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Abstract. In this study the radial part of the Schrödinger equation in
presence of the angular momentum (l 6= 0) has been solved for the gen-
eralized Woods-Saxon potential by using the modification method. This
approach is based on the definition of a modified Woods-Saxon poten-
tial which is selected that the associated Schrödinger differential equation
become comparable with the associated Jacobi differential equation. By
using this method, we obtain exactly bound states spectrum and wave
function of the generalized Woods-Saxon potential for nonzero angular
momentum case.
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1 Introduction

Woods and saxon introduced a potential to study elastic scattering of 20 MeV
protons by a heavy nuclei [38]. The Woods-saxon potential is a reasonable poten-
tial for nuclear shell model and hence attracts lots of attention in nuclear physics
[1, 17, 7, 9, 33, 18, 14, 24, 26, 20, 10]. The Woods-Saxon potential plays an essential
role in microscopic physics, since it can be used to describe the interaction of a nucleon
with the heavy nucleus. Although the non-relativistic Schrödinger equation with this
potential has been solved for ground state [16] and the single particle motion in atomic
nuclei has been explain quite well, the relativistic effects for a particle under the ac-
tion of this potential are more important, especially for a strong-coupling system. The
Schrödinger equation have been solved for three-body system using adiabatic expan-
sion [28] and cylindrically symmetric static space time [34] used to make differential
equation integrable. The relativistic Coulomb and oscillator potential problems, in-
cluding their bound-state spectra and wave functions, have already been established
for a long time [36, 11, 6, 31, 37, 30], and their non-relativistic limits reproduce the
usual Schrödinger-Coulomb and Schrödinger-oscillator solutions, respectively.
The behavior of valance electrons are very important to understand the abundance
of metallic clusters. Thus, a good description of the motion of these valance electrons
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are very useful to study metallic systems. The Woods-Saxon potential is utilized to
represent the mean field which is felt by valance electron in Helium model [12]. It is
also used in a nonlinear theory of scalar mesons [14]. In addition to these, the three-
dimensional Woods-Saxon potential is studied within the context of Supersymmetric
Quantum mechanics [22].
The spherical Woods-Saxon potential that was used as a major part of nuclear shell
model, was successful to deduce the nuclear energy levels [19]. Also it was used as
central part for the interaction of neutron with heavy nucleus [27]. With the help
of the axially-deformed Woods-Saxon potential along with the spin-orbit interaction
hamiltonian , it is possible to construct the structure of single-particle shell model
[25]. The Woods-Saxon potential was used as a part of optical model in elastic scat-
tering of some ions with heavy target at low energies [7]. Recently, A. Calogeracos
and his co-workers [8] have been developed a generalized well known theorem of non
relativistic scattering in one dimensional potential well in the base of Schrödinger
equation to apply in to the Dirac equation. C. Roja and V.M. Villalba [29] devel-
oped an approach to obtain the bound states solutions of the one-dimensional Dirac
equation for Woods-Saxon potential. For the case of three dimensions, Alhaidari
has developed a new two-component approach to Dirac equation for the spherically
symmetric potential, and solved a class of shape-invariant potentials that includes
Dirac-Morse, Dirac-Rosen-Morse, Dirac-Eckart, Dirac-Scarf, potentials, and obtain
their relativistic bound states spectra and related spinors [2, 3, 4, 5].
The Schrödinger equation for the Woods-Saxon potential is exactly solvable for l = 0
[13]. Since the woods-saxon potential can not be solved analytically for l 6= 0, one of-
ten adopts the harmonic oscillator potential or the square well in nuclear shell model
for both spherical [21] and deformed nuclei [35] as a good approximation. As an initial
approximation, the harmonic type potential used to construct the nuclear interaction
hamiltonian. However it is necessary to improve the asymptotic behavior of harmonic
oscillator wave function by performing a local scaling transformation [32]. To obtain
exact strongly bound level of nucleus, it is necessary to add the Woods-Saxon term
l 6= 0. The aim of our study is to analyze solutions of Schrödinger equation for the
modified form of generalized Woods-Saxon potential with the angular momentum
l 6= 0.

2 The modified form of Wood-Saxon potential

The generalized Woods-Saxon potential can be introduce by the following relation,

(2.1) Vgen(r) =
υ0

1 + e
r−R0

a

+
τ

(1 + e
r−R0

a )2
; ,

where R0 = r0A
1
3 is the radius of the corresponding nuclei with R0 as a constant

and A the mass number of the nucleus. υ0 is the potential depth and a is a constant
that usually adjusted to the experimental value of nuclear interaction barrier and τ
is a constant parameter.
In order to modify this potential for l 6= 0, it is necessary to add two terms to
generalized potential, so we have a modified potential as follows,
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(2.2) Vmod(r) =
υ0

1 + e
r−R0

a

+
τ

(1 + e
r−R0

a )2
+ µ coth(

r −R0

a
) + η coth2(

r −R0

a
); ,

the parameters υo, τ , µ and η are real constant values which we will compute
them in the next section. It is required to remind the third and forth terms in equa-
tion (2.2), in limit r − R0 ¿ a reformed as 1

r and 1
r2 respectively. These forms are

corresponding to the coulombian repulsive potential and it’s square. In section 3, by
using the associated Jacobi differential equation, we solve analytically the radial part
of time-independent Schrödinger equation with angular momentum l 6= 0, for this
modified shape of generalized Woods-Saxon potential. In Figs. 1 and 2 the gener-
alized and modified Woods-Saxon potential plotted as a function of r and compared
with together.
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Fig.1. Generalized Woods-Saxon Potential Fig.2. Modified Woods-Saxon Po-
tential

3 Solution of modified Woods-Saxon potential

By considering a new parameter as r ≡ r − R0, the time-independent Shrödinger
equation for the modified form of generalized spherical Woods-Saxon potential in
presence of angular momentum can be written as,

− h2

2m

(
d2

dr2
+

2
r

d

dr
− L2

~2r2

)
ψn,l(r)

+
(

υ0

1 + e
r
a

+
τ

(1 + e
r
a )2

+ µ coth(
r

a
) + η coth2(

r

a
)
)

ψn,l(r) = En,lψn,l(R); .(3.1)
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We compute the parameters υ0, τ , µ, η and En,l and also the bound states ψn,l(r)
by comparing this differential equation with the standard associated Jacobi differential
equation. So we extend the Woods-Saxon potential to obtain variable r as,

(3.2) r = a(e
r
a − 1); ,

this approximation valid for r → 0 in the nuclear size region. By considering wave
function as,

(3.3) ψn,l(r) =
1
r
ϕn,l(r); ,

and defining following new parameters ε = 8ma2En,l

~2 , γ = 4ma2υ0
~2 , δ = 2ma2τ

~2 ,
ρ = 8ma2µ

~2 and % = 8ma2η
~2 also variable x = tanh( r

2a ), the equation (3.1) can be
reduce to,

ϕ′′n,l(x)− 2xϕ′n,l(x) +
(

Enl

1− x2
− γ

1 + x
− δ(1− x)

1 + x

)
ϕn,l(x)−

(
ρ

x2(1− x2)
+

%

x(1− x2)
+

l(l + 1)(1− x)
x2(1 + x)

)
ϕn,l(x) = 0; .(3.4)

The well known associated Jacobi differential equation For real parameters α, β <
−1, and in the interval x ∈ (−1, 1) can be shown by the following relation [32, 23],

(1− x2)P ′′(α,β)
n,l (x) + (β − α− (α + β + 2)x)P

′(α,β)
n,l (x) +

(
n(α + β + n + 1)− l(α + β + l + (α− β)x)

1− x2

)
P

(α,β)
n,l (x) = 0; ,(3.5)

where the indices n and l are non-negative integers define in the interval 0 ≤ l ≤
n < ∞. The associated Jacobi function P

(α,β)
n,l (x) is the solutions of the differential

equation (3.5) and have the following Rodrigues representation,

(3.6) P
(α,β)
n,l (x) =

an,l(α, β)

(1− x)α+ l
2 (1 + x)β+ l

2

(
d

dx

)n−l (
(1− x)α+n(1 + x)β+n

)
; .

Here an,l(α, β) is the normalization coefficient that can be calculate through the
following relation for n ≥ l,

(3.7) an,l(α, β) =
(−1)l

2n

√
Γ(α + β + n + l + 1)

Γ(n− l + 1)Γ(α + n + 1)Γ(β + n + 1)
C(α, β); ,

in which C(α, β) is an arbitrary real constant independent of n and l.
Here we define the ϕn,l(x) as product of two functions,
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(3.8) ϕn,l(x) = ν(x)ω(x); .

Now we substitute this definition in differential equation (3.4) in order to obtain
the following differential equation,

(1− x2)ν′′(x) +
(

2(1− x2)
ω′(x)
ω(x)

− 2x

)
ν′(x) +

(
(1− x2)

ω′′(x)
ω(x)

− 2x
ω′(x)
ω(x)

+
ε

1− x2

)
ν(x)−(3.9)

(
γ

1 + x
+ δ

1− x

1 + x
+

ρ

x2(1− x2)
+

%

x(1− x2)
+

l(l + 1)
x2

1− x

1 + x

)
ν(x) = 0; .

By comparing equations (3.10) and (3.6), we conclude that ν(x) correspond to the
associated Jacobi function P

(α,β)
n,l (x) and function ω(x) can be obtain as,

(3.10) ω(x) = C(1− x)
α
2 (1 + x)

β
2 ; ,

here C is the normalization coefficient.
Meanwhile the further comparison between the following equations lead us to compute
the parameters ε, γ, δ, ρ and % as,

ε = l(l + 1)− (α + l)2,

γ = n(α + β + n + 1)− 2(
β2

4
− β

2
)− α− β

2
+ l(α + β)− αβ

2
,

δ = −n(α + β + n + 1) + (
β2

4
− β

2
) + (

α2

4
− α

2
) +

αβ

2
+ α + β,(3.11)

ρ =
l(l + 1)

2
; ,

% = l(l + 1),

by using the following equations, the parameters υ0, τ , µ and η in equation (3.1)
can be determined from relations υ0 = ~2

4ma2 γ, τ = ~2
2ma2 δ, µ = ~2

8ma2 ρ and η = ~2
4ma2 %.

Also we obtain the negative energy levels from relation between En,l and ε as,

(3.12) En,l = − ~2

8ma2

[
(α + l)2 − l(l + 1)

]
; .

and the negative energy spectrum can be written as,

(3.13) En,l = − ~2

8ma2
(α + l)2 ; ,

in the limit of zero angular momentum, l = 0 we have,
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(3.14) En,l = − ~
2α2

8ma2
; .

This relation for negative energy spectrum exactly match with the results of su-
persymmetry approach [15].
Finally by using equations (3.3), (3.8) and (3.10) the corresponding bound states for
these levels can be written as,

(3.15) ψn,l(r) =
C

r

(
1− tanh

r

2a

)α
2

(
1 + tanh

r

2a

) β
2

P
(α,β)
n,l

(
tanh

r

2a

)
; ,

here coefficient C is determined from normalization condition.

4 Conclusions

This research evident that by adding two terms to the generalized Woods-Saxon
potential, it is possible to obtain the solutions of the modified shape of this potential
for case l 6= 0. Then by using the associated Jacobi differential equation, the bound
states and also the corresponding wave function can be determined. The obtained
results agree with the results calculated in paper [15] in special case l = 0. The results
can extend for generalized nuclear potential which correspond to modify nucleus in
the case of relativistic theory. Also this simple method can be applied for other
complicated central potentials.
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