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Abstract. The robustness and the fragility of a second-order SODE is
studied by means of the five KCC invariants, which provide information
on the Jacobi stability ([1, 8, 53, 14]). The paper presents a brief overview
on Finslerian m—root metrics, in particular, of Berwald-Moor type, and
applies the developed theory to a Berwald-Moor type conformally de-
formed relativistic model, where the five KCC invariants of the Finslerian
framework are computed by means of the MAPLE 12 symbolic software.

M.S.C. 2000: 37N25, 92C45, 53B40, 53C60.
Key words: dynamical system, KCC invariants, Jacobi stability, Finsler space,
conformal deformation, m-root metric.

1 Brief account on the KCC theory

The KCC (also called structual, or Jacobi) stability, adds a complementary degree of
accuracy to the classical linear analysis, by studying the robustness and fragility of
a second-order SODE ([1]-[8],[53]-[54],[10]-[15]). By robustness are assumed both the
relative insensitivity to alteration of the internal parameters and the ability to adapt
to changes in environment. From the mathematical point of view, the differential
geometrical theory of variational equations - which studies the deviation of nearby
trajectories, allows us to estimate the admissible perturbation around the steady
states of the SODE. In the real world applications is of interest to identify the "robust
arrest” regions - i.e., the regions where one has both Lyapunov and Jacobi stability.
This can be achieved by means of the KCC theory.

The roots of the KCC theory reside in the works of D.D. Kosambi [28], E. Car-
tan [21] and S.S.Chern [22, 23], and the abbreviation KCC (Kosambi-Cartan-Chern)
emerges from the names of the three initiators of the framework.

It is noteworthy to stress that the first attempts to settle and to develop system-
atically the KCC theory are due to P.L. Antonelli and I. Bucdtaru ([1],[4] and [5]).
In [4] it was proved that all the five KCC invariants of the SODE can be expressed
in the Finslerian geometric framework, and using the dynamical covariant derivative
and the covariant derivative induced by the Berwald connection are determined two

AvrpLiep SCIENCES, Vol.11, 2009, pp. 19-34.
(© Balkan Society of Geometers, Geometry Balkan Press 2009.



20 Vladimir Balan and Ileana Rodica Nicola

invariant equations for the variational equations of a SODE and for the symmetries
of the associated semispray.

The most significant applications of the KCC theory have been developed for
second-order autonomous systems (2.1) in which ¢g* (and hence the nonlinear semis-
pray components G*(x,y)) are quadratic affine forms in terms of y. For several such
systems which provide Lotka-Volterra models from biology, the Jacobi stability has
been investigated ([3, 5, 6, 3]).

The KCC theory has been applied in population genetics, engineering, ecology
([7, 44]), in plasma physics ([24]) and in Belousov-Zhabotinskii reaction model in
chemistry ([65]). Recent advances have been obtained in the Riemannian KCC frame-
work, in stating the exact relations which exist between the stability equation for the
solutions of a mechanical system and the geodesic deviation equation of the associ-
ated geodesic problem in the Jacobi metric constructed via the Maupertuis-Jacobi
Principle, and concluding that the dynamical and geometrical approaches to the sta-
bility /instability problem are not equivalent ([26]). An application of the KCC theory
was developed in [64], where the the Jacobi stability of a Rikitake system associated
to a two-disk dynamo system was studied and where it was shown that the chaotic
behavior of the magnetic field can be investigated using the five KCC invariants.

Numerous applications of the KCC theory to processes from biology which are de-
scribed by second order SODE (]2, 29]) and by second-order extensions of dynamical
systems (e.g., [12, 13, 15, 43, 45]), have been developed. As well, intensive research
work has been provided on the Jacobi stability of gyroscopic-type second-order ex-
tensions of dynamical systems ([61]) which model biological processes, and of their
linearizations ([42, 62, 63]).

2 The KCC structural invariants

We provide hereafter the main basics of KCC theory ([1], [53], [4]). Let x = (21, ...,2")
be the components of a curve in R™, and consider its velocity & = dz/dt. We further
assume that (z,y = #,t) belong to an open connected subset D C R™ x R" x R! =
R2"*t1 and will denote the coordinates in this region using the components of the
(2n + 1)—tuple (z,y,t). In the following sections, position z will lay in a local chart
of an n—dimensional smooth real manifold M, endowed with Finslerian structure F'.

Consider a second order system of differential equations in normalized form

d?zt
dt?

