On Ly convergence of certain cosine sums
with twice quasi semi-convex coefficients
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Abstract. In this paper a criterion for L;- convergence of a certain co-
sine sums with twice quasi semi-convex coefficients is obtained. Also a
necessary and sufficient condition for L;-convergence of the cosine series
is deduced as a corollary.
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1 Introduction

It is well known that if a trigonometric series converges in Li-metric to a function
f € Ly, then it is the Fourier series of the function f. Riesz [2] gave a counter
example, showing that in a metric space L; the converse is not true. This motivated
several authors to study Li-convergence of the trigonometric series. During their
investigations, some authors introduced modified trigonometric sums, as these sums
approximate their limits better than the classical trigonometric series, in a sense that
they converge in L;-metric to the sum of the trigonometric series whereas the classical
series do not. In this contest we introduce the following cosine sum defined by relation

(1.1)
1

N?(z) = —— b Ata;_y — Aa;_1)coska + 2 ,
) (zsmg)”‘,;jzk( 32— A'as-1) (2snz)’  (2sing)’

(cosz —4) as

and will show the L;-convergence of this modified cosine sums with twice quasi semi-
convex coefficients. In the sequel we will briefly describe the notations and definitions
which are used throughout the paper.

In what follows we will denote by

agp =
(1.2) g(z) = 5 + kz_l ay cos kx,

with partial sums defined by

(1.3) Sp(z) = % + ;ak cos kz,
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and

(1.4) g(z) = lim S, ().

n—oo

In the sequel we will mention some results which are useful for the further work.
Dirichlet’s kernels are denoted by

k=1
= i cosi—cos(n—i—l)t
. p) 2
D,(t) = Zsm kt = 2sin L
k=1
_ 1 t = cos(n+l)t
£) = —=cot = + Dp(t) = ——n " 2/7
alt) = =5 cot g+ Dult) 2sin §

Definition 1.1. A sequence of scalars (a,) is said to be semi-convex if a,, — 0 as
n — oo, and

(1.5) Zn\A2an_1 + A%a,| < oo, (ag = 0),

n=1
where A%a,, = Aa, — Adyy1.

Definition 1.2. A sequence of scalars (a,) is said to be quasi-convex if a,, — 0 as
n — oo, and

oo

(1.6) Z n|A%a,_;| < oo, (ag = 0),

n=1

Definition 1.3. A sequence of scalars (a,) is said to be twice quasi semi-convex if
an — 0 as n — oo, and

(1.7) Z n|Aa, 1 — A'a,| < oo, (ag = a_; = 0),

n=1
where A%a,, = Aa,, — A3an+1.

Definition 1.4. A sequence of scalars (a,,) is said to be twice quasi-convex if a,, — 0
as n — 0o, and

oo

(1.8) Zn|A4an,1\ < 00, (ag = a—1 = 0),

n=1
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Remark 1.1. I Qg is a twice quasi-convexr null scalar sequence , then it is twice
)
quasi semi-conver scalars sequence too.

The L;-convergence of cosine and sine sums was studied by several authors. Kol-
mogorov in [6], proved the following theorem:

Theorem 1.2. If (a,) is a quasi-convex null sequence, then for the Li-convergence
of the cosine series (1.2), it is necessary and sufficient that lim,, . a, - logn = 0.

The case in which sequence (a,,) is convex, of this theorem was established by
Young (see [11]).

Bala and Ram in [1] have proved that Theorem 1.2 holds true for cosine series
with semi-convex null sequences in the following form:

Theorem 1.3. If (a,) is a semi-convex null sequence, then for the convergence of the
cosine series (1.2) in the metric space L, it is necessary and sufficient that ax_1 logk =
0(1),k — oo.

Garret and Stanojevic in [4], have introduced modified cosine sums
1 n n n
(1.9) gn(@) = 5 D Aag + Y ) (Aaj) coska.
k=0 k=1j=k

The same authors (see [5]), Ram in [8] and Singh and Sharma in [9] studied the L;-
convergence of this cosine sum under different sets of conditions on the coefficients
(ay). Kumari and Ram in [10], introduced new modified cosine and sine sums as

(1.10) fulz) = C;OJFZH:ZH:A(G?) cos kx

k=1j=k J
and
(1.11) Gu() =33 A (”;J) sin kz,
k=1 j=k

and have studied their L;-convergence under the condition that the coefficients (a,,)
belong to different classes of sequences. Later one, Kulwinder in [7], introduced new
modified sine sums as

n

1 n
(1.12) K,(z) = E E (Aaj—1 — Aajiq)sinkz,
ik

2sinx
k=1

and have studied their L;-convergence under the condition that the coefficients (a,,)
are semi-convex null. In [3], was introduced the following modified cosine sums:

n n
Np(z) = _% Z Z (A2aj_1 — AQaj) coskx + LQ
(2sin§)” =k (2sin Z)

For this cosine sums was studied Li-convergence under the condition that the coeffi-
cients (a,) are quasi semi-convex null.
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2 Results

The aim of this paper is to study the L;-convergence of modified cosine sums given
by relation (1.1), with twice quasi semi-convex coeflicients and to give necessary and
sufficient condition for Li-convergence of the cosine series defined by relation (1.2).

Theorem 2.1. Let (a,) be a twice quasi semi-conver null sequence, then N, (x)

converges to g(x) in Ly norm.

