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Abstract. The main aim of this article is to generalize the notion of
almost convergent, Cesàro summable and lacunary summable spaces by
using a generalized difference operator defined associating a sequence of
non-zero scalars and characterize some matrix classes involving these se-
quence spaces. In this article we also introduce the idea of difference
infinite matrices. It is expected that these investigations will generalize
several notions associated with thus constructed spaces as well as of matrix
transformations.
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1 Introduction

Let w denote the space of all scalar sequences and any subspace of w is called a
sequence space. Let `∞, c and c0 be the spaces of bounded, convergent and null
sequences x = (xk) with complex terms, respectively, normed by

‖x‖∞ = sup
k
|xk|

The notion of difference sequence spaces was introduced by Kizmaz [10]. The
notion was further generalized by Et and Colak [4] by introducing the spaces `∞(∆s),
c(∆s) and c0(∆s). Another type of generalization of the difference sequence spaces
is due to Tripathy and Esi [15], who studied the spaces `∞(∆r), c(∆r) and c0(∆r).
Tripathy, Esi and Tripathy [16] generalized the above notions and unified these as
follows:

Let r, s be non-negative integers, then for Z a given sequence space we have

Z(∆s
r) = {x = (xk) ∈ w : (∆s

rxk) ∈ Z},
where ∆s

rx = (∆s
rxk) = (∆s−1

r xk −∆s−1
r xk+r) and ∆0

rxk = xk for all k ∈ N , which
is equivalent to the following binomial representation:

∆s
rxk =

n∑

i=0

(−1)i

(
s

i

)
xk+ri
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Let r, s be non-negative integers and v = (vk) be a sequence of non-zero scalars.
Then for Z, a given sequence space we define the following sequence spaces:

Z(∆s
(vr)) = {x = (xk) ∈ w : (∆s

(vr)xk) ∈ Z}, for Z = `∞, c and c0

where(∆s
(vr)xk) = (∆s−1

(vr)xk −∆s−1
(vr)xk−r) and ∆0

(vr)xk = vkxk for all k ∈N , which is
equivalent to the following binomial representation:

∆s
(vr)xk =

n∑

i=0

(−1)i

(
s

i

)
vk−rixk−ri.

In this expansion it is important to note that we take vk−ri = 0 and xk−ri = 0 for
non-positive values of k − ri.

In the next section we shall show that these spaces can be made BK-spaces under
the norm

‖x‖ = sup
k
|∆s

(vr)xk|

For s=1 and vk=1 for all k ∈N , we get the spaces `∞(∆r), c(∆r) and c0(∆r).
For r=1 and vk=1 for all k ∈N , we get the spaces `∞(∆s), c(∆s) and c0(∆s). For
r = s = 1 and vk=1 for all k ∈ N , we get the spaces `∞(∆), c(∆) and c0(∆).

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of
real or complex numbers ank, where n, k ∈ N .Then we say that A defines a matrix
mapping from E into F , and denote it by writing A : E −→ F if for every sequence
x = (xk) ∈ E the sequence Ax = {(Ax)n}, the A-transform of x, is in F , where

(1.1) (Ax)n =
∞∑

k=1

ankxk, (n ∈ N)

We denote be (E, F ) the class of all matrices A such that A : E −→ F . Thus
A ∈ (E,F ) if and only if the series on the right hand side of (1.1) converges for each
n ∈ N and every x ∈ E, and we have Ax = {(Ax)n}n∈N ∈ F for all x ∈ E. A
sequence x is said to be A-summable to l if Ax converges to l which is called the
A-limit of x. Further we write (E, F, P ) to the subset of (E, F ) which preserves the
limit or sum.

Interest in general matrix transformation theory was, to some extent, stimulated
by special results in summability theory which were obtain by Cesàro, Borel and
others, at the turn of the 20th century. It was however the celebrated German math-
ematician O. Toeplitz who, in 1911, brought the methods of linear space theory to
bear on problems connected with matrix transformations on sequence spaces. Toeplitz
characterized all those infinite matrices A = (ank), n, k ∈ N , which map the space of
convergent sequences into itself, leaving the limit of each convergent sequence invari-
ant (See for instance Maddox [12]).