(2.1) +g'(z,@,t) =0, i€ T,n

) )

where ¢'(x,d,t),i € 1,n are smooth functions defined in a neighborhood of some
initial conditions (zg, ¢o,to) € D. In order to find the KCC differential invariants of
the system (2.1) under the non-singular coordinate transformations of the form

(2.2) 7= fi(zt,...,2"),icT,n, =t

we define the KCC covariant differential of a contravariant vector field €' on D via

Dg_dg 1,
= + 59 g ’

2. X
(23) dt .~ 277
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where indicates partial differentiation with respect to &, and the Einstein sum-
mation convention is implicitly assumed. Using (2.3) for £&” = 4", the initial system
(2.1) becomes

Dg? , 1 ,
(2.4) df =¢', with ¢&'= 3 g " —g"

The contravariant vector field € defined on D is called the first KCC invariant, and
plays the role of an external force ([1]). We note that e identically vanishes iff the
functions ¢ = ¢*(z,#,t) are 2-homogeneous in i. Hence, in geometric terms € = 0 is
a necessary and sufficient condition for the semispray defined by (g%), to be a spray.
It is obvious that for the geodesic spray of a Riemannian or Finsler manifold, this
relation is fulfilled.

Further, if one varies the paths z*(t) of (2.1) with respect to = as z%(t) = z%(t) +
£4(t)n, with 0 < |n| << 1, then the following variational equations are derived

d2£z’ . d&r )
2.5 ! e =0
(2.5) TR T S ,
where 7,7 indicates partial differentiation with respect to . We can write (2.5) in

terms of the KCC covariant differential (2.3), in the covariant form

D2£i )
2.6 =P
( ) dt2 7‘§ Y
where the right hand side (1,1)-tensor
i i 1 L.r i 1, . 19g
(27) Pj = _g,j - gg g;r;j + 51’ g,'r;j + Zg;rg;j + 5 8t

is called the second KCC invariant of the system (2.1), or deviation curvature tensor.
Its eigenstructure provides an alternative to the Floquet Theory ([53]), with the eigen-
values of Pj replacing the characteristic multipliers (also called Floquet exponents,
(49], [8]).

The usage of the term Jacobi stability within the KCC theory is justified by the
fact that, when the emerging system (2.1) represents the SODE of geodesic equations
in Finsler or Riemannian frameworks ([17, 37, 31, 50]), then (2.6) is the Jacobi field
equation. Specifically, the Jacobi equation (2.6) of the Finsler manifold (M, F') can
be written in the scalar form ([17]):

d?v

(2.8) -~

+K-v=0,

where ¢ = v(s)n' is a Jacobi field along the geodesic z'(s), ° is the unit normal
vector field, and K is the flag curvature of (M, F). The sign of K influences the
geodesic rays: if K > 0, then the geodesics bunch together (are Jacobi stable), and if
K < 0, then they disperse (are Jacobi unstable).

Hence negative/positive flag curvature is equivalent to positive/negative eigenval-
ues of P}. In this respect, it is known the following result ([6], [1]):
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Theorem 2.1. The integral curves of the second-order SODE (2.1) are Jacobi stable
if and only if the real parts of the eigenvalues of the deviation tensor P} are strictly
negative everywhere, and Jacobi unstable, otherwise.

The notion of Jacobi stability presented above can be extended to the general
case of the SODE (2.1) using this Theorem as definition for the Jacobi stability of
the integral curves of a rheonomic second-order SODE.

The third, fourth and fifth KCC invariants of the system (2.1) are respectively

i Lo i i i i i
(2.9) ik g(Pj;k - Pk;j)a Bjkl = Rjk;la Djkl = 9.5kl
A basic result of the KCC theory which points out the réle of the five invariants &,
P}, R, BYy, and DY, vespectively defined by (2.4), (2.7), (2.9), is the following ([1]):
Theorem 2.2. Two SODEs of the form (2.1) on D C R®*"* can be locally trans-
formed relative to (2.2), one into another, if and only if their five invariants are

equivalent tensors. In particular, there exists a local system of coordinates (z), for
which g'(x,@,t) = 0, if and only if all the five KCC tensors vanish.

If there exist no coordinate change such that the coefficients of the new second
order SODE-semispray do all vanish, according to ([1]), this implies that the integral
curves of the second-order extended system can never be straight lines, whatever
coordinate system one might choose.

