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Abstract. We analyze irreducible representations of Nambu–Lie 3-algebras
in terms of matrix operators subject to Nambu bracket relations. In gen-
eral context we establish the criterium for existence of Hermitian represen-
tations. The case of Euclidean four-dimensional 3-algebra is considered in
details. In this case it appears that this criterium is broken. We find that
in spite of its Euclidean nature this algebra does not allow any Hermitian
irreducible representation.
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1 Introduction

Recent proposals for the theory describing multiple M2 branes [3, 2, 1, 16] revived the
general interest towards structures appearing in Nambu mechanics [24]. A particularly
dramatic issue is related to Nambu–Lie algebras [17, 4, 18, 25, 14, 26, 19, 21, 22, 27, 6].
Already in [24] it was noted that there are only very restricted possibilities for certain
types of a non-trivial Nambu–Lie 3-algebra. This subject was further developed by
[28, 7, 12, 5]. Thus the only “compact”, i.e. having positive scalar product finite
dimensional algebra was found to be the four-dimensional algebra A4 with structure
constants given by the totally anti-symmetric four-dimensional tensor[25, 14].

On the other hand, for the viability of the multiple M2-brane model we need an
infinite family of 3-algebras parameterized by an integer parameter, which can be
interpreted as the integer M2-brane charge.

In fact, giving up the Euclidean metric or finite dimension requirement makes
it possible to construct various 3-algebras from Lie algebras by an uplift procedure.
It is clear that all such 3-algebras could be either Lorentzian or infinite-dimensional
[13, 15, 22].

In this work we analyze a construction of representations of Nambu–Lie 3-algebras
in terms of matrix operators subject to Nambu commutation relations. The construc-
tion is based on the fact that the 3-algebra includes a family of underlying Lie algebra
structures, which are obtained by fixing a 3-algebra element. Then, the 3-algebra rep-
resentation decays into and therefore is composed of underlying Lie algebra represen-
tations. Let us note, that a Nambu bracket algebra, even closed, does not represent
generally a good 3-algebra since Nambu bracket does not satisfy the Fundamental
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Identity (FI) automatically as does the Lie commutator. However, in the case in
which the Nambu bracket algebra is homomorphic to a 3-algebra which satisfies the
FI, so does the Nambu bracket algebra too.

The construction can be applied to either Lorentzian or infinite dimensional 3-
algebras, but in this work we concentrate mainly on the case of four-dimensional
Euclidean 3-algebra A4. It appears that, in spite of its Euclidean nature, this 3-
algebra can not be represented in terms of sole Hermitian matrices. The uplift of
a representation of a compact Lie algebra requires complex eigenvalues for the fixed
element parameterizing the underlying Lie algebra. If this is a general property, it has
a strong impact on possibility of construction of physical models based on 3-algebras.
We analyze the situation in a more general setup to reach the same conclusion.

The plan of the paper is as follows. In the next section we discuss the matrix
representations of a 3-algebra and describe the requirements they should satisfy. Next,
we give a general construction of such a representation. After that we specify to
algebra A4 for which we find the explicit form of representations. Then we analyze
the two-dimensional representation in most general context, but find that this case
too in fact reduces to the previous one.

2 Lie algebra induced representation

2.1 Objectives

Consider a Nambu–Lie 3-algebra defined as a linear span of generators {Ta}, a =
1, . . . , D subject to the following 3-bracket relation,

(2.1) [Ta, Tb, Tc] = i fabc
dTd,

where the real valued structure constants fabc
d are anti-symmetric in the lower indices

and subject to FI,

(2.2) fa1a2bafa3a4a5b = fa1a2a3bfba4a5a + fa1a2a4bfa3b2a5a + fa1a2a5bfa3b2a5a,

for all a. The indices are lowered and raised respectively by the 3-algebra analog of
Killing metric (not necessarily Euclidean) hab and its inverse. We suppose that the
structure constants fabc

d are non-degenerate in the sense that for at least one vector
va there exist “dual structure constants” f̃abc

f such that,

(2.3) vf f̃abc
ffabc

d = vd.

