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Abstract. The Z−eigenvalues, E−eigenvalues and the corresponding
eigenvectors for the Berwald-Moor associated multilinear form in the case
m = n = 3, are computed by means of applying the method of resultants.
The complexity of the algorithm and further developments are discussed.
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1 Introduction

In recent years, the theory of resultants has flourished, and its bases as stand-alone
branch of mathematics have widely developed ([6], [7], [8], [10], [18], etc). At the
same time, much attention has been payed to the spectral theory of supersymmetric
tensors, whose numerous applications exhibit unexpectedly promising specific solu-
tions ([14], [15], [16], [17], etc). The present paper applies the theory of resultants
to the supersymmetric tensors which naturally emerges from the recently proposed
3-dimensional Berwald-Moor model for relativity theory ([11], [12], [5], etc), aiming to
determine the main associated spectral related objects: the Z−, H−, E−eigenvalues,
and the corresponding eigenvectors. It should be emphasized, that though the highly
tedious straightforward computation technique can be successfully improved by soft-
ware which leads to the desired goal ([2], [1]), the resultant theory is a useful aid
which might significantly accelerate the employed spectral algorithms.

2 The resultant method

Generally, within the resultant theory, one may consider the problem of solving the
system

(2.1)
{

F (x)|G(x)=0 = root

(
R̂

[{
C − F (x) = 0
G(x) = 0

}
, {x}

]
, C

)
.
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Further, the system (2.1) can be re-written as

(2.2) R̂
[{

C − F (x) = 0
G(x) = 0

}
, {x}

]∣∣∣∣
F,G∈Pol

=
{
R

[{ F(C; h, x)
G(h, x)

}
, {h, x}

]
= 0

}
,

where

• R̂[f(x) = 0, {x}] is the compatibility condition of the system of equations
{f(x) = 0};

• R{f(x)} is the resultant of the system of equations {f(x) = 0} relative to the
variables {x};

• F (x) ∈ Pol(x1, . . . xn), G(x) = (G1(x), . . . Gk(x)), Gi(x) ∈ Pol(x1, . . . xn); F
and G are practically determined by F and G, respectively;

• root(P (C), C) is the set of roots of the algebraic equation P (C) = 0 relative to
C.

There exist several functions F and G which satisfy the condition (2.2). Depending on

their choice, the complexity of the algorithm which determines R

[{ F(C; h, x)
G(h, x)

}
, {h, x}

]
,

strongly differs ( [6], [7], [8]).

3 Eigenvalues and eigenvectors of multilinear su-
persymmetric tensors

We apply the stated technique to find the eigenvalues and eigenvectors of real super-
symmetric tensors. It is known that there exist three type of eigenvalues - having
corresponding associated eigenvectors, defined as follows ([14, 17]).

Definition 3.1. Consider a supersymmetric tensor T ∈ T 0
m(Rn) of order m on Rn.

Then

a) We say that λ ∈ R is an (Z−)eigenvalue and a vector y ∈ T 1
0 (Rn) ≡ Rn is an

associated (Z−)eigenvector, if they satisfy the system:

(3.1) Tym−1 = λy; g(y, y) = 1,

where we have considered the transvection

Tym−1 = C1
1C2

2 . . . Cm−1
m−1 (T ⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸

m−1 times

),

Ci
j is the transvection operator on the corresponding indices and y = yiei is the

Liouville vector field on the flat manifold Rn, considered at some point x ∈ Rn, and
g = δijdxi⊗ dxj is the flat Euclidean metric on Rn which implicitly raises/lowers the
tensor indices. For the complex variant, λ and y are simply called eigenvalue and
eigenvector, respectively.
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b) We say that λ ∈ R is an (H−)eigenvalue and a vector y ∈ Rn is an associated
(H−)eigenvector, if they satisfy the homogeneous polynomial system of order m− 1:

(3.2) (Tym−1)k = λ(yk)m−1.

For the complex variant, λ and y are simply called (E-)eigenvalue and (E-)eigenvector,
respectively.

Regarding the existence of eigenvalues/eigenvectors, the following result holds
true:

Theorem 3.1. H−eigenvalues and Z−eigenvalues always exist for even supersym-
metric tensors. A supersymmetric tensor T is positive definite/semi-definite iff all its
H− (or Z−) eigenvalues are positive/non-negative.

The Z−, H− and E−eigenvalues and the corresponding eigenvectors for the mul-
tilinear tensor (4.1) have been completely determined for the 4-dimensional case ([2],
[1]). In the following, we show that employing resultants theory might significantly
improve the computational task, and we illustrate this in the Berwald-Moor H3 par-
ticular case.

4 Applications of resultants theory - the H3 case

In this section, we shall apply the resultant theory for finding the eigenvalues and
eigenvectors for an m−root type supersymmetric tensor with applications in Special
Relativity, namely the (0, 3) Berwald-Moor tensor ([11, 12]):

(4.1) Aijk =





1
3!