The study of Jacobi stability is complementary to the study of linear stability and
is based on the study of Lyapunov stability of whole trajectories in a region, and hence
the perturbation yields trajectories close to the reference trajectory ([42, 62, 63]).
Similarly, in the case of Lyapunov stability, the perturbations of a stable equilibrium
point lead to trajectories which will be dumped out, provided that these are small
enough so as not to escape from a basin of attraction (see [6, 53]).

3 The KCC Finslerian framework

The KCC theory of a system of second order ordinary differential equations uses five
geometric invariants that determine, up to a change of coordinates, the solutions of the
system. The vector field (semispray) associated to the SODE determines a nonlinear
connection N and a Berwald connection I', both considered on TM. A particular
case when the semispray is homogeneous in y, appears e.g. for the canonic Cartan
nonlinear connection on a Finsler manifold ([4]). We shall briefly describe below the
geometry of the second-order SODE (2.1) in the Finslerian framework.

Let (M, F) be an n—dimensional Finsler space with fundamental function F :
TM — R ([37, 18]) satisfying the following conditions:

i) F is of class C° on TM and C* on the the slit tangent space TM = TM\{0};

ii) F is positive homogeneous in y € T, M: F(x, \y) = A\F(x,y), VA > 0;
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e . 2 .
iii) ' The fundamental metric tensor field g;; = %% where L = F2, is non-

degenerate and has constant signature, where we have denoted 3j =0/0y’.

We shall further assume that the raising/lowering of indices is performed by means
of the fundamental metric tensor field. The equations of motion in a Finsler space
entailed by the action of a force A = (A;) provided by a Finsler 1-form, are given by
a second-order SODE

d (0L oL 1 )
(31) % <3y2> - 81‘1, = 5/\“ 1= 1,77,,

where Ai% is the external force ([38, 20]), which vanishes in the case of geodesic
equations. We note that these equations can be written as a second-order SODE of

type (2.1):

(3.2) @Hcﬂ(mb)—o icI,n
N dt2 ) - b ) b

where the functions {G*} determine a semispray

P . P
Ot -2G (ﬂf,y)

(3.3) S=y 87/“

which provide the coefficients of a nonlinear connection N ([56]), via

.G

It is known that a sufficiency condition for the trajectories of the dynamical system
given locally on TM by the semispray S,

j].i — yi
3.5
( ) { yi = —QGi(x,y)

for not behaving chaotically, is that hte SODE admits a constant of motion. In this
respect the following result ([55]), which is used in KCC-related applications (e.g., in
[64]), holds true:

Theorem 3.1. Assume that there exists a vector field X on M such that [X,S] = f S
for some function f on M. Then

S(f + divgX) = —f divagS + X (divaS),

where S is the semispray (3.3), and divg is the divergence operator w.r.t. the volume
form Q on M.

As a consequence of this theorem, for f = 0 and div oS constant, the system (3.5)
admits the constant of motion divoX.

Lthis property does not assume positive definiteness; the Finsler spaces of non-positive signature,
like several of investigated spaces of Berwald-Moor type might be called pseudo-Finsler ([19]).
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The coefficients (3.4) define the KCC covariant differential of a vector field £¥(t),
as
dt — dt

(3.6) + N,

8- - considered along the integral curves

of (3.5), leads to the alias of the system (2. 4) DYy = ¢ where €' = Niy? —2G*
coincides with the first KCC invariant (3.2), canonically related to the generalized
force A ([4]). We note that in the absence of forces (A = 0), one gets the equations of
geodesics of the Finsler space. In this case, applying the variation process described
in the previous section to the integral paths of (3.5), one obtains the equations

a2 LdeT oG
T 2N+ 2

26 =,
which can be written in terms of the KCC covariant derivative (3.6) as

D2§i

(3.7) s

= P;¢’.
The right term exhibits the components of the second KCC tensor,

_ an 8N" ON
pi— 2GS, — Ly — NIN$ — 2
A el o

where F;k = N ; are the components of the Berwald connection. The last three
KCC invariants are provided by

Rj = 30kP), B = =Py, Djy =0l

where we have denoted 7j;_j = 7i...; — 7;...; and O = 8/0y>.

The third invariant (R; i) 1s skew-symmetric in the lower indices, and is regarded
as hh — v torsion tensor (the curvature of the nonlinear connection, [56, 37]), the
fourth invariant (Bj;;) is the Berwald horizontal Finslerian curvature tensor, while

(D%y,) is the Douglas tensor. These represent fundamental geometric objects in Finsler
Geometry ([31, 50, 37]).

