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Abstract. In the present paper backstepping design is proposed to control
nuclear spin generator system based on parameters identification. The ob-
server is designed to identify the unknown parameter of NSG system. And
on this basis, an efficient backstepping design is developed for controlling
the uncertain NSG system to bounded points and tracking any desired
trajectory. Numerical simulations are provided to show the effectiveness
and feasibility of the proposed method.
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1 Introduction

Dynamic chaos is a very interesting nonlinear effect which has been intensively studied
during the last four decades. The effect is very common, it has been detected in a
large number of dynamic systems of various physical nature. However, this effect is
usually undesirable in practice, and it resticts the operating range of many electronic
and mechanic devices. Recently, controlling this kind of complex dynamical systems
has attracted a great deal of attention within science and engineering.

Until now, many different techniques and methods have been proposed to achieve
chaos control such as, OGY method [6], optimal control ([1], [10]), feedback control
([4], [9]), differential geometric method [3] and adaptive control ([2], [5]).

However, for many uncertain systems, the aforementioned methods may fail. An
important problem in this field is how to achieve nonlinear control of complex dy-
namical systems with unknown parameters. This problem concerns the identification
of the unknown parameters and the approach of controlling chaos. Recently, back-
stepping method has become one of the most important approaches for the design of
nonlinear systems, ([11], [12]). In this paper, the observer is applied to the identifica-
tion of the unknown parameters of nuclear spin generator system. Then an efficient
backstepping design is developed for controlling nuclear spin generator system. The
suggested tool enables synchronization of chaotic motion to a steady state as well as
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152 Ömür Umut

tracking any desired trajectory. Computer simulations also given for the purpose of
illustration and verification.

2 System description

NSG is a high frequency oscillator which generates and controls the oscillations of the
motion of a nuclear magnetization vector in a magnetic field. NSG was first carried
out by Sherman in 1963 [8]. This system is described by

ẋ = −βx + y

ẏ = −x− βy(1− γz)(2.1)

ż = β(α(1− z)− γy2)

where x, y and z are the components of the nuclear magnetization vector in the X, Y
and Z directions and α, β and k are parameters where αβ ≥ 0 and β ≥ 0 are linear
damping terms, the nonlinearity parameters βk are proportional to the amplifier gain
in the voltage feedback. Physical considerations limit the parameter α to the range
0 < α ≤ 1.

Sachdev and Sarathy studied in great detail the NSG system in [7]. They showed
that it displays rich and typical bifurcation and chaotic phenomena for some values
of the control parameters. For instance, when the parameters α = 0.15, β = 0.75 and
γ = 10.5 system (2.1) displays a chaotic attractor as shown in Figure 1.
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Figure 1: NSG chaotic attractor

Now, we design a control technique which can drive a strange attractor with
unknown parameters to a stable state of nuclear spin generator system.
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3 Identification of the unknown parameter

In this section, an observer will be designed to identify the unknown parameter α of
system (2.1). Since parameter α is unknown, relevant dynamical information about
the parameter α is not known. However we can attain the output vector (x, y, z).
Noticing α is a constant, we assume that

(3.1) α̇ = 0

Since the unknown parameter α can act as a status variable, the system (2.1) can be
augmented by (3.1), i.e.,

ẋ = −βx + y

ẏ = −x− βy(1− γz)

ż = β(α(1− z)− γy2) + u(3.2)
α̇ = 0

In the following, we will design an observer to identify the unknown parameter α.
From the third equation of system (2.1), we have

(3.3) α(z − 1) = −γy2 − 1
β

ż

Then we can design the following observer:

(3.4) ˙̄α = −L(z)(z − 1)ᾱ + L(z)(− 1
β

ż − γy2)

where L(z) is a gain function. Let

(3.5) e = α− ᾱ

then

(3.6) ė(t) = α̇− ˙̄α = −L(z)(z − 1)e(t)

Thus, we can select an appropriate gain function L(y) so that the system

(3.7) ė(t) + L(z)(z − 1)e(t) = 0

is exponentially asymptotically stable for all y. That is, ᾱ(t) converges to α(t) with
exponential rate as t →∞. We can choose

L(z) = k(z − 1), (k > 0)

then we have

(3.8) ė(t) = −k(z − 1)2e(t)

where the positive constant k determines the convergence rate. In fact, it is hard to
observe ż, so the observer (3.3) is not applicable. We introduce an auxiliary variable

v = ᾱ + R(z)
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where R(z) is a design function that satisfies

