
A fixed point theorem for w-distance

A. Razani, Z. Mazlumi Nezhad and M. Boujary

Abstract. In this paper, a fixed point theorem for a (Φ,Ψ, p)-contractive
map on a complete metric space is proved. In other words, let p be a w-
distance on a complete metric space (X, d) and S a (ϕ,ψ, p)-contractive
map on X [i.e. for each x, y ∈ X,ϕp(Sx, Sy) ≤ ψϕp(x, y)], then S has a
unique fixed point in X. Moreover, limnSnx is a fixed point of S for each
x ∈ X.
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1 Introduction

Branciari [1] established a fixed point result for an integral-type inequality, which
is a generalization of Banach contraction principle. Vijayaraju et al. [4] obtained a
general principle, which made it possible to prove many fixed point theorems for pairs
of integral type maps. Kada et al. [2] defined the concept of w-distance in a metric
space and studied some fixed point theorems.
Now, we prove a fixed point theorem which is a new version of the main theorem in
[1], by considering the concept of the w-distance, and as a result of it, we can have
the main theorem of [1]. In order to do this, we recall some definitions and lemmas
form [1], [2] and [3].

Definition 1.1. Let X be a metric space with metric d. A function p : X ×X −→
[0,∞) is called a w-distance on X if
(1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(2) p is lower semi-continuous in its second variable i.e. if x ∈ X and yn → y in X
then p(x, y) ≤ liminfnp(x, yn);
(3) For each ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies
d(x, y) ≤ ε.

Example 1.2. If X = { 1
n |n ∈ N} ∪ {0}. For each x, y ∈ X, d(x, y) = x + y if x 6= y

and d(x, y) = 0 if x = y is a metric on X and (X, d) is a complete metric space.
Moreover, by defining p(x, y) = y, p is a w-distance on (X, d).

Suppose
Φ = {ϕ|ϕ : [0,∞) → [0,∞)}
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where ϕ is non-decreasing, continuous and ϕ(ε) > 0 for each ε > 0. Moreover, let

Ψ = {ψ|ψ : [0,∞) → [0,∞)}

where ψ is non-decreasing, right continuous and ψ(t) < t for all t > 0.

Example 1.3. Let {an}∞n=1and{cn}∞n=0 are two non-negative sequences such that
{an} strictly decreasing, convergence to zero, and for each n ∈ N, cn−1an > an+1

where 0 < cn−1 < 1 define ψ : [0,∞) → [0,∞) by ψ(0) = 0, ψ(t) = cnt, if an+1 ≤ t <
an, ψ(t) = c0t if t ≥ a1, then ψ is in Ψ.

Now, we prove the following lemma.

Lemma 1.4. If ψ ∈ Ψ then limnψn(t) = 0 for each t > 0 and if ϕ ∈ Φ, {an} ⊆ [0,∞)
and limnϕ(an) = 0 then limnan = 0.

Proof. For each t > 0, {ψn(t)} is decreasing non-negative sequence thus there
exists α ≥ 0 such that α = limnψn(t) or ψn(t) → α+ as n→ ∞ but ψ is right
continuous in α thus ψn+1(t) → ψ(α) as n →∞ thus ψ(α) = α and therefore α = 0.
If there exists ε > 0 and {nk}∞k=1 such that

ank
≥ ε > 0

then
limksupϕ(ank

) ≥ ϕ(ε) > 0

thus limnϕ(an) 6= 0. ¤
The following two lemmas are used in the next section.

Lemma 1.5. [2] Let (X, d) be a metric space and p be a w-distance on X. If {xn} is
a sequence in X such that limnp(xn, x) = limnp(xn, y) = 0 then x = y. In particular,
if p(z, x) = p(z, y) = 0 then x = y.

If p(a, b) = p(b, a) = 0 and p(a, a) ≤ p(a, b) + p(b, a) = 0, then p(a, a) = 0 and by
Lemma 1.5 a = b.

Lemma 1.6. [2] Let p be a w-distance on metric space (X, d) and {xn} be a sequence
in X such that for each ε > 0 there exist Nε ∈ N such that m > n > Nε implies
p(xn, xm) < ε (or limm,n p(xn, xm) = 0) then {xn} is a Cauchy sequence.

2 Main Result

In this section, we state the main theorem as follows:

Theorem 2.1. Let p be a w-distance on a complete metric space (X, d), ϕ ∈ Φ
and ψ ∈ Ψ. Suppose S is a (ϕ,ψ, p)- contractive map on X [i.e. for each x, y ∈
X, ϕp(Sx, Sy) ≤ ψϕp(x, y)] then S has a unique fixed point in X. Moreover, limnSnx
is a fixed point of S for each x ∈ X.
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Proof. Fix x ∈ X. Set xn+1 = Sxn with x0 = x. Then

ϕp(xn, xn+1) ≤ ψϕp(xn−1, xn)
≤ ψ2ϕp(xn−2, xn−1)
≤ · · ·
≤ ψn(ϕp(x0, x1)).

Thus limn ϕp(xn, xn+1) = 0 and Lemma 1.4 implies

(2.1) limn p(xn, xn+1) = 0

and similarly

(2.2) limn p(xn+1, xn) = 0

step1: limm,n p(xn, xm) = 0.
proof of step1: Suppose there exists ε > 0 and {mk}∞k=1, {nk}∞k=1 such that

(2.3) p(xnk
, xmk

) ≥ ε

where mk > nk. By (2.1) there exists k0 ∈ N such that nk > k0 implies

(2.4) p(xnk
, xnk+1) < ε.

