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Abstract. In the design process the choice of materials for a new product
is made from a very large spectrum. Usually in the first stage, for each
material, it is taken into consideration, as many attributes as possible
is. In the second stage it is taken into consideration only a few ”virtual”
attributes (usually two or three), given by principal component analysis.
The main idea is exemplified by the particular case of fiberglass-reinforced
thermoplastics.
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1 Introduction

”The goal of design is create products that perform their function effectively, safely,
at acceptable cost” (Ashby, 1999) [1]. The choice of a material for a product is not
based on all the attributes, is based on a combination of properties. In this paper it is
presented a method of reduction of attributes to a combination of a few artificial fac-
tors. The selection of the materials group uses the following premises: -the taking into
consideration of an ever larger spectrum of materials, otherwise expressed, defining
as complete as possible the selection range -the division of materials in ”equivalence
classes” otherwise expressed as the classification of materials thus obtaining a sig-
nificant reduction of the selection space, the initial chaotically multitude is reduced
to smaller number of classes, the number of each class having common properties,
processes accompanied or not by the elimination or some materials taken into consid-
eration - the establishing of the same simple and efficient methods of selection, with
the possibility of implementing on a computer [1], [2], [8].

A possibility of getting down the properties range is the taking into consideration
of the correlation between the properties, studying thus only a few independent prop-
erties to the possible extent. The introduction of the up-to-date calculation enables
the data stocking concerning the properties, from the standard version, under the
normal temperature and the time t = 0, up to more complete versions, taking into
account their variability as against the temperature, time, etc.[8].

The classification of materials is often empirically made, for example in six groups
[2,8] metallically materials, polymers, elastomers, glasses, ceramics and compound
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materials. Another variant [8] uses as criterion the cristallinity of materials (crys-
talline or non-crystalline and compound) each class being grouped in underclasses as
per the structure type, way of obtaining, etc.

2 Application of principal component analysis

The PCA is a standard technique to reduce multivariate data sets in a subspace
of small dimension, in our case a trivariate one [3,10]. The number of observable
attributes gives the dimension of the initial representation space of the objects [6,7].
Instead of realer attributes, the PCA uses new factors, but artificial ones. In the
present paper, the dimensional reduction of attributes for a family of materials follows
the Jöreskog’s researches [4,5].

Let only 9 materials (objects), each of them having 6 attributes (table 1). The
resulted three-dimensional subspace gives a minimal deformation of distances through
projection. As illustration let’s take an application from ”Reinforced Plastics Hand-
book” p. 889 [9], concerning selecting plastics and process: for nine glass fiber
(30wt%) reinforced thermoplastics are presented six important mechanical and cost
properties for a detailed analysis.

Prop. / Materials P1 P2 P3 P4 P5 P6
ABS 1.29 100 7.58 102 69 1.4

(14.5) (1100) (215) (1.3)
POM(c.c.) 1.63 134 9.65 166 96 2.2

(19.5) (1400) (330) (1.8)
ETFE 1.89 97 7.24 238 320 19

(14) (1050) (460) (6)
PA 6 1.37 159 8.27 216 123 1.9

(23) (1200) (120) (2.3)
6/6 1.38 179 8.96 254 107 2.7

(26) (1300) (490) (2)
6/6(f.r.) 1.59 134 7.58 243 69 (3.3)

(19.5) (1100) (470) (1.3)
6/10, 6/12 1.30 148 7.58 214 128 1

(21.5) (1100) (117) (2.1)
PPA 1.43 221 11.4 285 118 6.2

(32) (1650) (545) (2.2)
LCP 1.57 162 12.8 318 85 32

(23.5) (3120) (614) (1.7)

Table 1. Analyzed properties of nine thermoplastics

The matrix X is a 6× 9 dimensional matrix, attributes/materials:
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X =




1, 29 100 7, 58 102 69 1, 4
1, 63 134 9, 65 166 96 2, 2
1, 89 97 7, 24 238 320 19
1, 37 159 8, 27 216 123 1, 9
1, 38 179 8, 96 254 107 2, 7
1, 59 134 758 243 69 3, 3
1, 3 148 7, 58 214 128 1

1, 43 221 11, 4 285 118 6, 2
1, 57 162 12, 8 318 85 32




The standardized matrix of X, denoted Z, is:

Z =




−1, 0522 −1, 25 −0, 3398 −1, 953 −0, 715 −0, 5938
0, 69766 −0, 369 −0, 3315 −0, 947 −0, 363 −0, 5189
2, 03579 −1, 328 −0, 3411 0, 185 2, 5555 1, 05346
−0, 6405 0, 2794 −0, 337 −0, 161 −0, 012 −0, 547
−0, 589 0, 7979 −0, 3342 0, 437 −0, 22 −0, 4721
0, 49179 −0, 369 2, 66659 0, 264 −0, 715 −0, 416
−1, 0007 −0, 006 −0, 3398 −0, 192 0, 0536 −0, 6312
−0, 3317 1, 8867 −0, 3245 0, 924 −0, 077 −0, 1446
0, 38886 0, 3572 −0, 3188 1, 443 −0, 507 2, 2702




Based on matrix equation

R =
1
8
Ztr ∗ Z, (1)

it results that:

R =




1 −0, 36956 0, 184942 0, 274144 0, 657701 0, 549213
−0, 3696 1 −0, 13352 0, 626218 −0, 32582 −0, 03745
0, 18494 −0, 13352 1 0, 103873 −0, 27123 −0, 1519
0, 27414 0, 62622 0, 103873 1 0, 139821 0, 610039
0, 6577 −0, 32582 −0, 27123 0, 139821 1 0, 317506