A linear functional L on `∞ is said to be a Banach limit (see Banach [1]) if it has
the properties:

(i) L(x) ≥ 0 if x ≥ 0,
(ii) L(e) = 1, where e = (1, 1, 1, ...),
(iii) L(Dx) = L(x), where D is the shift operator defined by (Dxn) = (xn+1).
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Let B be the set of all Banach limits on `∞. A sequence x is said to be almost
convergent to a number l if L(x) = l for all L in B. Let ĉ denote the set of all almost
convergent sequences. Lorentz [11] proved that

ĉ = {x : lim
m→∞

1
m + 1

m∑

i=0

xn+i exists uniformly in n}.

By a lacunary sequence θ = (kq); q = 1, 2, 3, ..., where k0 = 0, we mean an
increasing sequence of non-negative integers with hq = (kq − kq−1) → ∞ as q → ∞.
We denote Iq = (kq−1, kq].

Let Cθ denote the space of all lacunary summable sequences. Then

Cθ = {x : lim
r→∞

1
hr

∑

k∈Ir

xk exists}.

Let σ1 denote the space of all Cesàro summable sequences. Then

σ1 = {x : lim
n→∞

1
n

n∑

i=1

xi exists}.

Let r, s be non negative integers and v = (vk) be a sequence of non-zero scalars.
Then we define the following spaces:

ĉ(∆s
(vr)) = {x : lim

p→∞
1
p

p−1∑

i=0

∆s
(vr)xn+i exists uniformly in n},

σ1(∆s
(vr)) = {x : lim

n→∞
1
n

n∑

i=1

∆s
(vr)xi exists},

Cθ(∆s
(vr)) = {x : lim

q→∞
1
hq

∑

k∈Iq

∆s
(vr)xk exists}.

We call the spaces ĉ(∆s
(vr)), σ1(∆s

(vr)) and Cθ(∆s
(vr)) as the spaces of ∆s

(vr)-almost
convergent, ∆s

(vr)-Cesàro summable and ∆s
(vr)-lacunary summable sequences respec-

tively. For s = 0 and vk = 1 for all k ∈ N we get the spaces of almost convergent([1],
[11]), Cesàro summable and lacunary summable ([6], [8]) sequences respectively.

2 Main Results

In this section we show that the spaces Z(∆s
(vr)), for Z = `∞, c and c0 are BK-spaces.

We also characterize the matrix classes (c, ĉ(∆s
(vr))), (c, σ1(∆s

(vr))), (c, Cθ(∆s
(vr))),

(c, ĉ(∆s
(vr)), P ), (c, σ1(∆s

(vr)), P ) and (c, Cθ(∆s
(vr)), P ).

Theorem 2.1. The spaces Z(∆s
(vr)), for Z = `∞, c and c0 are BK-spaces under the

norm defined by
‖x‖ = sup

k
|∆s

(vr)xk|
.
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Proof. First we show that the spaces Z(∆s
(vr)) are normed linear spaces normed by

‖.‖.
For x = θ, we have ‖x‖ = 0. Conversely, let ‖x‖ = 0. Then using definition of

norm, we have
sup

k
|∆s

(vr)xk| = 0

It follows that
∆s

(vr)xk = 0 for all k ≥ 1.

Let k = 1, then ∆s
(vr)x1 =

s∑
i=0

(−1)i
(

s
v

)
v1−rix1−ri = 0 and so v1x1 = 0, by putting

v1−ri = 0 and x1−ri = 0 for i = 1, ..., s. Hence x1 = 0, since (λk) is a sequence of
non-zero scalars. Similarly taking k = 2, ..., rs, we have x2 = . . . = xrs = 0. Next

let k = rs + 1, then ∆s
(vr)xrs+1 =

s∑
i=0

(−1)i
(

s
v

)
v1+rs−rix1+rs−ri = 0. Since x1 = x2 =

. . . = xrs = 0, we must have vrs+1xrs+1 = 0 and thus xrs+1 = 0. Proceeding in this
way we can conclude that xk = 0 for all k ≥ 1. Hence x = θ.

Again it is easy to show that ‖x + y‖ ≤ ‖x‖ + ‖y‖ and for any scalar α, ‖αx‖ =
|α|‖x‖.

Thus Z(∆s
(vr)) is a normed linear space normed by ‖.‖.

Now we show that Z(∆s
(vr)) is a Banach space under the norm ‖.‖.

Let (xi) be a Cauchy sequence in Z(∆s
(vr)), where xi = (xi

k) = (xi
1, x

i
2, ...) for each

i ≥ 1. Then for a given ε > 0, there exists a positive integer n0 such that

‖xi − xj‖ = sup
k
|∆s

(vr)(x
i
k − xj

k)| < ε for all i, j ≥ n0

It follows that

|∆s
(vr)(x

i
k − xj

k)| < ε for all i, j ≥ n0 and for all k ≥ 1.

This implies that (∆s
(vr)x

i
k) is a Cauchy sequence in C for all k ≥ 1 and so it is

convergent in C for all k ≥ 1.
Let lim

i→∞
∆s

(vr)x
i
k = yk, say for each k ≥ 1. Considering k = 1, 2, ..., rs, ..., we can

easily conclude that lim
i→∞

xi
k = xk, say exists for each k ≥ 1.

Now we can have

lim
j→∞

|∆s
(vr)(x

i
k − xj

k)| < ε for all i ≥ n0 and k ≥ 1

Hence
sup

k
|∆s

(vr)(x
i
k − xk)| < ε for all i ≥ n0.

This implies that (xi−x) ∈ Z(∆s
(vr)). Since Z(∆s

(vr)) is a linear space, x = xi− (xi−
x) ∈ Z(∆s

(vr)).
Hence Z(∆s

(vr)) are complete.
From the above proof we can easily conclude that ‖xi−x‖ → 0 implies |xi

k−xk| → 0
as i →∞, for each k ≥ 1.

Hence we can conclude that Z(∆s
(vr)) are BK-spaces.
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This completes the proof. ¤

Remark. One may find it interesting to see the above proof by taking particular
values of r and s in the difference operator ∆s

(vr). For example, let us take r = 3 and
s = 2, then ∆2

(v3)xk = vkxk - 2vk−3xk−3 + vk−6xk−6. For k = 2, we have ∆2
(v3)x2 =

v2x2 - 2v−1x−1 + v−4x−4 = v2x2. Also for k = 7, we have ∆2
(v3)x7 = v7x7 - 2v4x4 +

v1x1 etc.

Theorem 2.2. A ∈ (c, ĉ(∆s
(vr))) if and only if

(i) sup{
∞∑

k=1

1
p |

n+p−1∑
j=n

∆s
(vr)ajk| : p ∈ N} < ∞, n = 1, 2, ...

(ii) there exists αk, k = 1, 2, ..., such that

lim
p→∞

1
p

n+p−1∑
j=n

∆s
(vr)ajk = αk, uniformly in n and

(iii) there exists α such that

lim
p→∞

1
p

n+p−1∑
j=n

∞∑
k=1

∆s
(vr)ajk = α, uniformly in n,

where ∆s
(vr)ajk =

s∑
i=0

(−1)i
(
s
i

)
vkaj−ri,k and we take aj−ri,k = 0 for non-positive

values of j-ri. (e.g., ∆2
(3)v1a11 = v1a11−2v1a−2,1+v1a−5,1 = a11, ∆2

(3)v1a71 = v1a71−
2v1a41 + v1a11 etc.)

Proof. Suppose A ∈ (c, ĉ(∆s
(vr))). Fix n and put Spn(x) = 1

p

n+p−1∑
j=n

∆s
(vr)(Ax)j , where

∆s
(vr)(Ax)j = ∆s−1

(vr)(Ax)j −∆s−1
(vr)(Ax)j−r =

∞∑

k=1

∆s
(vr)ajkxk.

We write Bj(x) = ∆s
(vr)(Ax)j , j = 1, 2, .... Then we observe that (Bj) is a sequence

of bounded linear operators on c and so Spn, p = 1, 2, ... is a bounded linear operator on
c such that lim

p→∞
Spn(x) exists uniformly in n. Now (i) follows from an application of

uniform boundedness principle. Let e = (1, 1, ...) and ek = (0, 0, ..., 1, 0, ...), k = 1, 2, ...
where 1 is in the kth position. Since e and ek, k = 1, 2, ... are convergent sequences,
lim

p→∞
Spn(ek) and lim

p→∞
Spn(e) must exists uniformly in n. Hence (ii) and (iii) must

hold.
For the converse part let (xk) converges to l and the conditions (i), (ii) and (iii)

hold. We write

(2.1)
1
p

∞∑

k=1

n+p−1∑

j=n

∆s
(vr)ajkxk =

1
p

∞∑

k=1

n+p−1∑

j=n

∆s
(vr)ajk(xk− l)+

1
p
l

∞∑

k=1

n+p−1∑

j=n

∆s
(vr)ajk

Since (xk) converges to l, using (i) and (ii) it follows that the first term on the right

of (2.1) tends to
∞∑

k=1

αk(xk − l) as p → ∞. Again since (iii) holds, the second term

on the right of (2.1) tends to lα as p →∞.
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Therefore lim
p→∞

1
p

∞∑
k=1

n+p−1∑
j=n

∆s
(vr)ajkxk exists uniformly in n.