4 Locally Minkowski Finsler m-root metrics

As a natural extension of the study of the cubic Locally Minkowski Finsler metric
([33]), numerous results have been derived for the genera case, when the Finsler metric
of the space (M, F') has the form

(41) \/a’tllz 7'7n y“yl2 "yimv

where a;,4,...i,, (), depending on the position alone, is symmetric in all its indices
1,92, ..., im and m > 3. We shall call the Finsler space with the metric (4.1) an m-root
Finsler space. In case of m = 3, it is called a cubic Finsler space [33].
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4.1 S;—likeness

We shall further consider the m-root metric (4.1). We use the following notations
a; = iy, 4, ()Y ytm JFmL
(4.2) Qij = Qijigiy...i,, (T)YPy" . yim JFT2,
Wijk = Qijkigis...in, (T)YAY".y'm [F™73,
The normalized supporting element l; = OA'iF7 where 9; = d/0y*, the fundamental

tensor g;; = 3i3jF2/2 and the angular metric tensor h;; = FéﬁjF for the m—root
metric have the form, respectively,

li = a;
(43) 9ij = (m — 1)aij — (m — 2)&1'613'
hij = (m — 1)(@1']' — aiaj).

We suppose that the determinant of the tensor a;; does not vanish, i.e., a;; is regular
[33]. If we denote by a* the dual components (a”aj; = 6}), then the reciprocal
components g* of g;; are given by

1

(4.4) g = — [a¥ + (m — 2)a‘d’],

where we put @’ = aa;. In the above we used the relation a? = a;a’ = 1 ([33]). It
follows from (4.3) that the tensor Cji = O0g:j/2 has the particular form

(m — 1)(m —2)

(4.5) Cijk = oF

(aijre — aijar — axa; — agja; + 2a;a;ay),

and, using (4.4) and (4.5), the components C;, = Cj,1g"" are in the m—root case

i m—2 i i i
(4.6) Cly = oF [a)y — (Oax + 0paj) + a'(2ajax — aj)],

where ajl,~c = ajrra’”. Then the torsion vector C; = C',. is given by

Ci=

(@, —nay).

2F

Remark. In case of the Finsler space with the Berwald-Moor metric L =
(y'y?...y™)'/™, which is a special m—root metric, the torsion vector C; vanishes ([36]).

From (4.5), (4.6), the v-curvature tensor Sh;;x = C}"1.Crij —C’h’"jC’,«ik of the Cartan
connection CT' ([32, (17.20)]) has the form

(4.7)  Shijk = (m—1)(m — 2)2A(jk){a{ka”j — aij(any — apag) + a;a;ank},

1
4F?
where A(;;) means interchange of indices j, k and subtraction. By virtue of (4.3),
(4.7) is rewritten in the form

(4.8)  Shijr = (m = 2)*[(hnjhix — haghiz)/(m — 1) + (m — 1) Hpi),

L
4F?
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where we put Hp;j, = a)) ,0rij — ahrja”k. A Finsler space of dimension n > 4 is called
S8-like [32], if there exists such a scalar S that the v-curvature tensor Sy, i is written
in the form

Shijie = S(hnghir, — hahig) [ F?.

4.2 Particular cases of m-root metric

a) The m—root Finsler metric (4.1), for which a;,4,.. 4, (z) is zero, has the explicit
form

(4.9) Fly)= /()™ + 2™ + .+ (o)™,

We note that for m = 4 this metric represents the historic primary Finsler fundamen-
tal function, considered by B. Riemann in his ”Habilitation address” ([58]). For this
case the following result holds true ([46, 9]):

Theorem 4.1. An n—dimensional Finsler space with the metric (4.9) has the fol-
lowing properties:

i) is S3—like, provided that y*y*..y™ # 0, and the v—curvature tensor Spiji, has the
form

(m — 2)?

(4-10) Shijk = m

(hnjhik — hnihig).

i) the indicatriz is of constant curvature m?/4(m — 1).

b)Another example is the metric considered by G.S. Asanov ([9]), which represents
an extension of (4.9),

F(y) = {/ely)™ + 2™ + ... +en(y™)™

where £* € R. This metricis S3—like, provided that m > 3 and £’ # 0,Vi € 1,n, and
the v—curvature tensor Shi;; has the form (4.10).

c) For m = n, the Berwald-Moor relativistic metric ([36, 47, 48]) is the pseudo-
Finslerian structure provided by the Shimada metric (4.1) in which

(@) 1/nly {i1, ... im} ={1,...,m}
Qiyig.. i \T) =
et 0, otherwise.

