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Abstract. Recently, the concept of induced scalar curvature of lightlike
hypersurfaces is introduced, restricting on a special class of the latter.
This paper removes some of these constraints and constructs this scalar
quantity by an approach that is consistent with the well-known non de-
generate theory. Examples of basic calculations are provided.
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1 Introduction

One of the most important concepts which have been found to be useful in (pseudo-)
Riemannian geometry (and especially in General Relativity) is the scalar curvature.

Physically, the scalar curvature has the following interpretation. Start a point in
a D-dimensional space and move a geodesic distance ε in all directions. In essence
you would form the equivalent of a generalised sphere in this space. The area of this
sphere can be calculated in flat space. But in curved space the area will deviate from
the one we calculated by an amount proportional to the scalar curvature. Precisely,

R = lim
ε→0

6D

ε2

[
1− Acurved(ε)

Aflat(ε)

]
.

From a geometric point of view, this is just the contraction of the Ricci tensor Ric
with (a nondegenerate) g,

R = gijRicij .

In [3], the problem of inducing scalar curvature on lightlike manifolds is considered.
Such a problem arises, mainly due to two difficulties: since the induced connection is
not a Levi-Civita connection (unless M be totally geodesic) the (0, 2) induced Ricci
tensor is not symmetric in general. Also, as the induced metric is degenerate, its
inverse does not exist and it is not possible to proceed in the usual way by contracting
the Ricci tensor to get a scalar quantity.

To overcome theses difficulties, Duggal considered in [3] a class of lightlike hy-
persurfaces in ambient Lorentzian signature, called lightlike hypersurfaces of genus
zero. Elements of such class are subject to the following constraints: admission of
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canonical screen distribution that induces a canonical transversal vector bundle and
induced symmetric Ricci tensor.

Although the above two conditions are interesting to compensate lacking due to the
above quoted difficulties, to admit symmetric induced Ricci tensor in lightlike setting
is very restrictive. Also, the problem in contracting with respect to the noninvertible
induced metric is still unsolved for the general setting.

Our purpose in this paper is to develop in a coherent way the concept of extrinsic
scalar curvature by dropping and solving the induced symmetric Ricci condition and
finding a solution for the contraction with respect to the degenerate metric in a
consistent way with the known nondegenerate approach.

By the approach developed in the book [4], the extrinsic geometry of lightlike
hypersurfaces depends on an additional structure, the screen distribution. For this,
we start in this paper with a given normalization. We first introduce a symmetrized
induced Ricci tensor Ricsym. Thanks to the concept of pseudo-inversion of degenerate
metric we introduced in [1], we overcome the above quoted problem in contracting with
respect to the degenerate metric. Then we state a definition of the extrinsic scalar
curvature which generalises in a consistent way the one in [3]. Some Physical and
mathematical relevant models are then discussed. To know to what extent a change
in normalisation influences our scalar quantity, we investigate relationship between
induced geometric objects and operators involved in the curvature expression with
their analogous with a change in screen distribution.

2 Facts about lightlike hypersurfaces

Let (M, g) be a hypersurface of an (n+2)−dimensional semi-Riemannian manifold
(M, g) of constant index 0 < ν < n+2. In the theory of nondegenerate hypersurfaces,
the normal bundle has trivial intersection; {0}, with the tangent one and plays an
important role in the introduction of main induced geometric objects of M . In case
of lightlike hypersurfaces, the situation is totally different. The normal bundle TM⊥

is a rank-one distribution over M : TM⊥ ⊂ TM and then coincides with the radical
distribution RadTM = TM∩TM⊥. Hence, the induced metric tensor g is degenerate
with constant rank n.

A complementary bundle of RadTM in TM is a rank n nondegenerate distribution
over M , called a screen distribution of M , denoted by S(TM). Existence of S(TM) is
secured provided M be paracompact. A lightlike hypersurface with a specific screen
distribution is denoted by (M, g, S(TM)).

It is well-known [4] that for such a triplet, there exists a unique vector sub bundle
tr(TM) of rank 1 over M , such that for any non-zero section ξ of TM⊥ on a coordinate
neighbourhood U ⊂ M , there exists a unique section N of tr(TM) on U satisfying

(2.1) g(N, ξ) = 1, g(N, N) = g(N, W ) = 0, ∀ W ∈ Γ(ST (M)|U ).

TM and TM̄ are decomposed as follows:

TM = S(TM)
⊥⊕TM⊥,(2.2)

TM |M = TM ⊕ tr(TM).(2.3)
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We denote by Γ(E) the F(M)−module of smooth sections of a vector bundle E
over M , F(M) being the algebra of smooth functions on M . Also, all manifolds are
supposed to be smooth, paracompact and connected.

