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Abstract. The aim of this work is to describe a general method for corre-
late phenomenological and state coefficients to quantities experimentally
measurable both for mechanical and dielectric relaxation phenomena.
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1 Introduction

As it is well known any material system which is subjected to a external perturbation
shows a change of the set of variables which describes the state. Since a rigorous de-
scription of phenomena involves a great number of variables it is useful to introduce
some modelization, in agreement with experience, which reduces the number of vari-
ables. In the following we refer to continuum scheme in a linear approximation. In
such context we will study relaxation phenomena characterized by choosing extensive
variables as causa and the relative intensive variables as effect. The differential rela-
tion between this kind of variables represents the theoretical approach to describe the
phenomenon. In this paper we will consider a continuous medium of order two in the
sense that two relaxation phenomena predominate and consequently two relaxation
times are introduced.

One method to investigate a system by laboratory measurement is to subject
it to a perturbation or input and to analyze the relative response or output. This
allows to introduce the so-called response function h(t) which is related to specific
physical characteristic of the medium and is unknown quantity. On the contrary to
this approach, the theoretical one will determine the mentioned output by knowing
input and response function. It is important to specify that we will refer to ”linear
shift invariant systems” which meaning will be cleared in the next section [1].

2 Approach to linear response theory

As already stated, if signals f1(t) and f2(t) give outputs g1(t) and g2(t) respectively,
then an input f1(t)+f2(t) gives an output g1(t)+g2(t). A system is shift invariant,[1],
if delaying an input has no effect other than to delay the output by the same amount.
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For instance if a harmonic signal is applied to a linear shift invariant system then the
output consists of a harmonic function at the same frequency.

Let be the impulse response h(t) as the output for an input f(t), it is possible to
define the transfer function H(w) as a Fourier transform of h(t):

(2.1) FT−{h(t)} = H(ω) =
∫ +∞

−∞
e−iωth(t)dt

Fig.1. Schematic response experiment.

It is important to notice that the input f(t), output g(t) and the response h(t) for
a linear shift invariant system are related by the convolution relation [1]:

(2.2) g(t) = f(t)⊗ h(t)

where

(2.3) f(t)⊗ h(t) =
∫ +∞

−∞
f(t1)h(t− t1)dt1

From equation (2.2) and taking into account convolution theorem it follows:

(2.4) G(ω) = F (ω)H(ω)

where

FT−{g(t)} = G(ω) =
∫ +∞

−∞
e−iωtg(t)dt(2.5)

FT−{f(t)} = F (ω) =
∫ +∞

−∞
e−iωtf(t)dt(2.6)

This discussion is limited to systems for which input is harmonic. In (2.5) and (2.6)
the functions F (ω) and G(ω) are interpreted as the complex amplitudes related to
harmonic input and output respectively, and H(ω) as a complex transfer function
which take into account the change in amplitude and phase. Obviously it is important
to determine the function h(t) which can be obtained easily from relation (2.2) as
follows:

(2.7) H(ω) =
G(ω)
F (ω)

from which

(2.8) h(t) = FT+{H(ω)} = FT+
{G(ω)

F (ω)

}

where FT+{...} is the inverse Fourier Transform.
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Note that if f(t), g(t) and h(t) are real quantities the transfer function H(ω) is an
essentially complex quantity. It is useful for the study of many physical phenomena
to obtain the response function applying a harmonic input (extensive variable) which
can be represented by the real (or imaginary) part of a complex function f(t) [1]:

(2.9) f(t) = Aeiω0t

and to analyze the output which is the real (or imaginary) part of the function g(t):

(2.10) g(t) = B(ω0)ei(ω0t+Φ(ω0))

where A, B is the amplitudes of the oscillations and ω0 is angular frequency. This
approach can be utilized when relaxation phenomena will be studied. By calculating
the Fourier Transform of input (2.9) and output (2.10) it is easy to obtain the transfer
function given by the relation (2.7):