The fundamental function has the explicit expression
(4.11) Fly)= 'y ..ymM™,
and it is known ([9]) that the v—curvature tensor Sp;j is
(4.12) Shik = —(hnjhir — harhis) / F*

and further A; = LC; vanishes. It follows that the curvature of the indicatrix I,
vanishes as well, Rogys5 = 0, i.e. I, is flat. Summarizing, the following holds true
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Theorem 4.2. An n—dimensional Finsler space with the Berwald-Moor metric is
S3—like, is P—symmetric and has flat indicatriz I, for all x € M.

Moreover, it has been shown ([9]), that the extension

is S3—like as well and admits of the form (4.10).

4.3 Decomposability of m—root metrics

We say that a Finsler tensor field v;;(z,y) is h—recurrent, if it satisfies a relation of the
form v;;, = Yvij, where v (z,y) is a Finsler 1-form and | denotes the h—covariant
derivative. The following results are known ([35])

Theorem 4.3. Let (M, F) be an n—dimensional Finsler space with the metric F(x,y).

a) If n=2m and

F= (a?l)a(QQ)...a%m))lmm,
where a%a) = oa)ij(@)y'y’,Ya € 1,m are quadratic forms induced by independent
Riemann metrics, then (M, F') is a Berwald space (i.e., Cijp = 0), iff for alla € 1,m,
Q(q)ij(x) are h—recurrent and

A)ijlk = V@)k(T)xa)ijs Yy T+ Yk = 0.

b) If n=2m+1 and

F = (a%l)aé) ...Oz(zm)ﬂ)lﬂmﬂa

where a(za) are as above and 3 = B;(x)y’ is a 1-form, then (M, F) is a Berwald

space, iff all the Riemannian metric tensors ) and the covariant vector field 3;
are h—recurrent such that for any a = 1, m, we have

Q(a)ijlk = ’Y(a)k(ﬁc)a(a)ip
{ y Yk +oo Yim4+1)k = 0.

5i|k = W(m+1)k($)ﬁi

c) If F = (a'a®...a™)V/™, where a® = af(x)y’ (o = 1,n) are independent 1-forms,
then (M, F') is a Berwald space, iff the covariant vector fields ay are h—recurrent and

af; =5 (x)ad, vj+---+7) =0.

Remark. One can easily notice that the theorem holds true for the typical
Berwald-Moor metrics F,(y) = {/y'-----y? in R with the proof adapted for
pseudo-Riemannian metrics o (qy;;(x). For n = 4 items a) and c), and for n = 3
items b) and c¢) hold true. The horizontal derivatives of the generating 1- and 2-forms
all cancel which yield vanishing coefficients . This is due to the fact that the metric
coefficients are z—independent and the extended Christoffel symbols identically van-
ish, which entails the cancelling both of the Cartan canonic nonlinear connection and
of the horizontal Cartan connection coefficients.
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4.4 The conformally deformed Berwald-Moor metric

We shall further consider a deformed Berwald-Moor Finsler structure (M, F') with
dim M = 4, for which was designed the developed Maple 12 symbolic package which
computes the KCC invariants of the geodesic SODE. The basic fundamental Finsler
function (called 4-root metric, quartic metric or 4-th order Shimada metric) is of the
form

(4.13) F(z,y) = Vai, i, (x)yiryysyh,

with the functions a;, . ;, symmetric in all their indices. In our computations, we have
considered two special cases of quartic metrics, namely

(414 Fo(y)= W+ +v*+uyH W+ 2 —y* —yh):
' e o e T [T T e S T |

and
Foly) = Vot ...y~

Starting with Fyy, we construct the conformally deformed Shimada metric
(4.15) F(z,y) = " Fy(y).

Then, the second-order SODE which describes the geodesics of the space (M, F) is:

d?x : )
2 +7(l)0:07 7’:17”7
where the null index denotes transvection with y?, and in the SODE, with y* = % =

#*. We denote as well with 'y;-k the generalized Christoffel symbols

1 s O i i
59 (9is,ky — Giks) =7 i + (5{k‘7j} —0'gin),

where ;7 = Tij + Tji, 5;- is the Kronecker symbol, o = ¢**oy, g;; = 271(F?).,
” 7 denotes the partial derivative w.r.t. x%, ”;” denotes partial derivative w.r.t. y?,

and ’oy ; x = 0 are components of the flat Christoffel symbols of the Locally Minkowski
Finsler metric structure (M, Fp).