This is not a very constraining requirement, in any case any semi-simple Lie algebra
satisfies to a much more general analogue of this having arbitrary v. In the case of
totally anti-symmetric structure constants f , the dual constants can be chosen to be
totally anti-symmetric as well.

Our aim is to construct a matrix representation R(A) such that the Nambu-Lie
bracket is mapped to the Nambu commutator [24],

(2.4) [A,B, C]N = ABC + BCA + CAB −BAC −ACB − CBA,

where A,B, C ∈ R(A).
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Let us note, that, as discussed in the introduction, unlike the Lie commutator, the
Nambu bracket (2.4) does not satisfy the FI in general. However, when the original
3-algebra, which is represented through the Nambu commutator satisfies the FI, it is
obvious that the homomorphic matrix algebra with Nambu commutator also satisfies
this identity. One may dispute the opportunity of imposing FI (2.2), proposing its
replacement with a more permissive condition which is, in particular, automatically
compatible with the Nambu bracket structure (see e.g. [11, 10, 9, 8]). In spite
of this point of view and motivated by the recent development in the multiple brane
description, we insist to analyze the Nambu commutator representations of 3-algebras
subject to FI (2.2).

2.2 General construction

As is known a Nambu-Lie n-algebra generates a family of lower degree Nambu-Lie
algebras. In the case of 3-algebra one has a family of Lie brackets parameterized by
an element ~ξ ∈ A,

(2.5) [g, f ]~ξ ≡ [~ξ, g, f ], ~ξ, g, f ∈ A.

As pointed in [28], the restricted bracket (2.5) is anti-symmetric in g and f and
satisfies the Bianchi identity, therefore a Nambu–Lie algebra contains incorporated
Lie algebra structures.

Let the fixed element be identified with TD. Then the underlying (d−1)-dimensional
Lie algebra is defined by the commutation relations,

(2.6) [Ti, Tj ]tD ≡ [TD, Ti, Tj ] = i fij
kTk,

where fij
k = fDij

k, i, j, k = 1, . . . , D − 1.
Since we seek a hermitian representation of 3-algebra, it is natural to assume,

that the the matrix representing TD can be diagonalized within the underlying Lie
algebra representation. Consider the subspace corresponding to the eigenvalue tD.
The Nambu–Lie commutator on such a space reduces to1

(2.7) [Ti, Tj ]tD
= tD[Ti, Tj ],

where [·, ·] is the usual matrix commutator. In order to satisfy the Nambu–Lie com-
mutation relations (2.6), the reduced representation on tD subspace should satisfy the
following matrix commutation relations,

(2.8) [Ti, Tj ] = i t−1
D fij

kTk.

Let us consider the situation when the underlying algebra is a semi-simple Lie
algebra. Then the tD-eigen-space is split into irreducible representations of the semi-
simple algebra. The irreducible representations of the algebra (2.7) correspond to
eigen-spaces of the quadratic Casimir operator,

(2.9) C2(T ) = t−2
D c2(τ),

1Note that here we abusively denote both algebra generators and the their representation as Ti.



140 Corneliu Şochichiu

where c2(τ) is the quadratic Casimir of the tD-independent algebra with normalized
commutation relations,

(2.10) [τi, τj ] = i fij
kτk,

where τi = tDTi.
Now let us pick up a particular irreducible representation and compute the fol-

lowing quantity restricted to this representation,

(2.11) tD ≡ TD = − i f̃ ijk
D[Ti, Tj , Tk]N = 3t−3

D f̃ ijk
Dfjk

lτiτl.

This implies that the value tD of the matrix TD should satisfy,

(2.12) t4D = f̃ ijk
Dfjk

lτiτl,

where the r.h.s. depends only on the details of the representation of the Lie algebra
and should be related to the value of Casimir operator. So, the eigenvalue of T4 is
expressed as the fourth power root from the r.h.s of (2.12). It is clear, that if the
r.h.s fails to be positive, the representation can not be realized in terms of Hermitian
matrices.