, for {i, j, k} = {1, 2, 3}

0, otherwise,

associated to the Berwald−Moor pseudonorm FH3 = 3
√
|y1y2y3|;

These supersymmetric tensor provides a natural alternative model in SRT, which
extends the 3-dimensional classical Minkowski models. The emerging new geometric
framework is tightly related to the hypercomplex polynumbers theory and their appli-
cations. This leads both to the enhancement of the algebraic subjacent theory due to
the geometrical viewpoint, and to the possibility of illustrating basic non-trivial and
non-evident objects of the Berwald-Moor type approach by means of the relatively
simple objects, such as the polynumbers ([11, 12, 5]).

4.1 Application: the Z−spectrum

Applying the method for super-symmetric polynomials S(y), with deg(S) = k, the
Z−spectral problem leads to the system in the unknowns λ and y = (y1, . . . , yn),

(4.2)





∂iS − λyi = 0
n∑

i=1

(yi)2 − 1 = 0,
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where we denote S := S(sa), sa =
n∑

i=1

(yi)a, and σa =
∑

i1<···<ia

yi1 · · · · ·yia . For solving

the system (4.2) we shall first focus on the adjacent problem of finding the quantities
pa = σa|(4.2). Using pa, we further obtain the system {σa(y) − pa = 0}, whence we
infer that yi are solutions of the algebraic equation

(4.3) tn − p1t
n−1 + p2t

n−2 + · · ·+ (−1)npn = 0,

which follows from the Viéte theorem.

This step practically allows to split the set of unknowns from (2.2). We subse-
quently obtain
(4.4)

root



R̂








C − σa(y) = 0

∂iS − λyi = 0

n∑
i=1

(yi)
2 − 1 = 0





, {λ, y}




, C




= pa ⇔ R̂








C − σa(y) = 0

∂iS − λyi = 0

n∑
i=1

(yi)
2 − 1 = 0





, {λ, y}




=

=



R








C · hn − hn−a · σa(y)

hn−k+1 · ∂iS − hn−2λyi

hn−2
n∑

i=1

(yi)
2 − hn





, {λ, h, y}




= 0




,

where R̂ is the compatibility condition, and R is the resultant.

4.2 Application: the H− and E−spectrum

For applying the resultant technique towards solving the H− and E−spectral prob-

lems, we consider the case when S = S(sa), sa =
n∑

i=1

(yi)a, with deg(S) = k, and

m ≤ k ≤ n and we aim to solve the homogeneous system

(4.5) {∂iS − λ(yi)m−1 = 0}.

In this case we obtain the similar intermediate problem

(4.6)

root

(
R̂

[{
C − σa(y) = 0

∂iS − λ(yi)m−1 = 0

}
, {λ, y}

]
, C

)
= pa ⇔

R̂
[{

C − σa(y) = 0

∂iS − λ(yi)m−1 = 0

}
, {λ, y}

]
=



R








C · hn − hn−a · σa(y)

hn−k+1 · ∂iS − hn−m+1λ(yi)m−1

hn−2

n∑

i=1

(yi)2 − hn





, {λ, h, y}




= 0




,
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where R̂ is the compatibility condition, and R is the resultant.
For applying the general theory to the case (4.1), we first note that in the first

case, we have
Ty3 = A1σ

3
1 + A2σ1σ2 + A3σ3,

where Ty3 = S3 and

{σ1 = y1 + y2 + y3, σ2 = y1y2 + y2y3 + y3y1, σ3 = y1y2y3}
is the Gröbner basis of the space of 3-rd order polynomials. We note that for A1 =
A2 = 0, A3 = 1 we obtain the first case H3. In this case we solve the equations

(4.7) {(Ty2)k − λ(yk)2 = 0}.
We solve the problem of finding the conditions for which the system (4.7) has non-
degenerate solutions (non-zero roots):

Theorem 4.1. The system of homogeneous equations of order r {Fi(x) = 0} has
non-degenerate solutions iff R{Fi(x)} = 0, where R is the resultant [6].

Proof. In our case we compute R{(Ty2)k − λ(yk)2}:

(Ty2)k − λ(yk)2 = ∂k(S3)− λ∂k(
1
3
s3) = ∂k(S3 − 1

3
λs3),

where ∂k = ∂
∂yk

, sp =
3∑

i=1

(yi)p, p ∈ {1, 2, 3}. Like {σp}, the family {sp} is a basis for

the space of symmetric polynomials, and they are related via:

s1 = σ1, s2 = σ2
1 − 2σ2, s3 = σ3

1 − 3σ1σ2 + 3σ3.