Then one easily infers o Lo = Voo + 2yt — o' F§ with 0, = 040°, and further, the
explicit form of the geodesic SODE

(4.17) b = 0 FE(x, &) — 2i'0,, i=1,n,

which exhibits in the right hand side the force which governs the displacement of the
test-particles of (M, F') along the geodesics, deviating the original rectilinear trajec-

tories. In simulations, we have used the linear potential o = Zi:ﬁ x%, for which the
geodesic SODE (4.17) considerably simplifies to
(4.18) Bty = Fo(n, ) Y gt =2t > g7, i=Tn

s=1n s,r=1,n



Berwald-Moor metrics and structural stability 29

Remark. The deformation algebra provided by the pair of generalized connections

Y 3‘19 =0 and fy;k given by (4.16) is obviously commutative, and is associative iff
’Y[ils’}/i]j = O,V i7j7 l,T € ]-777
where 7;;) = 7;; — 74, which relies to
5@07"]0]' - U*‘Sflgr]j + Ui”[lgr]j =0,

which for i/l transvection leads to g,; = 0,0;/0., possible only for n = 1.

As well, direct computation shows that the Finslerian vector field X* = o° 8?% is

not a 0-divisor in the non-associative conformal deformation algebra (the parallelism
along the field lines of the gradient lines of ¢ is always non-Euclidean).

5 KCC Maple symbolic software

The symbolic software Maple 12 provides a convenient environment for the calculation
of Finslerian relativistic geometric objects, as extension to the GRTensorIl package
([66]), which provides the tensors involved in the Einstein equations of the Riemannian
framework. The Finslerian version has been achieved by S.F. Rutz (the computer
algebra package FINSLER, [1, 51, 52]). The proposed software manages to explicitly
determine the five KCC invariants of the SODE (4.18) for the Finslerian framework.
The Maple 12 source code is included in the appendix.

6 Conclusions

The present work includes a brief presentation of the KCC theory, an outlook on
the main properties of m-root Finsler structures - mainly based on the works of M.
Matsumoto, H. Shimada, S. Numata and K.Okubo, and presents the equation of
motion in the conformally deformed 4-dimensional Berwald-Moor Finsler framework;
in the appendix are included the original Maple procedures developed for determining
the first five KCC invariants for conformally deformed m—root metrics.
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Appendix.

Maple package for the five KCC invariants (4D Finslerian framework)

Preliminaries
> restart: with(linalg): with(LinearAlgebra): with(tensor):
Build y_t, y[il, i=1..4
> y:=array(1l..4); y[1]l:=y1: y[2]:=y2: y[3]:=y3: y[4]:=y4:
> y_t:=create([1], eval(y)); type(y_t,tensor_type);
> y:=get_compts(y_t);
Build x_t, x[i]
> x:=array(sparse,1..4); x[1]:=x1: x[2]:=x2: x[3]:=x3:
> x[4] :=x4: x_t:=create([1], eval(x)); x:=get_compts(x_t);
Build FO & F (Finsler metrics)
> FO:=root ((y[1]+y[2]+y[3]+y[4])*(y[1]+y[2]-y[3]-y[4])*
(y[1]-y[2]+y[3]-y[41)*(y[1]-y[2] -y [3]+y [4]) ,4);
>#F_O=root ((y[11*y[2]*y[3]1*y[4]),4);
> apply(a, (x[1],x[2],x[3],x[41));
> F:=apply(a, (x[1],x[2],x[3],x[4]))*FO0;
Build g (gl[i,jl)
> g_compts:=array(symmetric,1..4,1..4);
> for i from 1 to 4 do for j from 1 to 4 do
> g_comptsl[i,jl:=simplify((diff(F~2,y[i],y[j1))/2);
> end do; end do;
> gi:=create([-1,-1], eval(g_compts)):
> type(g,tensor_type) ;
> #print(g):
Build Christoffel I
> coord := [x[1], x[2], x[3], x[4]];
> Dilg:=dimetric(g,coord): cfl:=Christoffell (Dig):
> #print(cfl);
> type(cfl,tensor_type); cfl_compts:=get_compts(cfl):
Build Christoffel II
> ginv:= invert (g, ’detg’):
> cf2:= Christoffel2 (ginv, cfl): #Christoffel 2
> cf2_compts:=get_compts(cf2): type(cf2,tensor_type);
Build the spray coefficients G7i
> p:=prod(cf2,y_t,[2,1]): type(p,tensor_type);
> G:=prod(p,y_t,[2,1]): type(G,tensor_type);
> Gl:=get_compts(G):
Build Jacobi matrix (G_y)
> man:=array(sparse,1..4,1..4):
> for i from 1 to 4 do for j from 1 to 4 do
> man[i,j]:=simplify(diff(G1[i],y[j])); end do: end do:
> G_y:=create([1,-1],eval(man)): G_yl:=get_compts(G_y):
Build the first invariant (epsilon)
> eps:=prod(G_y,y_t, [2,1]): epsl:=get_compts(eps):
> for i from 1 to 4 do epsilon[i]:=(eps1[i])/2-G1[i]; end do:
> epsilon:=create([1],
array([epsilon[1] ,epsilon[2],epsilon[3],epsilon[4]1])):
> epsilonl:=get_compts(epsilon); # the first invariant
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II-1 (g_x) - g’_x