Proof. We have

4
Zak coskx - (25111 )

Sp(x) = % +Zak~coskx =

(2 sm

n

1

=———) agfcos(k+2)x —4cos(k+ 1)z +6coskx —4cos(k — 1)z + cos (k —

(2sin %)4 =1

1 - a_1COST  @pCoS2x
= a —4a + 6ay — 4a +a cos kx— —
(251n%)4 kZ:l( b o g mH +2) (ZSin %)4 (28111%)4
ap—1cos(n+ 1)z  apcos(n+2)x  4dagcosz ~ 4day cos (n+1)x A n
(2sin%)4 (QSin %)4 (2sin%)4 (QSin %)4 (2sin %)4
4a,41 cosnx a1 CcosSx as Q41008 (n—1)x  Qny2COSNT
(2sin%)4 (251n%)4 (2sin %)4 (25111%)4 (QSin %)4
1 - a_1COST ag cos 2x
Sp(r) = —— - A*ay_ocoskx — ! -
) (2sin z)’ ,; o (2snz)’ (2sing)"
an—1cos(n+1)z  anpcos(n+2)z  dagcosz  dancos(n+ )z day
(2sin%)4 (QSin %)4 (2sin%)4 (QSin %)4 (ZSin %)4
4a,41 cOSNT a1 CcosT as _ Qn41 008 (n—1x _ Qn4200SNT
(2sin%)4 (2sin %)4 (QSin %)4 (2sin%)4 (2sin%)4

Applying Abel’s transformation, we have

n—1 =~
1 ~ A*a,_s — A*a,_1)- D,
Su(e) = —— - 3 (Aagos - Aay_y) By(e) - Btn=2 = Blnon) Dur)
(2 sin 5) 1 (2 sin 5)
an—1cos(n+1)z  apcos(n+2)z  dapcos(n+1l)z  da n
(2sin )" (2sin )" (2sin )" (2sin )"
4a,11 COS NI ajcosT as ap—1cos(n+ 1)z apiocosne
. 1 . 1T . 4 . 4 - . 1
(2 sin %) (2 sin %) (2 sin %) (2 sin %) (2 sin %)

Since Dy, (z) is uniformly bounded on every segment [e, 7 — €], for every € > 0,

2)z]
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g(z) = lim S,(z) = %Z (Atay_o — A4ak,1)5k(x)+a1(cosx _44) a2 I
oo (2sin2)” =3 (2sin 2) (2sin 2)
Also
N(Q)( ZZ(A4aj_2 — A4aj_1)cos kl’+ al(COSZ 744) —+ a2 1
(2 sinZ)” 1= =k (2sin %) (2sin Z)
respectively
4 D _
N (7) = ZA . Qcoskx—A o Dz(x)_'_al(cosx 44)+ as -
(251n2) 1 (2sin 2) (2sin 2) (2sin %)

Now applying Abel’s transformation we get the following relation:

~ A*a,_o-D,(x) A*a,_1-D,(x
NP (z) = E Yap_o — A*ap_1)Dy(z)— 2 4( )_ 1 4( )
(2 sinZ)” = (2sin Z) (2sin Z)

ay(cosx — 4) as

(QSin %)4 (2sin %)4.
From the above relations we will have:

1 - ~
m Z (A4ak72 — A4ak71)Dk($)+
2) k=n+1
+A Ap—2 - n( ) + anfl . Dn(x)

(281H %)4 (2 sin%)4

g(z) = N (z) =

. 1 - ~
g(x) = NP (@) = lim_ <(2)4 > (Alagp— A“am)Dk(w)) i
SIL5)  k=n+1

+A4an,2 - Dy (x) N A*a,_q - Dy()
(251n%)4 (251n %)4 .

Thus, we have
[ lot@) = NP @)ldz o,
0
for n — oo, and definition 1.3. |

Corollary 2.2. Let (a,) be a twice quasi-convez null sequence, then N,(ZQ)(x) converges
to g(x) in Ly norm.
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Proof. Proof of the corollary follows directly from Theorem 2.1 and Remark 1.1. O

Corollary 2.3. If (ay,) is a twice quasi semi-conver null sequence of scalars, then
the necessary and sufficient condition for Li-convergence of the cosine series (1.2) is
lim,, .o a, logn = 0.

Proof. Let us start from this estimation:

1Sn(@) =g(@)lly < 1Sn(2) = NP @)l|z, +INP (@) = g(@)l|L, < [INP (@) —g()||L, +

(2.1)
29A*a,_1 D, () n COS (N +2)x  apiocosna ancos(n+ 1)z apiqcosnz
(2sin2)* (2sin2)* (2sin2)* (2sin2)* (2sin2)*
On the other hand
o0 o0 k
A4an_1 = Z (A4ak — A4ak+1) = Z E(A4ak — A4ak+1) <
k=n—1 k=n—1
! i E(A%ap — Atapy1) = o 1
n—1 i n)’
k=n—1
Since ~
™ Dn
/ () _ o),
0 (2sin%)
therefore
™ D
Ata, - / n(®) _ (1)
0 (2sinZ)

For the rest of the expression (2.1) we have this estimation:

/ deCl/ an
0 0

Dn(x)

2
cos(n+2)z  cosnz dp <

(QSin %)2 (2sin%)2 N

an cos (n+2)x  apy2cosne

(2 sin %)4 (2Sin %)4

T 1
Cl~02/ Qnp - =
0 2

In similar way we can estimate this expressions:

r

where C1, Cy and C3 are constants. From Theorem 2.1 it follows that

dx ~ Cy - Ca(an logn).

ancos(n+1)x  any1cosne

(2 sin %)4 (2sin %)4

dx ~ Cs(anlogn),

NP (@) = g(@)]] = o(1),n — co.

Finally we get this estimation

lim [ |g(z) = Sn(z)| = o(1),

n—oo 0
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if and only if
lim a,logn =0,

n—oo

which proves the corollary. ]

Corollary 2.4. If (a,) is a twice quasi-conver null sequence of scalars, then the
necessary and sufficient condition for Li-convergence of the cosine series (1.2) is
lim,, .o anlogn = 0.
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