In the case in which the r.h.s. of (2.12) contains beyond the Casimir also a Lie-
algebra part, the consistency with Nambu–Lie commutation relation requires that
this part should vanish. It is not clear how restrictive this condition is since not much
is known on Nambu–Lie algebras in general, however in the case of A4 3-algebra
considered below this does not imply any additional constraints.

Irreducibility

Constructing matrix representations of a Nambu–Lie algebra, one shall ask her/himself
about the criteria of irreducibility of the representation. If we define an irreducible
representation as one for which the representation module has no invariant subspaces
others than itself or zero element, then if we restrict ourself to a subspace with definite
value of TD, the irreducibility of Nambu–Lie algebra representation follows directly
from the irreducibility of the underlying Lie algebra representation.

It is worth noting that this definition also leads to a 3-algebra analog of Schur’s
Lemma. Indeed, any operator which is Nambu commuting with any two arbitrary
elements of the 3-algebra should commute in the sense of Lie algebra commutation
with all generators of the underlying Lie algebra and, therefore, be proportional to
the identity operator on each irreducible representation of the latter. That is not all,
however. The Nambu bracket involving two Lie algebra generators reads,

(2.13) 0 = [Ti, Tj , X] = [Ti, Tj ]X = i XfijkTk ⇒ X = 0,

where we used the fact that X is commuting with all generators Ti following from the
other Nambu bracket relations,

(2.14) 0 = [TD, Ti, X]N = [Ti, X]TD + [X,TD]Ti ⇒ [Ti, X] = 0,

for a irreducible underlying Lie algebra representation. Then the 3-algebra analogue
of the Schur’s lemma is somehow more restrictive:
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Lemma 1. There are no central elements in an irreducible representation of a Nambu
Lie 3-algebra except the trivial one: X = 0.

In particular this implies that there are no analogues of Casimir operators for
3-algebras.

2.3 Algebra A4

So far the only known nontrivial example of Euclidean finite-dimensional 3-algebra is
the four dimensional 3-algebraA4, which is generated by the Nambu–Lie commutation
relations,

(2.15) [Ta, Tb, Tc] = i εabcdTd,

where εabcd is the four-dimensional totally anti-symmetric tensor with ε1234 = +1.
Moreover, there is a strong evidence [28, 14, 25, 18] that it is the only non-trivial
Euclidean 3-algebra in finite dimensions.

As A4 is invariant with respect to SO(4) rotations, all underlying Lie algebras are
related by a SO(4) rotation and are isomorphic to su(2). Therefore, the choice of T4

for the reduction of the Nambu–Lie bracket into a Lie algebra is a generic one. The
underlying Lie algebra commutation relations are,

(2.16) [Ti, Tj ]T4 = − i εijkTk, i, j, k = 1, 2, 3,

where εijk is the three-dimensional totally anti-symmetric tensor with ε123 = +1.
On the other hand, the Nambu bracket commutation relations reduced to an

eigen-space of T4 transform to the following matrix commutator relations,

(2.17) [Ti, Tj ] = − i t−1
4 εijkTk.

Irreducible (2j + 1)-dimensional representations of the Lie algebra generated by
(2.17) are parameterized by the half-integer spin j. The Casimir operator is given by,

(2.18) T 2
i = t−2

4 τ2
i = t−2

4 j(j + 1).

Consideration of the leftover Nambu–Lie bracket [T1, T2, T3] gives the constraint
on the value of T4,

(2.19) i t4 ≡ i T4 = [T1, T2, T3]N = T1[T2, T3] + T2[T3, T1] + T3[T1, T2]

= − i t−1
4 (T 2

1 + T 2
2 + T 2

3 ) = − i t−3
4 j(j + 1),

from which we have

(2.20) t44 = −j(j + 1).

As one can see it is not possible in this simple setup to represent the algebra A4

in terms of Hermitian matrices only. Let us note that this type of representations
were first considered in [20] (see also [18]), in which the minus sign in front of t44 was
mishandled.