> man:=array(sparse, 1..4, 1..4):

> for i from 1 to 4 do for j from 1 to 4 do

>  man[i,j]:=simplify(diff(G1[i],x[j])); end do: end do:

> G_x:=create([1,-1],eval(man)): G_xl:=get_compts(G_x):

II-2 (G_y_y)

> man:=’man’: man:=array(sparse,l..4,1..4,1..4):

> for i from 1 to 4 do for r from 1 to 4 do for j from 1 to 4 do
> man[i,r,jl:=diff(G_y1[i,r],y[j]); end do; end do; end do:

> G_y_y:=create([1,-1,-1],eval(man)): G_y_yl:=get_compts(G_y_y):

II-3 (G_x_y)

> man:=’man’: man:=array(sparse,1..4,1..4,1..4):

> for i from 1 to 4 do for r from 1 to 4 do for j from 1 to 4 do
> man[i,r,jl:=diff(G_x1[i,r],y[j]); end do; end do; end do:

> G_x_y:=create([1,-1,-1],eval(man)): G_x_yl:=get_compts(G_x_y):
> pr:=prod(y_t,G_x_y,[1,2]): pril:=get_compts(pr):

> prr:=prod(G_y,G_y, [2,1]): prril:=get_compts(prr):

The second invariant (P)

> man:=’man’: man:=array(sparse,l..4,1..4):

> for i from 1 to 4 do for j from 1 to 4 do

> man[i,j]:=simplify(-G_x1[1i,jl+(prili,j1)/2+(prrili,j1)/4);
> end do; end do:

> p:=create([1,-1],eval(man)): pl:=get_compts(p):

The last three invariants (R, B, D)

> for i from 1 to 4 do for j from 1 to 4 do for k from 1 to 4 do
mant [i,j,k]:=diff(p1[i,j],x[k])-diff(p1[i,k],x[j1);

> end do: end do: end do:

> R:=create([1,-1,-1],eval(mant)): Rl:=get_compts(R):

> for i from 1 to 4 do for j from 1 to 4 do

> for k from 1 to 4 do for 1 from 1 to 4 do

> manp[i,j,k,1]:=diff (R1[i,j,k],x[1]);

> end do: end do: end do: end do:

> B:=create([1,-1,-1,-1] ,eval(manp)): Bl:=get_compts(B):

> for i from 1 to 4 do for j from 1 to 4 do

> for k from 1 to 4 do for 1 from 1 to 4 do

> manp[i,j,k,1]:=diff(G1[i],x[j],x[k],x[1]1);

> end do: end do: end do: end do:

> D:=create([1,-1,-1,-1],eval(manp)): Dil:=get_compts(D):

Particular cases

> for i from 1 to 4 do for j from 1 to 4 do
a(x[1],x[2],x[3]1,x[4])*y[i]l*y[jl=a00[1i, j]:
end do: end do:
for i from 1 to 4 do for j from 1 to 4 do
pl[2,3]:=simplify(p1[2,3],
{a(x[1],x[2],x[3],x[4])*y[il*y[j]1=a00[i,jI1}):
> end do: end do:




