A fixed point theorem for w-distance

A. Razani, Z. Mazlumi Nezhad and M. Boujary

Abstract. In this paper, a fixed point theorem for a (Φ, Ψ, p) -contractive map on a complete metric space is proved. In other words, let p be a wdistance on a complete metric space (X, d) and S a (φ, ψ, p) -contractive map on X [i.e. for each $x, y \in X, \varphi p(Sx, Sy) \leq \psi \varphi p(x, y)$], then S has a unique fixed point in X. Moreover, $\lim_n S^n x$ is a fixed point of S for each $x \in X$.

M.S.C. 2000: 47H10,47H09

Key words: Fixed point, non-decreasing map, continuous map, w-distance.

1 Introduction

Branciari [1] established a fixed point result for an integral-type inequality, which is a generalization of Banach contraction principle. Vijayaraju et al. [4] obtained a general principle, which made it possible to prove many fixed point theorems for pairs of integral type maps. Kada et al. [2] defined the concept of w-distance in a metric space and studied some fixed point theorems.

Now, we prove a fixed point theorem which is a new version of the main theorem in [1], by considering the concept of the *w*-distance, and as a result of it, we can have the main theorem of [1]. In order to do this, we recall some definitions and lemmas form [1], [2] and [3].

Definition 1.1. Let X be a metric space with metric d. A function $p: X \times X \longrightarrow [0, \infty)$ is called a w-distance on X if

(1) $p(x,z) \le p(x,y) + p(y,z)$ for any $x, y, z \in X$;

(2) p is lower semi-continuous in its second variable i.e. if $x \in X$ and $y_n \to y$ in X then $p(x, y) \leq liminf_n p(x, y_n)$;

(3) For each $\epsilon > 0$, there exists $\delta > 0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ implies $d(x, y) \leq \epsilon$.

Example 1.2. If $X = \{\frac{1}{n} | n \in \mathbb{N}\} \cup \{0\}$. For each $x, y \in X$, d(x, y) = x + y if $x \neq y$ and d(x, y) = 0 if x = y is a metric on X and (X, d) is a complete metric space. Moreover, by defining p(x, y) = y, p is a w-distance on (X, d).

Suppose

$$\Phi = \{\varphi | \varphi : [0, \infty) \to [0, \infty)\}$$

Applied Sciences, Vol.11, 2009, pp. 114-117.

[©] Balkan Society of Geometers, Geometry Balkan Press 2009.

where φ is non-decreasing, continuous and $\varphi(\varepsilon) > 0$ for each $\varepsilon > 0$. Moreover, let

$$\Psi = \{\psi | \psi : [0, \infty) \to [0, \infty)\}$$

where ψ is non-decreasing, right continuous and $\psi(t) < t$ for all t > 0.

Example 1.3. Let $\{a_n\}_{n=1}^{\infty}$ and $\{c_n\}_{n=0}^{\infty}$ are two non-negative sequences such that $\{a_n\}$ strictly decreasing, convergence to zero, and for each $n \in \mathbb{N}, c_{n-1}a_n > a_{n+1}$ where $0 < c_{n-1} < 1$ define $\psi : [0, \infty) \to [0, \infty)$ by $\psi(0) = 0, \psi(t) = c_n t$, if $a_{n+1} \leq t < a_n, \psi(t) = c_0 t$ if $t \geq a_1$, then ψ is in Ψ .

Now, we prove the following lemma.

Lemma 1.4. If $\psi \in \Psi$ then $\lim_n \psi^n(t) = 0$ for each t > 0 and if $\varphi \in \Phi$, $\{a_n\} \subseteq [0, \infty)$ and $\lim_n \varphi(a_n) = 0$ then $\lim_n a_n = 0$.

Proof. For each t > 0, $\{\psi^n(t)\}$ is decreasing non-negative sequence thus there exists $\alpha \ge 0$ such that $\alpha = \lim_n \psi^n(t)$ or $\psi^n(t) \to \alpha^+$ as $n \to \infty$ but ψ is right continuous in α thus $\psi^{n+1}(t) \to \psi(\alpha)$ as $n \to \infty$ thus $\psi(\alpha) = \alpha$ and therefore $\alpha = 0$. If there exists $\varepsilon > 0$ and $\{n_k\}_{k=1}^{\infty}$ such that

$$a_{n_k} \ge \varepsilon > 0$$

then

$$\lim_k \sup \varphi(a_{n_k}) \ge \varphi(\varepsilon) > 0$$

thus $\lim_{n \to \infty} \varphi(a_n) \neq 0$.

The following two lemmas are used in the next section.

Lemma 1.5. [2] Let (X, d) be a metric space and p be a w-distance on X. If $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} p(x_n, x) = \lim_{n \to \infty} p(x_n, y) = 0$ then x = y. In particular, if p(z, x) = p(z, y) = 0 then x = y.

If p(a, b) = p(b, a) = 0 and $p(a, a) \le p(a, b) + p(b, a) = 0$, then p(a, a) = 0 and by Lemma 1.5 a = b.

Lemma 1.6. [2] Let p be a w-distance on metric space (X, d) and $\{x_n\}$ be a sequence in X such that for each $\varepsilon > 0$ there exist $N_{\varepsilon} \in \mathbb{N}$ such that $m > n > N_{\varepsilon}$ implies $p(x_n, x_m) < \varepsilon$ (or $\lim_{m \to \infty} p(x_n, x_m) = 0$) then $\{x_n\}$ is a Cauchy sequence.

2 Main Result

In this section, we state the main theorem as follows:

Theorem 2.1. Let p be a w-distance on a complete metric space $(X,d), \varphi \in \Phi$ and $\psi \in \Psi$. Suppose S is a (φ, ψ, p) - contractive map on X [i.e. for each $x, y \in X, \varphi p(Sx, Sy) \leq \psi \varphi p(x, y)$] then S has a unique fixed point in X. Moreover, $\lim_{n \to \infty} S^n x$ is a fixed point of S for each $x \in X$.

Proof. Fix $x \in X$. Set $x_{n+1} = Sx_n$ with $x_0 = x$. Then

$$\varphi p(x_n, x_{n+1}) \leq \psi \varphi p(x_{n-1}, x_n)$$

$$\leq \psi^2 \varphi p(x_{n-2}, x_{n-1})$$

$$\leq \cdots$$

$$\leq \psi^n (\varphi p(x_0, x_1)).$$

Thus $\lim_{n} \varphi p(x_n, x_{n+1}) = 0$ and Lemma 1.4 implies

(2.1)
$$\lim_{n \to \infty} p(x_n, x_{n+1}) = 0$$

and similarly

(2.2)
$$\lim_{n \to \infty} p(x_{n+1}, x_n) = 0$$

step 1: $\lim_{m,n} p(x_n, x_m) = 0.$

proof of step1: Suppose there exists $\varepsilon > 0$ and $\{m_k\}_{k=1}^{\infty}, \{n_k\}_{k=1}^{\infty}$ such that

$$(2.3) p(x_{n_k}, x_{m_k}) \ge \varepsilon$$

where $m_k > n_k$. By (2.1) there exists $k_0 \in \mathbb{N}$ such that $n_k > k_0$ implies

$$(2.4) p(x_{n_k}, x_{n_{k+1}}) < \varepsilon.$$

If $n_k > k_0$ by (2.3) and (2.4), $m_k \neq n_{k+1}$. We can assume that m_k is a minimal index such that $p(x_{n_k}, x_{m_k}) \geq \varepsilon$ but $p(x_{n_k}, x_h) < \varepsilon, h \in \{n_{k+1}, \cdots, m_k - 1\}$. We have

$$\begin{aligned} \varepsilon &\leq p(x_{n_k}, x_{m_k}) \\ &\leq p(x_{n_k}, x_{m_k-1}) + p(x_{m_k-1}, x_{m_k}) \\ &< \varepsilon + p(x_{m_k-1}, x_{m_k}) \to \varepsilon^+ \end{aligned}$$