Hence, we infer

S̄3 = S3 − 1
3λs3 = S − 1

3λ(σ3
1 − 3σ1σ2 + 3σ3) =

= (A1 − 1
3λ)σ3

1 + (A1 + λ)σ1σ2 + (A3 − λ)σ3 = Ā1σ
3
1 + Ā2σ1σ3 + Ā3σ3,

where
Ā1 = A1 − 1

3
λ, Ā2 = A2 + λ, Ā3 = A3 − λ.

Then the system (4.7) gets the form

(4.8) {∂kS̄3 = 0}.
The resultant of the system (4.8) is a particular case of the basic function considered
in the paper [13], and the conditions R{∂iS̄3} = 0 are equivalent to any of the three
conditions

(4.9)





Ā3 = 0

(2Ā3 − 3(Ā2 + Ā3))3 − 9((Ā2 + Ā3)(2Ā3 − 3(Ā2 + Ā3))−
−4(Ā3(6Ā1Ā3 + Ā2Ā3 − Ā2

2)) = 0

(2Ā3 − 3(Ā2 + Ā3))3 − ((Ā2 + Ā3)(2Ā3 − 3(Ā2 + Ā3))−
−4(Ā3(6Ā1Ā3 + Ā2Ā3 − Ā2

2)) = 0.
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If one of the three before mentioned conditions holds true, then the system (4.8)
admits a one-parametric family of solutions. In the case when all the three conditions
are fulfilled, then Ā1 = Ā2 = Ā3 = 0 and the system (4.8) is satisfied for any
y = (y1, y2, y3) ∈ R3 (the 3-parametric family of solutions {y1 = τ1, y2 = τ2, y3 = τ3}).

While solving the system {∂kS̄3 = 0}, we shall examine only the case when just
one of the conditions of (4.9). In this case we infer the system of equations

∂kS̄3 = ∂kσα · ∂̄αS3,

where ∂̄α = ∂
∂σα

and, in the equation, we assume summation by α, and




∂iσ1 = 1

∂iσ2 = σ1 − yi

∂iσ3 = σ2 − σ1yi + (yi)2
,





∂̄1S̄3 = 3Ā1σ
2
1 + Ā2σ2

∂̄2S̄3 = Ā2σ1

∂̄3S̄3 = Ā3.

Hence

∂iS̄3 + ∂̄1S̄3 + (σ1 − yi)∂̄2S̄3 + (σ2 − σ1yi + (yi)2)∂̄3S̄3 =

= (∂̄3S̄3)(yi)2 + (−∂̄2S̄3 − σ1∂̄3S̄3)yi + (∂̄1S̄3 + σ1∂̄2S̄3 + σ2∂̄3S̄3) =

= Ā3(yi)2 + [−(Ā2 + Ā3)σ1]yi + [(3Ā1 + Ā2)σ2
1 + (Ā2 + Ā3)σ2] = 0.

We shall first consider the case when the first relation in (4.9) is satisfied. From
Ā3 = 0, after several computations in which we choose as natural parameter σ = σ1,
we find the following solution:

(4.10) y1 =
1
3
σ, y2 =

1
3
σ, y3 =

1
3
σ.

We examine further the cases when the last two relations in (4.9), are satisfied. In
these cases we assume Ā3 6= 0. For solving our system, we use the following transfor-
mation ([13, formula (5)]):

Fi =
1

Ā3
∂iS̄3 +

Ā2 + Ā3

Ā3(2Ā3 − 3(Ā2 + Ā3))

3∑

i=1

∂iS̄3.

We note that 2Ā3−3(Ā2+Ā3) 6= 0 (in the contrary case, the last two relations in (4.9)
are simultaneously satisfied, fact which leads to the solution (4.10)), and hence the

considered transformation is non-degenerate, since its determinant is
2

Ā2
3(2Ā3 − 3(Ā2 + Ā3))

6=
0. Then we obtain the following system, which is equivalent to the original one:

(yi)2 + 2Aσ1yi + Bσ2
1 = 0,

where 



A = − Ā2 + Ā3

2Ā3
,

B =
6Ā1Ā3 + 2Ā2Ā3 − Ā2

2

Ā3(2Ā3 − 3(Ā2 + Ā3))
.
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Further, choosing as natural parameter σ = σ1, we finally infer

(4.11) y1 = p1σ, y2 = p2σ, y3 = p3σ,

with p1, p2, p3 ∈ {µ1, µ2}, with
{

µ1 = −A + (A2 −B)1/2

µ2 = −A− (A2 −B)1/2.

Further, we shall examine the case of the system
{

(Tyn−1)k − λyk = 0

(y1)2 + · · ·+ (yn)2 = 1,

for Ty3 = S3 = A1σ
3
1 + A2σ1σ2 + A3σ3. ¤

We shall further use the basis {s1, s2, s3}, sa =
3∑

i=1

(yi)a of the space of 3-rd order

symmetric polynomials. We note that S3 = A1s
3
1 + A2s1s2 + A3s3, where Ai are

certain constants. We aim to solve with respect to {λ, y1, y2, y3} the system

(4.12)

{
∂iS3 − λyi = 0, i ∈ {1, 2, 3}
s2 = 1.

While solving (4.12), we shall impose on A1, A2, A3 no additional constrains, hence
we shall examine the most general case. The system (4.12) is equivalent to

(4.13)





3∑

i=1

(yi)m · (∂iS3 − λyi) = 0, m ∈ {0, 1, 2}

s2 = 1.

The (4.13) leads to the system whose unknowns are {λ, s1, s2, s3}:

(4.14)





3∑
a=1

a · sa+m−1∂̄a

(
S3 − 1

2
λs2

)
= 0, m ∈ {0, 1, 2}

s2 = 1.

Assuming that the solutions of the system (4.14) are found, then the solutions of (4.13)
can be determined as follows. Let {λ(Ak); s1(Ak), s2(Ak), s3(Ak)} be the solutions off
(4.14). Then each solution of (4.14) will lead to a class of solutions of (4.13), denoted
by {λ(Ak); p1(Ai), p2(Ai), p3(Ai)}, where (p1, p2, p3) are the solutions of the equation

(4.15) p3 − σ1p
2 + σ2p− σ3 = 0,

with {σa} functions of sa, as follows:




σ1 = s1

σ2 = 1
2s2

1 − 1
2s2

σ3 = 1
6s3

1 − 1
2s1s2 + 1

3 .
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It is important to stress that the solutions of (4.15) are expressed in terms of radicals,
and, for briefness, we shall not include their explicit expressions. We solve in the
following the system (4.14). Since in our case the basis of symmetric polynomials is
{s1, s2, s3}, then sa for a ≥ 4 will functionally depend on s1, s2, s3. In particular,
s4 = 1

6s4
1 − s2

1s2 + 4
3s1s3 + 1

2s2
2. Hence,

¯̄∂m ≡
3∑

a=1

a · sa+m−1∂̄a, m ∈ {0, 1, 2}, s0 ≡ 1

will have the following explicit form:

(4.16)




¯̄∂0
¯̄∂1
¯̄∂2


 =




[1] [2s1] [3s2]
[s1] [2s2] [3s3]
[s2] [2s3] [3s4]







∂̄1

∂̄2

∂̄3


 ,

where s4 = 1
6s4

1 − s2
1s2 + 4

3s1s3 + 1
2s2

2. Having in view that



∂̄1

∂̄2

∂̄3


 (s3 − λ

2
s2) =




3A1s
2
1 + A2s2

A2s1 − 1
2λ

A3


 ,

the equations (4.14) lead to the following equivalent system

(4.17)








[1] [2s1] [3s2]
[s1] [2s2] [3s3]
[s2] [2s3] [3s4]







3A1s
2
1 + A2s2

A2s1 − 1
2λ

A3


 = 0

s4 = 1
6s4

1 − s2
1s2 + 4

3s1s3 + 1
2s2

2

s2 = 1.

Simplifying, we infer the following 3 + 2 equations

(4.18)








[1] [2s1] [3]
[s1] [2] [3s3]
[1] [2s3] [3s4]







3A1s
2
1 + A2s2

A2s1 − 1
2λ

A3


 = 0

s4 = 1
6s4

1 − s2
1 + 4

3s1s3 + 1
2

s2 = 1.

Eliminating from the second equation of the system (4.18) the variables λ, s3, s4, we
get the system of 4 equations:

(4.19)





λ =
1
s1

((3A1 + 2A2)s2
1 + A2 + 3A3)

(s2
1 − 1)[(18A2

1 − 24A1A3 + 3A2
3)(s

2
1)

2 + (12A1A2 + 36A1A3−
−8A2A3 − 15A2

3)s
2
1 + (2A2

2 + 12A2A3 + 18A2
3)] = 0

s2 = 1

s3 =
1

3A3s1
(−3A1s

4
1 −A2s

2
1 + 3A1s

2
1 + A2 + 3A3).



28 Vladimir Balan, Nikolay Perminov

The solutions of the second equation of the system (4.19), according to the rest of
the equations of the system, form an infinite set {λ(Ak), s1(Ak), s2(Ak), s3(Ak)}. It
is essential to stress that the second equation of (4.19) has its solution expressed in
terms of radicals, and for briefness, we shall not include its explicit form.

Hence we have obtained that, considering (4.15) and the second equation of (4.19),
the solution of the original system (4.12) can be expressed in terms of radicals (is
rational), and its exact form is given by (4.15) and (4.19). We note, that the system
(4.19) admits, as well, solutions which do not satisfy the system (4.13). These roots
correspond to the solutions of the second equation of (4.19), s1 = ±1. By discarding
them, we obtain the final set of solutions.

5 Conclusions
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