0, 54921 −0, 03745 −0, 1519 0, 610039 0, 317506 1




It is obvious that R is the correlation matrix. The proximity between attributes is
expressed in terms of correlations. The inverse matrix of R is:

R−1 =




4, 24886 −2, 28953 −3, 00663 3, 409168 −3, 62451 −3, 80489
−2, 2895 16, 1683 8, 535721 −18, 9344 7, 857795 12, 21537
−3, 0066 8, 53572 6, 48209 −10, 6674 5, 564535 7, 696317
3, 40917 −18, 9344 −10, 6674 24, 00877 −9, 64994 −15, 7842
−3, 6245 7, 8578 5, 564535 −9, 64994 6, 605492 6, 919718
−3, 8049 12, 2154 7, 696317 −15, 7842 6, 919718 12, 14818




It obtains: diag(R−1) = diag(4.2488; 16.168; 6.482; 24.008; 6.605; 12.148)

diag(R−1)
1
2 = diag(2.061; 4.021; 2.546; 4.899; 2.570; 3.485)

diag(R−1)−1 = diag(0.235; 0.0618; 0.154; 0.0416; 0.151; 0.082).
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Jöreskog’s method considers that theoretical covariance matrix of the standardized
attributes, V , is factorized as:

V = Ltr ∗ L + diag(s2
1, . . . , s

2
6). (2)

For the uniqueness of the estimators of the matrices from the decomposition of V it
is supposed that the variances are direct proportional with the inverse values of the
diagonal elements of the matrix V −1; that is:

diag(s2
1, . . . , s

2
6) = m(diag(V −1))−1, (3)

where m is the proportional parameter. Further on, it is denoted by R∗ the following
matrix:

R∗ = diag(R−1))
1
2 ∗R ∗ diag(R−1))

1
2 (4)

It results:

R∗ =




4, 248862 −3, 06309 0, 970577 2, 768855 3, 484313 3, 945777
−3, 06309 16, 16834 −1, 3669 12, 33796 −3, 36711 −0, 52491
0, 970577 −1, 3669 6, 48209 1, 295822 −1, 77477 −1, 34791
2, 768855 12, 33796 1, 295822 24, 00877 1, 760794 10, 41833
3, 484313 −3, 36711 −1, 77477 1, 760794 6, 605492 2, 844202
3, 945777 −0, 52491 −1, 34791 10, 41833 2, 844202 12, 14818




.

The eigenvalues of this matrix are given in the table 2 and the first three eigenvectors
in the table 3:

36,14978 19,16469 8,017578 5,002533 1,114291 0,212852

Table 2. Eigenvalues of the matrix R∗

Because
λ1 + λ2 + λ3

λ1 + λ2 + λ3 + λ4 + λ5 + λ6
≈ 0.91 > 0.90

it can be considered only the 3-dimensional subspace.

T U W
−0, 0726 0, 379876 −0, 13195
−0, 46987 −0, 62708 0, 215822
0, 002525 −0, 01 −0, 89147
−0, 80398 0, 075068 −0, 18658
−0, 03727 0, 407536 0, 301071
−0, 3552 0, 53912 0, 125862

Table 3. The values of the first three eigenvectors of the matrix R∗

An estimator for the parameter m is the average of the remained eigenvalues:

m =
1
3
(λ4 + λ5 + λ6) = 2.11

The parameters of interest are the variances, given by:

s2
i =

m

rii
, i ∈ 1, 6 (5)
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where rii is the element ii of the matrix R−1.
In the present case, it is obtained the values of s2

i (table 4):

0, 49660356 0, 130502 0, 325512 0, 087885 0, 319431 0, 173689

Table 4. Values of s2
i

Further on, it should be calculate:

k2
i = 1− s2

i , i = 1, 6 (6)

The results are given in the table 5:

0, 50339644 0, 869498 0, 674488 0, 912115 0, 680569 0, 826311

Table 5. Values of k2
i

The three eigenvectors, denoted as T, U,W associated with the first three chosen
eigenvalues are determined so that:

||T ||2 = λ1 − m̂, ||U ||2 = λ2 − m̂, ||W ||2 = λ3 − m̂. (7)

The matrix of these eigenvectors is:

A =




−0, 42355 1, 568786 −0, 32071
−2, 74139 −2, 58965 0, 524566
0, 014732 −0, 0413 −2, 16675
−4, 69073 0, 310011 −0, 4535
−0, 21747 1, 683015 0, 731768
−2, 07237 2, 226422 0, 305914




In the next step it is obtained the loading matrix:

L = (diag(R−1))−
1
2 ∗A, (8)

L =




−0, 20548 0, 761075 −0, 15559
−0, 68177 −0, 64403 0, 130457
0, 005786 −0, 01622 −0, 85104
−0, 95732 0, 063269 −0, 09255
−0, 08461 0, 65484 0, 284722
−0, 59458 0, 638781 0, 08777




It results:
k2

i
∼= l2i1 + l2i2 + L2

i3, for i ∈ 1, 6, (9)

which confirm the correctness of the model.

3 Conclusions

Revising the up-to-date problems of the materials selection, it was emphasized on the
statistical approach, starting from the bi-or three dimensional graphical drawing of
some properties. The design engineer should have in this manner at his disposal an
effective system, optimum for the selection of the material. The ellipse or ellipsoid
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may be built, as in the shown method, all the possibility of assuming some different
probabilities for the random vector to take the values in the area bounded by the
ellipse or ellipsoid.

The application of this model will simplifies the materials design and there are
many other possible extensions in the design process. Furthermore, a mixture between
Jöreskog’ method and materials design principles is useful for the developments.
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