If nk > k0 by (2.3) and (2.4), mk 6= nk+1. We can assume that mk is a minimal index
such that p(xnk

, xmk
) ≥ ε but p(xnk

, xh) < ε, h ∈ {nk+1, · · · ,mk − 1}.
We have

ε ≤ p(xnk
, xmk

)
≤ p(xnk

, xmk−1) + p(xmk−1, xmk
)

< ε + p(xmk−1, xmk
) → ε+

as k → ∞ this implies limk p(xnk
, xmk

) = ε+. If η := lim supk p(xnk+1, xmk+1) ≥ ε
then there exists {kr}∞r=1 such that

p(xnkr +1, xmkr +1) → η ≥ ε

as r →∞. Since ϕ is continuous and non- decreasing

ϕ(ε) ≤ ϕ(η) = limr ϕp(xnkr +1, xmkr +1)
≤ limr ψϕp(xnkr

, xmkr
)

= ψϕ(ε).

Note that
ϕp(xnkr

, xmkr
) → ϕ(ε)+

and ψ is right continuous. Thus ϕ(ε) = 0. This is a contradiction and
lim supk p(xnk+1, xmk+1) < ε, so we have

ε ≤ p(xnk
, xmk

)
≤ p(xnk

, xnk+1) + p(xnk+1, xmk+1) + p(xmk+1, xmk
).

Then (2.1) and (2.2) implies that

ε ≤ limk p(xnk
, xnk+1) + lim supk p(xnk+1, xmk+1) + limk p(xmk+1, xmk

)
= lim supk p(xnk+1, xmk+1) < ε
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which is a contradiction. Now, we proved

(2.5) lim
m,n

p(xn, xm) = 0.

By Lemma 1.6, {xn} is a Cauchy sequence and since X is complete, there exists u ∈ X
such that xn → u in X.

step2: u is a fixed point of S.
proof of step2: By (2.5) for each ε > 0 there exists Nε∈ N such that n > Nε

implies p(xNε , xn) < ε but xn → u and p(x, .) is lower semi continuous thus

p(xNε
, u) ≤ lim inf

n
p(xNε

, xn) ≤ ε.

Therefore p(xNε
, u) ≤ ε. Set ε = 1/k,Nε = nk and we have

(2.6) lim
k

p(xnk
, u) = 0.

On the other hand,
ϕp(xnk+1, Su) ≤ ψϕp(xnk

, u) → 0

(as k →∞) and thus limk p(xnk+1, Su) = 0, but

p(xnk
, Su) ≤ p(xnk

, xnk+1) + p(xnk+1, Su)

thus

(2.7) lim
k

p(xnk
, Su) = 0.

Now (2.6), (2.7) and Lemma 1.5 implies that Su = u.
step3: The fixed point of S is unique.
proof of step3: Suppose u1 and u2 are two arbitrary fixed points of S. We have

ϕp(u1, u2) = ϕp(Su1, Su2) ≤ ψϕp(u1, u2)

Thus ϕp(u1, u2) = 0 and p(u1, u2) = 0. Similarly, p(u2, u1) = 0 and then u1 = u2. ¤

Remark 2.2. (1) In the above theorem, let p = d, ϕ(t) = t, ψ(t) = ct(c ∈ [0, 1[).
Then Theorem 2.1 is the classical Banach fixed point theorem.
(2) Suppose θ : R+ → R+ is Lebesgue- integrable mapping which is summable and∫ ε

0
θ(η)dη > 0 for each ε > 0. Set ϕ(t) =

∫ t

0
θ(η)dη and ψ(t) = ct, where c ∈ [0, 1[.

Then ϕ ∈ Φ and the main theorem of [1] is obtained.

Remark 2.3. If p and d are in example 1.2, ϕ ∈ Φ and ψ ∈ Ψ then for each
x, y ∈ X(y 6= 0), p(x, y) = y = d(0, y) thus each (ϕ,ψ, d)-contractive map is (ϕ,ψ, p)-
contractive map. But, the converse is not valid.

Example 2.4. Let (X, d) and p be in Example 1.2 and S : X → X be a map as
S 1

n = 1
n+1 , S0 = 0. Suppose ϕ : [0,∞) → [0,∞) is a continuous and strictly non-

decreasing map. Let ψ be the map in Example 1.3 as an = ϕ( 1
n ). Moreover, we

assume that
ϕ( 1

n+1 )ϕ( 1
n + 1

n+1 ) < ϕ( 1
n )ϕ( 1

n+1 + 1
n+2 ),
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(for example ϕ(t) = t), then S is (ϕ, ψ, p)-contractive, since

ϕp(S
1
m

,S
1
n

) = ϕ(
1

n + 1
) < cn−1ϕ(

1
n

) = ψϕp(
1
m

,
1
n

),

where
ϕ( 1

n+1 )

ϕ( 1
n )

< cn−1 <
ϕ( 1

n+1 + 1
n+2 )

ϕ( 1
n + 1

n+1 )

but S is not (ϕ,ψ, d)-contractive, since

ϕd(S 1
n , S 1

n+1 ) = ϕ( 1
n+1 + 1

n+2 ) > cn−1ϕ( 1
n + 1

n+1 )

= ψϕ( 1
n + 1

n+1 ) = ψϕd( 1
n , 1

n+1 ).

3 Conclusion

In this paper, a fixed point theorem for a (φ, ψ, p)- contractive map was proved. As
a result, the classical Banach fixed point theorem was obtained. Moreover, the main
theorem of [1] which proves a fixed point theorem for a general contractive condition
of integral type will be obtained from the main theorem of this paper. Finally, an
example was given to prove the validity of the theorem.
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