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Abstract. Using the Gegenbauer Polynomials (associated Jacobi differ-
ential) equation, we obtain the exact solution for the fermion excitations
of a tense brane black hole. According to the supersymmetry approaches
in quantum mechanics we obtain the first order operators which are rep-
resented by the generators of Heisenberg algebra. These generators com-
pletely relate to the N = 2 supersymmetry algebra.
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1 Introduction

Much has been said about black holes in large extra-dimensional scenarios recently
[3] and the effect of the brane tension for black holes with large extra dimensions has
largely been ignored, because of the obvious difficulty of how to embed a black hole
onto a brane.
Recently Kaloper and Kiley [7] presented the following metric for a black hole on
tensional 3-brane embedded in a six-dimensional space time,

(1.1) ds2 = −g(r)dt2 +
dr2

g(r)
+ r2dΩ4

2, g(r) = 1− (
rH

r
)3,

where the radius of the horizon is given by,

(1.2) rH = (
µ

b
)

1
3 , µ =

M

4πM∗4
,

and M is the mass of the black hole. The parameter b is a measure of the conical
deviation from a perfect sphere and has the following angle element:

(1.3) dΩ4
2 = dθ3

2 + sin2 θ3

[
dθ2

2 + sin2 θ2(dθ1
2 + b2 sin2 θ1dφ2)

]
,

where for b = 1 this is the line element of the unit sphere S4 and corresponds to
zero brane tension. We note here the location of the deficit angle is arbitrary such
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angle be interest to the fermion generation [4, 1]. In case of b < 1 we have non -
vanishing brane tension, it is also measure of the deficit angle about an axis parallel
to the 3-brane in the angular direction φ. Also it can be expressed in term of the
brane tension λ as:

(1.4) b = 1− λ

4πM∗4
,

where M∗ is the fundamental Planck constant of six - dimensional gravity. In the
other hand, we should stress that the supersymmetry in quantum mechanics is based
upon the factorization method in the framework of shape invariance. If one quan-
tum mechanics problem obtains context supersymmetry, we must then factorize the
Hamiltonian of quantum states in terms of a multiplication of the first - order differ-
ential operators as a shape invariance equations. In this approach, the Hamiltonian
is decomposed once in successive multiplication of lowering and raising operators, in
such a way the corresponding quantum states of successive levels, are their eigen-
states. These Hamiltonian are called partner and supersymmetry of each other. As
yet, according to the factorization method, many studies on the one - dimensional
shape invariance potential in the framework of supersymmetric quantum mechanics
have been carried out [6] . Nowadays the concept of shape invariance has extended
to the ordinary differential equations and on this basis a second - order differential
operator will decompose the multiplication of ladder operators [5, 9, 8].In this paper
we apply the factorization method and obtain the factorized corresponding equation
for the fermion excitations of a tense brane black hole. These first order equation
leads us to obtain the raising and lowering relations with respect to n and m.

2 Deficit 2-sphere

Here, first we consider the case of a deficit 2-sphere, then we can generate results for
the (d− 2)-sphere. By using [3, 4, 1] and the following metric for two sphere one can
obtain the corresponding equation,

(2.1) ds2 = dθ2 + b2 sin2 θdφ2,

where b is a positive real number and b = 1 represents a regular two sphere. The
Dirac operator is given by,

(2.2) γc∇cψ = γceµ
c (∂µ + Γµ)ψ,

where the spin connection Γµ is given in terms of the zweibein eµ
c and its inverse,

(2.3) Γµ =
1
8

[
γc, γf

]
eν
c

(
∂µefν − Γc

µνefc

)
,

where Γc
µν is the Christoffel symbol. For the above metric, the only non - vanishing

Γc
µν are,

(2.4) Γθ
φφ = −b2 sin θ cos θ, Γφ

θφ = cot θ,
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Choosing the zweibein to be

(2.5) ec
µ = diag(1, b sin θ), eµ

c = diag(1,
1

b sin θ
),

and the Dirac matrices

(2.6) γc = σ1; γφ = σ2,

the spin connection are found to be

(2.7) Γθ = 0 Γφ = − i

2
b cos θσ3,

where σi are the Pauli matrices. Now the Dirac operator can be written down explic-
itly as,

(2.8)
[
σ1∂θ + σ2 1

b sin θ
(∂φ + Γφ)

]
Ψ =

[
σ1(∂θ +

1
2

cot θ) + σ2 1
b sin θ

∂φ

]
Ψ.

Suppose we write the eigenvalue of this operator as ±iK and express the fermion field
Ψ in two component form,

(2.9) Ψ = ( Ψ+

Ψ−
).

Then we find the following set of equations:

(2.10)
[
σ1(∂θ +

1
2

cot θ) + σ2 1
b sin θ

∂φ

]
Ψ± = ±iKΨ±.

Let us consider Ψ+, where Ψ− can be dealt with analogously. Consider the equation
for ∂φ

(2.11) ∂φχ(±)
m = ±imχ(±)

m .

Note that for spinors, one should get a sign change for a 2π rotation in φ. Therefore,
the eigenvalues of m should be, m = 1

2 , 3
2 , 5

2 · · · .
Returning to the eigenvalue for ψ+ we can make the following spinor separation of
variables ansatz:

(2.12) Ψ(±)
+nm =

(
A

(±)
n (θ)χ(±)

m (φ)
B

(±)
n (θ)χ(±)

m (φ)

)
.

Putting this into the eigenvalue equation, we have
[
(∂θ +

1
2

cot θ)∓ m

b sin θ
∂φ

]
A(±)

n = ±iKB(±)
n

[
(∂θ +

1
2

cot θ)∓ m

b sin θ
∂φ

]
B(±)

n = ±iKA(±)
n .(2.13)
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So, the corresponding second order equation will be as,

(2.14) A′′(θ) + cot θA′(θ) +
[
K2 − m2

b2 sin2 θ
− 1

4
cot2 θ +

m

b sin θ
cot θ − 1

2

]
A(θ) = 0.

In here we take the following change of variables,

(2.15) cos θ = x, A(x) = u(x)P (α,β)
n,m (x),

so, we have

(1− x2)P ′′(λ)
n,m (x) +

[
2u′

u
(1− x2)− 2x

]
P ′(λ)

n,m (x)

+
[
(1− x2)

u′′

u
− 2x

u′

u
+ K2 − m′2

b2(1− x2)
− 1

4
x2

(1− x2)
+

mx

b(1− x2)
− 1

2

]
P (λ)

n,m(x) = 0.

(2.16)

3 Raising and lowering operators

Substituting the explicit forms of the raising and lowering operators

A+
n (x) = (1− x2)

d

dx
− (2λ + n)x

A−n (x) = −(1− x2)
d

dx
− nx,(3.1)

for a given m, we can factorize the associated differential equation (2.16) with con-
sidering the equation (3.1) with respect to the parameter n:

A+
n (x)A−n (x)P (λ)

n,m(x) = (n−m)(2λ + n + m)P (λ)
n,m(x)

A−n (x)A+
n (x)P (λ)

n−1,m(x) = (n−m)(2λ + n + m)P (λ)
n−1,m(x).(3.2)

Also we can write the above equation in form of raising and lowering equations with
respect to the parameter n as below

A+
n (x)P (λ)

n−1,m(x) =
√

(n−m)(2λ + n + m)P (λ)
n,m(x)

A−n (x)P (λ)
n,m(x) =

√
(n−m)(2λ + n + m) P

(λ)
n−1,m(x).(3.3)

For a given n, the differential equation (2.16) can be also factorized with respect to
m as the following shape invariance equations

A+
m(x)A−m(x)P (λ)

n,m(x) = (n−m + 1)(2λ + n + m)P (λ)
n,m(x)

A−m(x)A+
m(x)P (λ)

n,m−1(x) = (n−m + 1)(2λ + n + m)P (λ)
n,m−1(x),(3.4)

where

A+
m(x) =

√
1− x2

d

dx
+

(m− 1)x√
1− x2

A−m(x) = −
√

1− x2
d

dx
+

(2λ + m)x√
1− x2

.(3.5)
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In contrast to the previous case, the raising and lowering operators i.e. A+
m(x) and

A−m(x) are Hermitian conjugate of each other respect to the inner product. The
equations (3.3) can be written as the raising and lowering relations of the associated
Gegenbauer functions:

A+
m(x)P (λ)

n,m−1(x) = (n−m + 1)(2λ + n + m)P (λ)
n,m(x)

A−m(x)P (λ)
n,m(x) = (n−m + 1)(2λ + n + m)P (λ)

n,m−1(x)(3.6)

4 Conclusions

In this paper we used the factorization method and obtained the factorized corre-
sponding equation for the fermion excitations of a tense brane black hole . These first
order equation leads us to obtain the raising and lowering relations with respect to n
and m. Also these operators give us the generators of algebra and some representation
in Physics.
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