F (ω) = FT−{Aeiω0t} = 2πδ(ω − ω0)(2.11)
G(ω) = FT−{B(ω0)ei(ω0t+Φ(ω0))} = 2πB(ω0)eiΦ(ω0)δ(ω − ω0)(2.12)

and therefore

(2.13) H(ω) =
G(ω)
F (ω)

=
B(ω)

A
eiΦ(ω)

This transfer function allows us to introduce a complex quantity

(2.14) Ω(ω) = Ω1(ω) + iΩ2(ω) = H(ω)

with real and imaginary part given by:

Ω1 =
B(ω)

A
cosΦ(ω)(2.15)

Ω2 =
B(ω)

A
sin φ(ω)(2.16)

In a physical context these quantities are called storage modulus and loss modulus
respectively. Their physical meaning depend on the amplitude A and B(ω) and are
directly experimental measurable as function of angular frequency.
In agreement with the pattern ”force×increase in path=intensive entity×change in
extensive entity” we will show that the quantity Ω1 is related to non dissipative
phenomena and the quantity Ω2 is related to dissipative one. In fact we can calculate
the total energy W dissipated per cycle by considering (without loss of generality)
the coefficient of imaginary part of (2.9) and (2.10); we have:

(2.17) W =
∫ T

0

ABω sin(ωt + φ) cos ωtdt

where T = 2π
ω is the period of the harmonic input. By equation (2.17) it follows:

(2.18) W =
AB

2

[
cos φ sin2 ω +

sinφ sin 2ωt

2

]T

0
+

AB

2
[ωt]T0 sin φ
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which is the sum of two terms, one of which is periodic while the other increases
linearly with time. Over a complete cycle the first term of (2.18) has zero value while
the second is

(2.19) Wl =
AB

2
ωt sin φ

and represents the dissipative energy per cycle. The fist term (2.18) computed over
a quarter of cycle, in which T

4 = π
2ω and the strain increase from zero to a maximum,

becomes

(2.20) Ws =
AB

2
cos φ

which is the maximum amount of energy stored in a quarter of cycle. The equations
(2.19) and (2.20) can be rewritten taking into account equations (2.15) and (2.16),
one obtains:

Ws =
A2

2

(B

A

)
cos φ =

A2

2
Ω1(2.21)

Wl =
A2

2

(B

A
sin φ

)
ωT =

A2

2
Ω2ωT(2.22)

This means that Ω1 and Ω2 are related to stored and dissipative phenomena respec-
tively.
Our considerations are restricted to media with

(2.23)
{

105Pa < Ω1 (ω) < 1011Pa
103Pa < Ω2 (ω) < 109Pa.

We will remember that for materials with one relaxation time the general behaviour
of Ω1 and Ω2 is shown in Fig.2.

Fig.2. Generic Ω1(ω) and Ω2(ω).



52 Vincenzo Ciancio, Francesco Farsaci and Patrizia Rogolino

Moreover, phenomena suggest to admit two range of frequencies for which a fixed
medium shows a linear behaviour. Denoting by σ constant relaxation time of the
medium we introduce (see Fig.2) :

• a region of low frequencies (ωσ ¿ 1):

(2.24)

Ω1 (ω) ≤ Ω1R + p (ω)Ω1R

Ω2 (ω) ≤ Ω2R + r (ω)Ω2R

10−3 ≤ p (ω) ≤ 0.3
10−3 ≤ r (ω) ≤ 0.3

• a region of high frequencies (ωσ À 1):

(2.25)

Ω1 (ω) ≥ Ω1U − q (ω)Ω1U

Ω2 (ω) ≤ Ω2U + s (ω) Ω2U

10−3 < q (ω) ≤ 0.3
10−3 < s (ω) ≤ 0.3

• two values of ω : ω
L

and ω
H

for which both Ω1 (ω) and Ω2 (ω) assume the values

(2.26) Ω1 (ωL) = Ω1L = Ω1R + 0.3Ω1R = 1.3GΩ1R ,
Ω2 (ωL) = Ω2L = Ω2R + 0.3Ω2R = 1.3Ω2R ,

and

(2.27)
Ω1 (ω

H
) = Ω1H = Ω1U − 0.3Ω1U = 0.7Ω1U ,

Ω2 (ωH ) = Ω2H = Ω2U + 0.3Ω2U = 1.3Ω2U .