as $k \to \infty$ this implies $\lim_k p(x_{n_k}, x_{m_k}) = \varepsilon^+$. If $\eta := \limsup_k p(x_{n_k+1}, x_{m_k+1}) \ge \varepsilon$ then there exists $\{k_r\}_{r=1}^{\infty}$ such that

$$p(x_{n_{k_r}+1}, x_{m_{k_r}+1}) \to \eta \ge \varepsilon$$

as $r \to \infty$. Since φ is continuous and non- decreasing

$$\varphi(\varepsilon) \le \varphi(\eta) = \lim_{r} \varphi p(x_{n_{k_r}+1}, x_{m_{k_r}+1}) \\ \le \lim_{r} \psi \varphi p(x_{n_{k_r}}, x_{m_{k_r}}) \\ = \psi \varphi(\varepsilon).$$

Note that

$$\varphi p(x_{n_{k_r}}, x_{m_{k_r}}) \to \varphi(\varepsilon)^+$$

and ψ is right continuous. Thus $\varphi(\varepsilon) = 0$. This is a contradiction and $\limsup_k p(x_{n_k+1}, x_{m_k+1}) < \varepsilon$, so we have

$$\varepsilon \le p(x_{n_k}, x_{m_k}) \le p(x_{n_k}, x_{n_k+1}) + p(x_{n_k+1}, x_{m_k+1}) + p(x_{m_k+1}, x_{m_k})$$

Then (2.1) and (2.2) implies that

$$\begin{aligned} \varepsilon &\leq \lim_{k} p(x_{n_{k}}, x_{n_{k}+1}) + \lim_{k} \sup_{k} p(x_{n_{k}+1}, x_{m_{k}+1}) + \lim_{k} p(x_{m_{k}+1}, x_{m_{k}}) \\ &= \lim_{k} \sup_{k} p(x_{n_{k}+1}, x_{m_{k}+1}) < \varepsilon \end{aligned}$$

116

which is a contradiction. Now, we proved

(2.5)
$$\lim_{m,n} p(x_n, x_m) = 0.$$

By Lemma 1.6, $\{x_n\}$ is a Cauchy sequence and since X is complete, there exists $u \in X$ such that $x_n \to u$ in X.

step 2: u is a fixed point of S.

proof of step 2: By (2.5) for each $\varepsilon > 0$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that $n > N_{\varepsilon}$ implies $p(x_{N_{\varepsilon}}, x_n) < \varepsilon$ but $x_n \to u$ and p(x, .) is lower semi continuous thus

$$p(x_{N_{\varepsilon}}, u) \leq \liminf_{n} p(x_{N_{\varepsilon}}, x_n) \leq \varepsilon.$$

Therefore $p(x_{N_{\varepsilon}}, u) \leq \varepsilon$. Set $\varepsilon = 1/k, N_{\varepsilon} = n_k$ and we have

(2.6)
$$\lim_{k} p(x_{n_k}, u) = 0$$

On the other hand,

$$\varphi p(x_{n_k+1}, Su) \le \psi \varphi p(x_{n_k}, u) \to 0$$

(as $k \to \infty$) and thus $\lim_{k \to \infty} p(x_{n_k+1}, Su) = 0$, but

$$p(x_{n_k}, Su) \le p(x_{n_k}, x_{n_k+1}) + p(x_{n_k+1}, Su)$$

thus

(2.7)
$$\lim_{k} p(x_{n_k}, Su) = 0.$$

Now (2.6), (2.7) and Lemma 1.5 implies that Su = u.

step3: The fixed point of S is unique.

proof of step3: Suppose u_1 and u_2 are two arbitrary fixed points of S. We have

$$\varphi p(u_1, u_2) = \varphi p(Su_1, Su_2) \le \psi \varphi p(u_1, u_2)$$

Thus $\varphi p(u_1, u_2) = 0$ and $p(u_1, u_2) = 0$. Similarly, $p(u_2, u_1) = 0$ and then $u_1 = u_2$. \Box

Remark 2.2. (1) In the above theorem, let $p = d, \varphi(t) = t, \psi(t) = ct(c \in [0, 1])$. Then Theorem 2.1 is the classical Banach fixed point theorem.

(2) Suppose $\theta : \mathbb{R}^+ \to \mathbb{R}^+$ is Lebesgue- integrable mapping which is summable and $\int_0^{\varepsilon} \theta(\eta) d\eta > 0$ for each $\varepsilon > 0$. Set $\varphi(t) = \int_0^t \theta(\eta) d\eta$ and $\psi(t) = ct$, where $c \in [0, 1[$. Then $\varphi \in \Phi$ and the main theorem of [1] is obtained.

Remark 2.3. If p and d are in example 1.2, $\varphi \in \Phi$ and $\psi \in \Psi$ then for each $x, y \in X(y \neq 0), p(x, y) = y = d(0, y)$ thus each (φ, ψ, d) -contractive map is (φ, ψ, p) -contractive map. But, the converse is not valid.

Example 2.4. Let (X, d) and p be in Example 1.2 and $S : X \to X$ be a map as $S\frac{1}{n} = \frac{1}{n+1}$, S0 = 0. Suppose $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and strictly nondecreasing map. Let ψ be the map in Example 1.3 as $a_n = \varphi(\frac{1}{n})$. Moreover, we assume that

$$\varphi(\frac{1}{n+1})\varphi(\frac{1}{n}+\frac{1}{n+1}) < \varphi(\frac{1}{n})\varphi(\frac{1}{n+1}+\frac{1}{n+2}),$$

(for example $\varphi(t) = t$), then S is (φ, ψ, p) -contractive, since

$$\varphi p(S\frac{1}{m}, S\frac{1}{n}) = \varphi(\frac{1}{n+1}) < c_{n-1}\varphi(\frac{1}{n}) = \psi \varphi p(\frac{1}{m}, \frac{1}{n}),$$

where

$$\frac{\varphi(\frac{1}{n+1})}{\varphi(\frac{1}{n})} < c_{n-1} < \frac{\varphi(\frac{1}{n+1} + \frac{1}{n+2})}{\varphi(\frac{1}{n} + \frac{1}{n+1})}$$

but S is not (φ, ψ, d) -contractive, since

$$\varphi d(S\frac{1}{n}, S\frac{1}{n+1}) = \varphi(\frac{1}{n+1} + \frac{1}{n+2}) > c_{n-1}\varphi(\frac{1}{n} + \frac{1}{n+1})$$
$$= \psi \varphi(\frac{1}{n} + \frac{1}{n+1}) = \psi \varphi d(\frac{1}{n}, \frac{1}{n+1}).$$

3 Conclusion

In this paper, a fixed point theorem for a (ϕ, ψ, p) - contractive map was proved. As a result, the classical Banach fixed point theorem was obtained. Moreover, the main theorem of [1] which proves a fixed point theorem for a general contractive condition of integral type will be obtained from the main theorem of this paper. Finally, an example was given to prove the validity of the theorem.

References

- A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences 10 (2002), 531-536.
- [2] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica 44 (1996), 381-591.
- [3] T. Suzuki, Meir-Keeiler contractions of integral type are still Meir-Keeiler contractions, International Journal of Mathematics and Mathematical Sciences Article ID 39281 (2007), 1-6.
- [4] P. Vijayaraju, B.E. Rhoades and R. Mohanraj, A fixed point theorem for pair of maps satisfying a general contractive condition of integral type International Journal of Mathematics and Mathematical Sciences 15 (2005), 2359-2364.

Authors' addresses:

Abdolrahman Razani Department of Mathematics, Faculty of Science, Imam Khomeini International University, P. O. Box: 34149-1-6818, Qazvin, Iran. E-mail:razani@ikiu.ac.ir

Z. Mazlumi Nezhad and M. Boujari
Department of Mathematics, Science and Research Branch,
Islamic Azad University, Tehran 14778, Iran.
E-mail: rozhneh@yahoo.com, m.boujary@gmail.com