖
) pk

H

.

= sup
k∈N, z∈X

(
|λ|‖∆n

(m)xk, z‖
) pk

H

.

≤ max (1, |λ|) sup
k∈N, z∈X

(
|λ|‖∆n

(m)xk, z‖
) pk

H

.

= max (1, |λ|) g(x).
Hence the spaces m0

(
‖., .‖, ∆n

(m), p
)

and m
(
‖., .‖, ∆n

(m), p
)

are paranormed by g. ¤

Remark 3.1. For any two sequences p = (pk) and t = (tk) of positive real num-
bers and for any two 2-norms ‖., .‖1 and ‖., .‖2 on X we have Z

(
‖., .‖1, ∆n

(m), p
)
∩

Z
(
‖., .‖2,∆n

(m), t
)
6= φ, where Z = c̄,m, c̄0,m0.

Proof. The proof follows from the fact that the zero element belongs to each of the
classes of sequences involved in the intersection. ¤

Theorem 3.3. The spaces Z
(
‖., .‖, ∆n

(m), p
)

are not solid in general, where Z =
c̄,m, c̄0,m0.

Proof. To show that the spaces are not solid in general, consider the following exam-
ples.

Example 3.1. Let m = 3, n = 1 and consider the 2-normed space as defined in
Example 2.1. Let pk = 5 for all k ∈ N . Consider the sequence (xk), where xk = (xi

k)

is defined by (xi
k) = (k, k, k, . . . ) for each fixed k ∈ N . Then (xk) ∈ Z

(
‖., .‖,∆1

(3), p
)

for Z = c̄,m. Let αk = (−1)k, then (αkxk) /∈ Z
(
‖., .‖, ∆1

(3), p
)

for Z = c̄, m. Thus

Z
(
‖., .‖, ∆n

(m), p
)

for Z = c̄, m are not solid in general. ¤

Example 3.2. Let m = 3, n = 1 and consider the 2-normed space as defined in
Example 2.1. Let pk = 1 for all k odd and pk = 2 for all k even. Consider the
sequence (xk), where xk = (xi

k) is defined by (xi
k) = (3, 3, 3, . . . ) for each fixed k ∈ N .

Then (xk) ∈ Z
(
‖., .‖, ∆1

(3), p
)

for Z = c̄0,m0. Let αk = (−1)k, then (αkxk) /∈
Z

(
‖., .‖, ∆1

(3), p
)

for Z = c̄0,m0. Thus Z
(
‖., .‖,∆n

(m), p
)

for Z = c̄0,m0 are not
solid in general. ¤

Theorem 3.4. The spaces Z
(
‖., .‖,∆n

(m), p
)

are not symmetric in general, where
Z = c̄,m, c̄0,m0.

Proof. To show that the spaces are not symmetric in general, consider the following
example.

Example 3.3. Let m = 2, n = 2 and consider the 2-normed space as defined in
Example 2.2. Let pk = 2 for all k odd and pk = 1 for all k even. Consider the
sequence (xk) defined by xk = (k, k) for each fixed k ∈ N . Then ∆2

(2)xk = xk −
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2xk−2 + xk−4, k ∈ N . Hence (xk) ∈ Z
(
‖., .‖, ∆2

(2), p
)

for Z = c̄, m, c̄0,m0. Let (yk)
be a rearrangement of (xk), which is defined as follows:

(yk) = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, . . . }.

Then (yk) /∈ Z
(
‖., .‖,∆2

(2), p
)

for Z = c̄,m, c̄0,m0. Hence for Z = c̄, m, c̄0,m0, the

spaces Z
(
‖., .‖, ∆n

(m), p
)

are not symmetric in general. ¤

Remark 3.2. For two sequences (pk) and (tk) we have

m0

(
‖., .‖, ∆n

(m), p
)
⊇ m0

(
‖., .‖, ∆n

(m), t
)

if and only if lim inf
k∈K

pk

tk
> 0, where K ⊆ N such that δ(K) = 1.

Proof. If we take (yk) =
(
‖∆n

(m)xk

ρ , z‖
)

for all k ∈ N , then the result follows from the
Lemma 2.1. ¤

Remark 3.3. For two sequences (pk) and (tk) we have

m0

(
‖., .‖, ∆n

(m), p
)

= m0

(
‖., .‖, ∆n

(m), t
)

if and only if lim inf
k∈K

pk

tk
> 0 and lim inf

k∈K

tk

pk
> 0, where K ⊆ N such that δ(K) = 1.

Proof. This result is a consequence of the above result. ¤

Remark 3.4. Let h = inf pk and G = sup pk, then the following are equivalent:
(i) G = sup pk and h > 0,
(ii) m

(
‖., .‖, ∆n

(m), p
)

= m
(
‖., .‖, ∆n

(m)

)

Proof. Taking (yk) =
(
‖∆n

(m)xk

ρ , z‖
)

for all k ∈ N and using the Lemma 2.2, we get
the result. ¤

Theorem 3.5. Let p = (pk) be a sequence of non-negative bounded real numbers such
that inf pk > 0. Then m

(
‖., .‖, ∆n

(m), p
)

= W
(
‖., .‖, ∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)
.

Proof. Let (xk) ∈ W
(
‖., .‖, ∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)
. Then for a given ε > 0,

we have

j∑

k=1

(
‖∆n

(m)xk − L, z‖
)pk ≥ card

{
k ≤ j : (‖∆n

(m)xk − L, z‖)pk ≥ ε
}

ε.

From the above inequality, it follows that (xk) ∈ m
(
‖., .‖, ∆n

(m), p
)
.

Conversely let (xk) ∈ m
(
‖., .‖,∆n

(m), p
)

and ρ > 0 be such that

(‖∆n
(m)xk − L, z‖)pk

stat−−→ 0, for every z ∈ X and some L ∈ X.
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For a given ε > 0, let B = sup
k

(
‖∆n

(m)xk − L, z‖
) pk

H

< ∞, where H = max{1, sup pk}.

Let Lj =
{

k ≤ j : (‖∆n
(m)xk − L, z‖)pk ≥ ε

2

}
. Since (xk) ∈ m

(
‖., .‖, ∆n

(m), p
)
, so

Card{Lj}
j → 0 as j → ∞. Let n0 > 0 be such that Card{Lj}

j < ε
2BH for all j > n0.

Then for all j > n0, we have

1
j

j∑
k=1

(‖∆n
(m)xk − L, z‖)pk = 1

j

∑
k/∈Lj

(‖∆n
(m)xk − L, z‖)pk + 1

j

∑
k∈Lj

(‖∆n
(m)xk − L, z‖)pk

≤ j−Card{Lj}
j

. ε
2

+
Card{Lj}

j
.BH ≤ ε

2
+ ε

2
= ε.

Hence (xk) ∈ W
(
‖., .‖, ∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)
. ¤

The following result is a consequence of the above theorem.

Corollary 3.1. Let (pk) and (tk) be two bounded sequences of real numbers such that
inf pk > 0 and inf tk > 0. Then

W
(
‖., .‖, ∆n

(m), p
)
∩ `∞

(
‖., .‖, ∆n

(m), p
)

= W
(
‖., .‖, ∆n

(m), t
)
∩ `∞

(
‖., .‖, ∆n

(m), t
)

.

Theorem 3.6. Let (X, ‖., .‖) be a 2-Banach space, then the spaces m
(
‖., .‖, ∆n

(m), p
)

and m0

(
‖., .‖, ∆n

(m), p
)

are complete.

Proof. We prove the result for the space m0

(
‖., .‖, ∆n

(m), p
)

and for the other space

it will follow on applying similar arguments. Let (xi) be a Cauchy sequence in
m0

(
‖., .‖, ∆n

(m), p
)
. Then for a given ε(0 < ε < 1), there exists a positive integer n0

such that g(xi − xj) < ε, for all i, j ≥ n0. This implies that

sup
k∈N, z∈X

(
‖∆n

(m)x
i
k −∆n

(m)x
j
k, z‖

) pk
H

< ε,

for all i, j ≥ n0. It follows that for every z ∈ X,
(
‖∆n

(m)(x
i
k − xj

k), z‖
)

< ε, for each k ≥ 1 and i, j ≥ n0.

Hence (∆n
(m)x

i
k) is a Cauchy sequence in the 2-Banach space X for all k ∈ N . Thus

(∆n
(m)x

i
k) is convergent in X for all k ∈ N . For simplicity, let lim

i→∞
∆n

(m)x
i
k = yk for

each k ∈ N . Let k = 1, then we have

(3.1) lim
i→∞

∆n
(m)x

i
1 = lim

i→∞

n∑
v=0

(−1)v

(
n

v

)
xi

1−mv = lim
i→∞

xi
1 = y1.

Similarly, we have,

(3.2) lim
i→∞

∆n
(m)x

i
k = lim

i→∞
xi

k = yk, for k = 1, . . . , nm.
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Thus from (3.1) and (3.2), we have lim
i→∞

xi
1+nm exists. Let lim

i→∞
xi

1+nm = x1+nm.

Proceeding in this way inductively, we have lim
i→∞

xi
k = xk, say exists for each k ∈ N .

Now we have for all i, j ≥ n0,

sup
k∈N, z∈X

(
‖∆n

(m)(x
i
k − xj

k), z‖
) pk

H

< ε

⇒ lim
j→∞

{
sup

k∈N, z∈X

(
‖∆n

(m)(x
i
k − xj

k), z‖
) pk

H

}
< ε, for all i ≥ n0

⇒ sup
k∈N, z∈X

(
‖∆n

(m)(x
i
k − xk), z‖

) pk
H

< ε, for all i ≥ n0.

It follows that (xi − x) ∈ m0

(
‖., .‖, ∆n

(m), p
)
. Since (xi) ∈ m0

(
‖., .‖, ∆n

(m), p
)

and

m0

(
‖., .‖, ∆n

(m), p
)

is a linear space, so we have x = xi−(xi−x) ∈ m0

(
‖., .‖, ∆n

(m), p
)
.

This completes the proof. ¤

As consequence, it follows that m0

(
‖., .‖, ∆n

(m), p
)

and m
(
‖., .‖,∆n

(m), p
)

are closed

subspaces of `∞
(
‖., .‖,∆n

(m), p
)
. Since the inclusion relations

m0

(
‖., .‖, ∆n

(m), p
)
⊂ `∞

(
‖., .‖,∆n

(m), p
)

, m
(
‖., .‖, ∆n

(m), p
)
⊂ `∞

(
‖., .‖, ∆n

(m), p
)

are strict, we have the following result.

Corollary 3.2. The spaces m0

(
‖., .‖, ∆n

(m), p
)

and m
(
‖., .‖,∆n

(m), p
)

are nowhere

dense subsets of `∞
(
‖., .‖, ∆n

(m), p
)
.

4 Conclusions

In this paper we introduce the difference sequence spaces c̄0(‖., .‖,∆n
(m), p),

c̄(‖., .‖, ∆n
(m), p), m(‖., .‖,∆n

(m), p), m0(‖., .‖, ∆n
(m), p), `∞(‖., .‖,∆n

(m), p) and W (‖., .‖,
∆n

(m), p) with base space a real linear 2-normed space. We study the spaces c̄0(‖., .‖,
∆n

(m), p), c̄(‖., .‖, ∆n
(m), p), m(‖., .‖,∆n

(m), p) and m0(‖., .‖,∆n
(m), p) with the help of the

spaces `∞(‖., .‖,∆n
(m), p) and W (‖., .‖, ∆n

(m), p) for different properties including lin-
earity, existence of paranorm and investigate the spaces for solidity and symmetricity.
Further we prove that the spaces m(‖., .‖, ∆n

(m), p) and m0(‖., .‖, ∆n
(m), p) are complete

paranormed spaces when the base space is a 2-Banach space.
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(1965), 235-244.
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