142 Corneliu Şochichiu

2.4 Nonconstant T4 representation

One may be concerned that the impossibility to find a unitary representation of A4

is related to the fact that we considered only the representations with a constant
value of T4. This implies that T4 commutes with other three generators Ti on each
irreducible space. One may wonder whether giving up the commutativity of T4 may
improve the situation.

For non-commuting T4 the Nambu commutator (2.15) reduces to the following Lie
bracket,

(2.21) [[A,BT4
≡ T4[A, B] + [A,B]T4 −AT4B + BT4A.

One can consider this re ]]ation as a T4 dependent deformation of usual commutation
relations. Therefore, a dj-dimensional representation in terms of bracket (2.21) should
be a deformation of an ordinary matrix representation of the underlying Lie algebra.

Consider the algebra A4. Here let us limit ourselves to the two-dimensional rep-
resentation of the underlying algebra su(2). The deformed commutation relations in
this case read,

(2.22) µ[τi, τj ] + [τi, τj ]µ− τiµτj + τjµτi = i εijkτk,

where the generators τi, i = 1, 2, 3 are 2×2-dimensional µ-dependent matrices while
µ ≡ T4, for notational convenience.

To find a “solution” for the commutation relations (2.22) let us expand everything
in terms two-dimensional Pauli matrices,

(2.23) µ = µ0I+ µασα, τi = τ0I+ τiασα.

Substituting this expansion into (2.22) yields,

(2.24) 2µ0εαβγτiατjβσγ + 6µσεαβστiατjβ = εijk(τkασα + τk0).

The equation (2.24) is satisfied iff each of the following equalities hold,

(2.25) 2µ0εαβγτiατjβ = i εijkτkγ , 6εαβγτiατjβµγ = εijkτk0.

The equalities (2.25) can be equivalently rewritten as,

(2.26) [τ̂i, τ̂j ] = iµ−1
0 εijk τ̂k, τ̂i = τiασα/2

and

(2.27) τk0 = 3
2µ−1

0 tr µ̂τ̂k = 3µ−1
0 µατkα.

To complete the solution to the problem, let us note that for arbitrary matrix µ
the solution for τ̂i satisfying (2.26) is given up to a unitary transformation in terms
of Pauli matrices: τ̂i = σi/(2µ0) and τk0 = 3

2µk/µ2
0. Plugging these results into the

leftover Nambu commutator we obtain the equality,

(2.28) µ = − i [τ1, τ2, τ3] = −µ−3
0 µk τ̂k − 3

4µ−3
0 ,

from which we get,

(2.29) µ4
0 = −3/4, µk = 0,

i.e. the representation reduces to one considered in the previous subsection.
Taking the above results we may conjecture that complex values of T4 are un-

avoidable in general.
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3 Discussion

In this work we analyzed the construction of irreducible Nambu commutator repre-
sentations of 3-algebras in terms of representations of underlying Lie algebras. It
appears that irreducibility of the Lie algebra representation automatically leads to
the irreducibility of the entire Nambu–Lie 3-algebra representation.

Applied to the case of four-dimensional 3-algebra A4 the construction results in
representations, which necessarily require matrices with eigenvalues which are fourth
roots of −1. This means that such representations can not be built entirely of hermi-
tian matrices. This conclusion appears to be quite general.

Let us note that the Hermiticity of representations is required for physical appli-
cations. Thus for a non-Hermitian representation the kinetic term even in the case of
Euclidean algebras fails to be positive definite.

One may try the following possibilities in order to overcome this difficulty. (i) Chang-
ing the sign of some brackets resulting in the change in the sign of some structure
constants may solve the problem, but the resulting set of structure constants will fail
to obey FI. (ii) One may hope that when considering Lorentzian 3-algebras obtained
by the uplift procedure from the Lie algebra the sign flip can be compensated by the
negative norm. (iii) Consider the situation when the fixed quantity is not an element
of the algebra but e.g. a result of a bracket operation inherited from a hierarchically
higher structure e.g. as one proposed in [23].2

Finally, if all attempts to get a hermitian representation fail this can mean that the
Nambu bracket does not provide a natural environment for 3-algebra representations.
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