(3.9) L(z) = β
dR(z)

dz

According to equations (3.4) and (3.9), we get

(3.10) v̇ = ˙̄α + Ṙ(z) = −L(z)(z − 1)v + L(z)((z − 1)R(z)− γy2)

and

(3.11) ᾱ = v −R(z)

then (3.7) can be written as

(3.12) ė(t)− 1
β

dR(z)
dz

(z − 1)e(t) = 0

If we choose an appropriate design function R(z) which can make ᾱ(t) converges
to α(t) at exponential rate as t →∞, the observers (3.10) and (3.11) can identify the
unknown parameter α of system (3.2), where L(z) and R(z) are the gain and design
functions respectively. Furthermore, we have

L(z) = β
dR(z)

dz

Note that the observers (3.10) and (3.11) only rely on the third equation of system
(3.2). That is, when the structures of the first and second equations of system (3.2)
or the parameters β and γ are varied, the results of the identification are not changed.
Therefore, the observers have strong robustness. Let

R(z) =
k

2β
(z − 1)2, (k > 0)

then L(z) = k(z − 1), thus the observers become

v̇ = −k(z − 1)2v − kγ(z − 1)y2 +
k2

2β
(z − 1)4

ᾱ = v +
k

2β
(z − 1)2(3.13)

4 Controlling NSG system via backstepping design

In this section, we will use backstepping method to design a controller. In order to
control the uncertain system we add a control input u to the third equation of system
(2.1). Here we assume that the parameter α of the following control system has been
identified, that is α = ᾱ.

ẋ = −βx + y

ẏ = −x− βy(1− γz)(4.1)

ż = β(α(1− z)− γy2) + u
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Then the objective is to find a control law u for stabilizing the state of system (4.1)
at a bounded point.

Starting from the first equation, a stabilizing function α1(x) has to be designed
for the virtual control y in order to make the derivative of

V1(x) =
1
2
x2

i.e.,
V̇1 = −ax2 + axy

be negative definite. Assume that α1(x) = px and define an error variable ȳ =
y − α1(x). Then we obtain the (x, ȳ)−subsystem

ẋ = −(β − p)x + ȳ

˙̄y = −(1 + p2)x− (β + p)ȳ + βγzpx + βγzȳ(4.2)

Obviously, a candidate Lyapunov is

V2(x, ȳ) = V1(x) +
1
2
ȳ2

Calculating its time derivative along system (4.2), we have

V̇2 = −(β − p)x2 − βȳ2 + ȳ[(ȳ + px)(βγz − p)]

we can choose z = α2(x, ȳ) =
p

βγ
then

V̇2 = −(β − p)x2 − βȳ2 < 0, if 0 < p < β

Similarly, let z̄ = z − α2(x, ȳ), then we get the following system in the (x, ȳ, z̄)
coordinates:

ẋ = −(β − p)x + ȳ

˙̄y = −x− βȳ + βγ(ȳ + px)z̄(4.3)

˙̄z = α(β − p

γ
)− αβz̄ − βγ(ȳ + px)2 + u

Repeating the previous steps, the derivative of

V3(x, ȳ, z̄) = V2 +
1
2
z̄2

i.e.,

V̇3 = V̇2(x, ȳ) + z̄ ˙̄z

= −(β − p)x2 − βȳ2 − αβz̄2 + z̄[βγȳ(ȳ + px) + α(β − p

γ
)− βγ(ȳ + px)2 + u](4.4)

becomes negative definite by choosing the input

(4.5) u = βγpx(ȳ + px)− ᾱ(β − p

γ
), (β > p > 0)
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In view of the equations

(4.6) ȳ = y − α1(x), z̄ = z − α2(x, ȳ), α1(x) = px, and α2(x, ȳ) =
p

βγ

we have x → 0, y → 0 and z → p

βγ
as t →∞, i.e., z(t) remains bounded. The control

law u of system (4.1) with unknown parameter α is

u = βγpxy − ᾱ(β − p

γ
)

v̇ = −k(z − 1)2v − kγ(z − 1)y2 +
k2

2β
(z − 1)4(4.7)

ᾱ = v +
k

2β
(z − 1)2

where β − p > 0 i.e., β > p > 0 and k > 0.
Therefore we have proved that system (4.3) has been stabilized at the point (0, 0, 0)
According to the equations in (4.6) the system (4.1) has been stabilized at the point
(0, 0, α2).

In order to control NSG system to the point (0, 0, 1), we add a control input w to
the second equation of system (2.1). Thus the controlled system becomes:

ẋ = −βx + y

ẏ = −x− βy + βγyz + w(4.8)

ż = αβ(1− z)− βγy2

For the virtual control y we design a stabilizing function α1(x) to make the derivative
of V1(x) = 1

2x2, i.e.,

(4.9) V̇1 = xẋ = x(−βx + y) = −βx2 + xy

be negative definite as y = α1(x). We can choose α1(x) = 0 and define an error
variable

(4.10) ȳ = y − α1(x)

then we can obtain the following (x, ȳ)−subsystem

ẋ = −βx + ȳ

˙̄y = −x− βȳ + βγz + w(4.11)

We can construct a Lyapunov function as follows:

V2(x, ȳ) = V1(x) +
1
2
ȳ2

Calculating the time derivative of V2(x, ȳ) along system (4.11), we have

(4.12) V̇2 = V̇1 + ȳ ˙̄y = −βx2 − βȳ2 + ȳ(−x + βγz + w)
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in order to make V̇2 be negative definite, choose

(4.13) w = x− βγz

Therefore we have proved that in the (x, ȳ) coordinates the equilibrium (0, 0) of the
subsystem (4.11) is asymptotically stable. According to (4.10), α1(x) = 0, x → 0,
ȳ → 0 and from the third equation of system (2.1), we get that (x, y, z) in the
controlled system (4.8) tends to (0, 0, 1) as t →∞ when we choose the control input
w = x− βγz

4.1 Tracking any desired trajectory

In this section, we will find a control law w so that the scalar output x(t) of NSG
system can track any desired trajectory r(t). Let x̄ be the deviation between the
output x and the desired trajectory r(t), i.e., x̄ = x−r(t). Define a function U1 = 1

2 x̄2

and calculate its time derivative along the controlled system (4.8).

(4.14) U̇1 = x̄ ˙̄x = (x− r)(ẋ− ṙ) = (x− r)(−βx + y − ṙ)

becomes negative definite by choosing the virtual control y as

(4.15) y = (β − 1)x + r + ṙ

Let U2 = U1 + 1
2 ȳ2 where ȳ = y − [(β − 1)x + r + ṙ] then

U̇2 = U̇1 +
1
2
ȳ2 = −(x− r)2 + (y − ((β − 1)x + r + ṙ))(y − ((β − 1)ẋ + ṙ + r̈))

= −(x− r)2 + (y − (β − 1)x + r + ṙ)((β2 − β − 1)x− (2β − 1)y + βγyz − ṙ − r̈ + w)
(4.16)

If we choose

(4.17) w = β(2− β)x + 2(β − 1)y − βγyz + r + 2ṙ + r̈

then U̇2 is negative definite i.e.,

U̇2 = −(x− r)2 − (y − ((β − 1)x + r + ṙ))

Hence we prove that the output x(t) can track any given trajectory r(t).
According to (3.13), the control law (4.17) with unknown parameter α is

w = β(2− β)x + 2(β − 1)y − βγyz + r + 2ṙ + r̈

v̇ = −k(z − 1)2v − kγ(z − 1)y2 +
k2

2β
(z − 1)4(4.18)

ᾱ = v +
k

2β
(z − 1)2

For example, when r(t) = 2 sin t the control law is

(4.19) w = β(2− β)x + 2(β − 1)y − βγyz + 4 cos t
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5 Numerical simulations

In this section, numerical simulations are given to verify the effectiveness of the ob-
server and the control applicability of the proposed control laws. In all simulations,
we assume β = 0.75, γ = 10.5, k = 0.6, initial conditions x(0) = 0.6, y(0) = 0.5,
z(0) = 0.2. All solutions are obtained using Mathematica.

Figures 2(a)-(f) show the better control applicability of the control law (4.5), where
p = 0.3 and the effectiveness of the observers (3.13) where α = 0.8.
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Figure 2: State of variants x, y, z of NSG system with control law u used ;(a) time
variation of x, (b) time variation of y, (c) time variation of z, (d) time variations of
x, y and z, (e) time variation of α and (f) control action u.

Figures 3(a)-(d) display the effectiveness of the control law (4.13), where p = 0.3
and the effectiveness of the observers (3.13) where α = 0.5.

Figures 4(a)-(b) display the tracking results of the control law (4.17) when r =
2 sin t
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Figure 3: State of variants x, y, z of NSG system with control law w used; (a) time
variation of x, (b) time variation of y, (c) time variation of z, (d) time variations of
x, y and z, (e) time variations of α and (f) control action w.
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Figure 4: Track of r(t) = 2 sin t with control law w; (a) Output of x(t) of NSG system
tracks r(t) = 2 sin t, (b) control action w.
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6 Conclusions

In this paper, a Lyapunov based approach, called backstepping design, has been
proposed for controlling nuclear spin generator system with unknown parameter. This
effective control law can drive a strange attractor not only a steady state but also any
desired trajectory. The effectiveness of the method is verified by numerical results.
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