These values identify the regions that we call linear regions (see fig.1).

In particular when we write ωσ ¿ 1 or ωσ À 1 we mean that it must be ωσ < 10−2

and ωσ > 102, respectively.

3 Determinations of Ω1 and Ω2

In this paper we suppose relaxation phenomena of order two [8], [15]. A general linear
relation between extensive and intensive phenomena can be expressed by the following
differential equation:

(3.1) g̈ + αġ + βg = µf + νḟ + πf̈

where the dot means the derivative with respect to time and the coefficients α, β,
µ, ν, π are algebraic functions of phenomenological and state coefficients which ap-
pear in the theory that one considers [11], [12]; these coefficients in the following will
be expressed as functions of the moduli Ω1 and Ω2 which are experimentally deter-
minable. Taking into account (2.9), (2.10), (2.13) and (2.14) one obtains the following
expressions:

Ω1(ω) =
B(ω)

A
cosφ(ω),(3.2)

Ω2(ω) =
B(ω)

A
sin φ(ω)(3.3)
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It is possible to express the physical meaning of (2.9) and (2.10) also by specifying
A and B(ω); it is useful consider without loss generality the coefficients of imaginary
part which we indicate with

f(t) = A sin ωt(3.4)
g(t) = B(ω) sin(ωt + φ(ω))(3.5)

It is easy to get [16]:

(3.6) g(t) = A
[(B(ω)

A
cos φ(ω)

)
sin ωt +

(B(ω)
A

sin φ(ω)
)

cosωt
]

By using the expression (3.4)1 the last differential equation becomes:

(3.7) g̈ + αġ + βg = Ā sin ωt + B̄ cos ωt

where

Ā = A(µ− πω2)(3.8)
B̄ = νAω(3.9)

The integration of differential equation (3.7) gives the following general solution that
represents the intensive function:

g(t) = c1e
r1t + c2e

r2t +
[ Āω(r2 + r1) + B̄(r1r2 − ω2)

(ω2 + r2
1)(ω2 + r2

2)

]
cos ωt +(3.10)

+
[ Ā(r1r2 − ω2)− B̄ω(r1 + r2)

(ω2 + r2
1)(ω2 + r2

2)

]
sin ωt(3.11)

where c1 and c2 are two arbitrary integration constants, −r−1
1 and −r−1

2 are two
relaxation times [15]. Obviously r1 and r2 are solution of the following characteristic
equation associated to homogeneous differential equation:

(3.12) r2 + αr + β = 0

from which one obtains the following relations:

r1 + r2 = −β(3.13)
r1r2 = α(3.14)

Since the aim is to find a functional relation between the coefficients of differential
equation and the quantities expressed by equations (2.15) and (2.16) which are ex-
perimentally measurable, it is reasonable to neglect any transitory phenomenon, so
that the solution (3.10) can be written as follows:

(3.15) g(t) = g0(ω) sin(ωt + φ)

in which

cosφ =
Ā(r1r2 − ω2)− B̄ω(r1 + r2)√

(Ā2 + B̄2)(ω2 − r1r2)2
(3.16)

sin φ =
Āω(r2 + r1) + B̄(r1r2 − ω2)√

(Ā2 + B̄2)(ω2 − r1r2)2
(3.17)
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and

(3.18) g0 =

√
(Ā2 + B̄2)[(ω2 − r1r2)2 + ω2(r1 + r2)2]

(r2
1 + ω2)(r2

2 + ω2)

Since equations (3.6) and (3.15) are two mathematical representations of the same
phenomenon by identifying these equations one has:

AΩ1 =
Ā(r1r2 − ω2)− B̄ω(r1 + r2)

(ω2 + r2
1)(ω2 + r2

2)
(3.19)

AΩ2 =
Āω(r2 + r1) + B̄(r1r2 − ω2)

(ω2 + r2
1)(ω2 + r2

2)
(3.20)

The quantities r1 and r2 are experimentally known because represent the inverse of
relaxation times changed in sign, therefore by solving the equations (3.19) and (3.20)
the unknown coefficients Ā and B̄ can be obtained as follows:

Ā = A[Ω1(r1r2 − ω2) + Ω2ω(r1 + r2)](3.21)
B̄ = A[Ω2(r1r2 − ω2)− Ω1ω(r1 + r2)](3.22)

Since for low and high frequencies (as suggested by phenomena) the coefficient Ω1

will assumes values remaining constant which we indicate as Ω1R/H where we select
Ω1R or Ω1H (see Fig.2) for the symbol Ω1R/H depending on we refer to low or high
frequencies respectively, and in the equation (3.1) we can neglect time derivative, it
follows that the coefficients µ and β which appear in (3.1) will assume values such
that:

(3.23) µ = Ω1R/Hβ

Therefore it is obtained the unknown coefficient of differential equation (3.7) as func-
tions of quantities which depend on the frequency and experimentally determinable.
By substituting the expressions (3.8) and (3.9) in equations (3.21) and (3.22) respec-
tively it is possible to obtain the following explicit form for the unknown quantities
π and ν:

π = − [Ω1(r1r2 − ω2) + Ω2ω(r1 + r2)] + r1r2Ω1R

ω2
(3.24)

ν =
Ω2(r1r2 − ω2)− Ω1ω(r1 + r2)

ω
(3.25)

Then, equations (3.23), (3.24), (3.25) together with

r1 + r2 = −β(3.26)
r1r2 = α(3.27)

represent two systems of four equations in unknown coefficients α, β, µ, ν and π of
differential equation (3.7) according to consider low or high frequencies selected by
Ω1R/H . These systems in general are incomplete, in the next section it is given some
cases particular in which it is possible to complete.
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3.1 Identifications of phenomenological coefficients in media
with dielectric and mechanical relaxations

By comparing these results with other one obtained in [11], [12], it is possible to
explicit the coefficients of differential equation (3.7) in case of media with dielectric
[10] and mechanical [17] relaxations and to complete the system.

a)Dielectric Case.

Let be denote with D and E the induction vector and the electric field respectively;
the identification of the coefficients A and B with the amplitudes D0 = D0 · n and
E0 = E0 · n (n is the unit normal to an arbitrary surface surrounding the charge) of
induction vector D and the relative electric field E lead to determinations of algebraic
functions of phenomenological coefficients. In this case it is enough in equation (3.7)
to make the following positions:

(3.28) D = f, E = g

where D = D·n and E = E·n, therefore the relations (3.23)-(3.27) lead to expressions
of dielectric case if it is identified the real and imaginary parts of reciprocal complex
dielectric constant with Ω1 and Ω2 as follows:

Ω1 =
ε′

ε′2 + ε′′2
, Ω2 =

ε′′

ε′2 + ε′′2
µ = Ω1R/Hβ

π = − [Ω1(r1r2 − ω2) + Ω2ω(r1 + r2)] + r1r2Ω1R

ω2

ν =
Ω2(r1r2 − ω2)− Ω1ω(r1 + r2)

ω
(3.29)

β = −(r1 + r2)
α = r1r2

where ε′ and ε′′ are real and complex parts of complex dielectric constant. The
relations (3.29) lead to that of the reference [4] if we consider r1 = r2 and identify in
equation (3.7) of paper [4]:

b =
1 + h1ε0

h2ε0
= α, a =

h0ε0 + k0

h2ε0
= β(3.30)