This completes the proof. ¤

Proof of the following two Theorems follow by applying similar arguments as
applied to prove Theorem 2.2.

Theorem 2.3. A ∈ (c, σ1(∆s
(vr))) if and only if

(i) sup{
∞∑

k=1

1
p |

p∑
j=1

∆s
(vr)ajk| : p ∈ N} < ∞,

(ii) there exists αk, k = 1, 2, ..., such that

lim
p→∞

1
p

p∑
j=1

∆s
(vr)ajk = αk, and

(iii) there exists α such that

lim
p→∞

1
p

p∑
j=1

∞∑
k=1

∆s
(vr)ajk = α.

Theorem 2.4. A ∈ (c, Cθ(∆s
(vr))) if and only if

(i) sup{
∞∑

k=1

1
hq
| ∑
j∈Iq

∆s
(vr)ajk| : q ∈ N} < ∞,

(ii) there exists αk, k = 1, 2, ..., such that
lim

q→∞
1
hq

∑
j∈Iq

∆s
(vr)ajk = αk, and

(iii) there exists α such that

lim
q→∞

1
hq

∑
j∈Iq

∞∑
k=1

∆s
(vr)ajk = α.

Theorem 2.5. A ∈ (c, ĉ(∆s
(vr)), P ) if and only if

(i) sup{
∞∑

k=1

1
p |

n+p−1∑
j=n

∆s
(vr)ajk| : p ∈ N} < ∞, n = 1, 2, ...

(ii) lim
p→∞

1
p

n+p−1∑
j=n

∆s
(vr)ajk = 0, uniformly in n, k = 1, 2, ...

(iii) lim
p→∞

1
p

n+p−1∑
j=n

∞∑
k=1

∆s
(vr)ajk = 1 uniformly in n.

Proof. Suppose A ∈ (c, ĉ(∆s
(vr)), P ). Then the condition (i) holds by Theorem 2.2.

Also (ii) and (iii) hold since we must have ĉ(∆s
(vr)) − lim Aek = 0, k = 1, 2, ... and

ĉ(∆s
(vr))− limAe = 1 respectively.
For converse part suppose the conditions hold and (xk) converges to l. Then by

Theorem 2.2, we have A ∈ (c, ĉ(∆s
(vr))) and using (2.1) we must have

lim
p→∞

1
p

∞∑

k=1

n+p−1∑

j=n

∆s
(vr)ajkxk = l.
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This completes the proof. ¤

Proof of the following two Theorems follow by applying similar arguments as
applied to prove Theorem 2.5.

Theorem 2.6. A ∈ (c, σ1(∆s
(vr)), P ) if and only if

(i) sup{
∞∑

k=1

1
p |

p∑
j=1

∆s
(vr)ajk| : p ∈ N} < ∞,

(ii) lim
p→∞

1
p

p∑
j=1

∆s
(vr)ajk = 0, k = 1, 2, ...

(iii) lim
p→∞

1
p

p∑
j=1

∞∑
k=1

∆s
(vr)ajk = 1.

Theorem 2.7. A ∈ (c, Cθ(∆s
(vr)), P ) if and only if

(i) sup{
∞∑

k=1

1
hq
| ∑
j∈Iq

∆s
(vr)ajk| : q ∈ N} < ∞,

(ii) lim
q→∞

1
hq

∑
j∈Iq

∆s
(vr)ajk = 0, k = 1, 2, ...

(iii) lim
q→∞

1
hq

∑
j∈Iq

∞∑
k=1

∆s
(vr)ajk = 1.

Remark. By taking s = 0, and vk = 1 for all k ∈ N , in Theorem 2.2 and Theorem
2.5, we get the matrix classes (c, ĉ), (c, ĉ, P ) studied by King [9].

3 Conclusions

In the present paper we present a generalization of the notion of almost con-
vergent, Cesàro summable and lacunary summable spaces by using the generalized
difference operator ∆s

(vr) and study the spaces of these difference sequences for BK-
spaces. We also characterize the matrix classes involving these sequence spaces and
the space c. Further we characterize the matrix classes which preserves the limit. One
may find it interesting to see ([14], [2], [7]) for some results on matrices and functional
analytic studies on spaces.
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