µ =
h0

h2ε0
, ν =

h1

h2ε0
,

1
ε0

= π

In this case the unknown functions are α, β, µ, ν since π = 1
ε0

and the system is com-
plete. Therefore these relations express a connection between the phenomenological
coefficients and quantities that are directly measurable.
We have applied this method to PMMA (PolyMethylMethaCrylate) and PVC poly-
mers in order to obtain phenomenological coefficients for such materials.
The dielectric measurements were performed by Rheometric Scientific Analyser (DETA).
The analysis chamber is purged with nitrogen. The frequencies scanned the range 10
Hz - 105 for PMMA and 102 Hz - 106 Hz for PVC.
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The PMMA and PVC samples [9, 7], in the shape of suitable disks, were previously
metallised with gold to ensure a good contact with stainless steel blocking electrodes
of the DETA; ε′ and ε′′ were determined at 90C and 100C, respectively. The experi-
mental results are shown in the next figures.

Fig.3. The trend of the phenomenological coefficients h0, h1, k0 and h2 for

PolyMethylMethaCrylate (PMMA) at 90◦C in the range 10− 105 Hz.

Fig.4. The trend of the phenomenological coefficients h0, h1, k0 and h2 for

PolyVinylChloride (PVC) at 100◦C in the range 102 − 106 Hz.
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b) The mechanical case.

Let be denoted by τ̃ik and ε̃ik the deviator of the stress and strain tensors respectively.
If we consider the case for which just one component of the stress and strain is different
from zero for example τ̃12 and ε̃12, the identifications of coefficients A and B with the
amplitudes τ̃

(0)
12 and ε̃

(0)
12 of stress and strain respectively, lead to determination of an

incomplete system of algebraic functions of phenomenological and state coefficients,
[13], [14]. In this case it is enough to put:

(3.31) f = ε̃12, g = τ̃12

the relations (3.23)-(3.27) lead to expressions of mechanical case if it is identified real
and imaginary parts G1 and G2 of complex dynamic modulus [19] with Ω1 and Ω2,
i.e.:

Ω1 = G1, Ω2 = G2

then the system assumes the following form:

µ = Ω1R/Hβ

π = − [Ω1(r1r2 − ω2) + Ω2ω(r1 + r2)] + r1r2Ω1R

ω2

ν =
Ω2(r1r2 − ω2)− Ω1ω(r1 + r2)

ω
(3.32)

β = −(r1 + r2)
α = r1r2

These relations will be the same of (19.9) of reference [11], if we identify

µ = R
(ε)
(d)0; ν = R

(ε)
(d)1, π = R

(ε)
(d)2

β = R
(τ)
(d)0;α = R

(τ)
(d)1

Moreover, if the media is of order one, it follows from (3.32) the equations (3.33)-(3.36)
of reference [2, 5], if it results in eq.(3.1) g̈ = 0, α 6= 0 and

β

α
= R

(τ)
0 ;

µ

α
= R

(ε)
0 ;

ν

α
= R

(ε)
1 ;

π

α
= R

(ε)
2

These last relations represent the expressions of coefficients in the case under consid-
eration.
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Fig.5. Poly-isoButylene; M.w. = 106g/mol; T0 = 273K.

4 Conclusions

In this paper we have unified some mechanical and dielectric aspects of relaxation
phenomena, obtaining a mathematical generalization of the method developed in refs
[4], [5]. It has been possible, by correlation of linear response theory and a general
second order differential equation relating extensive variables (considered as cause)
and the corresponding intensive (considered as effect), to show that a same procedure
is able to determine, in both mechanical and dielectric cases, phenomenological and
state coefficients as function of two frequency dependent quantities experimentally
measurable. It is remarked that this procedure is important because it shows a
common behaviour in two different fields of physics. Related results can be found in
[18, 6, 3].
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