The induced connection, say ∇, on M is defined by

∇XY = Q(∇XY ), ∀ X, Y ∈ Γ(TM),

where∇ denotes the Levi-Civita connection on (M, g) and Q the projection morphism
on TM with respect to the decomposition (2.2). Notice that ∇ depends on both g
and a screen distribution S(TM) of M .

Let P be the projection morphism of Γ(TM) on Γ(S(TM)) with respect to the
decomposition (2.2). Consider a normalising pair {ξ, N} satisfying (2.1). Then, the
local Gauss and Weingarten type formulas are given by

∇XY = ∇XY + B(X, Y )N,

∇XN = −ANX + τ(X)N,

∇XPY =
?

∇X PY + C(X, PY )ξ,(2.4)

∇Xξ = − ?

Aξ X − τ(X)ξ, ∀X,Y ∈ Γ(TM |U ),

where B and C are the local second fundamental forms on Γ(TM) and Γ(S(TM))

respectively,
?

∇ is a metric connection on Γ(S(TM)),
?

Aξ the local shape operator on
S(TM) and τ a 1−form on TM defined by

τ(X) = g(∇t
XN, ξ).

Although S(TM) is not unique, it is canonically isomorphic to the factor vector bundle
TM/RadTM [6]. As per [4, page 83], the second fundamental form B of M is inde-
pendent from the choice of a screen distribution and satisfies for all X, Y ∈ Γ(TM)

B(X, ξ) = 0, and B(X, Y ) = g(
?

Aξ X, Y ).

Denote by R and R the Riemann curvature tensors of∇ and∇ respectively. Recall
the following Gauss-Codazzi equations [4, p. 93]

〈R(X, Y )Z, ξ〉 = (∇XB)(Y, Z)− (∇Y B)(X, Z)
+τ(X)B(Y, Z)− τ(Y )B(X,Z),(2.5)

〈R(X, Y )Z,PW 〉 = 〈R(X,Y )Z, PW 〉+ B(X,Z)C(Y, PW )
−B(Y, Z)C(X, PW ),(2.6)

〈R(X, Y )ξ, N〉 = 〈R(X,Y )ξ, N〉 = C(Y,
?

Aξ X)− C(X,
?

Aξ Y )
−2dτ(X, Y ), ∀X, Y, Z,W ∈ Γ(TM |U ).(2.7)

Finally, we outline here some results in [1]. Consider on M a normalising pair
{ξ, N} satisfying (2.1) and define the one-form

η(•) = g( N , • ).
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For all X ∈ Γ(TM), X = PX + η(X)ξ and η(X) = 0 if and only if X ∈ Γ(S(TM)).
Now, we define [ by

[ : Γ(TM) −→ Γ(T ∗M)
X 7−→ X[ = g( X , • ) + η(X)η( • ).(2.8)

Clearly, such [ is an isomorphism of Γ(TM) onto Γ(T ∗M), and can be used to gen-
eralize the usual nondegenerate theory. In the latter case, Γ(S(TM)) coincides with
Γ(TM), and as a consequence the 1−form η vanishes identically and the projection
morphism P becomes the identity map on Γ(TM). We let ] denote the inverse of the
isomorphism [ given by (2.8). For X ∈ Γ(TM) (resp. ω ∈ T ∗M), X[ (resp. ω]) is
called the dual 1−form of X (resp. the dual vector field of ω) with respect to the
degenerate metric g. From (2.8) it follows that if ω is a 1-form on M , we have for
X ∈ Γ(TM),

ω(X) = g(ω], X) + ω(ξ)η(X).

Define a (0, 2)-tensor g̃ by

g̃(X,Y ) = X[(Y ), ∀X,Y ∈ Γ(TM).

Clearly, g̃ defines a non-degenerate metric on M which plays an important role in
defining the usual differential operators such as gradient, divergence, Laplacian with
respect to degenerate metric g on lightlike hypersurfaces ([1] for details). Also, observe
that g̃ coincides with g if the latter is non-degenerate. The (0, 2)−tensor g[ · , · ],
inverse of g̃ is called the pseudo-inverse of g. With respect to the quasi orthonormal
local frame field {∂0 := ξ, ∂1, · · · , ∂n, N} adapted to the decompositions (2.2) and
(2.3) we have

(2.9) g̃(ξ, ξ) = 1, g̃(ξ,X) = η(X),

g̃(X,Y ) = g(X, Y ) ∀X, Y ∈ Γ(S(TM)),

and the following is proved [1].

Proposition 2.1. (α) For any smooth function f : U ⊂ M → R we have

gradgf = g[αβ]fα∂β where fα =
∂f

∂xα
∂β =

∂

∂xβ
α, β = 0, . . . n

(β) For any vector field X on U ⊂ M

divgX =
n∑

α=0

εαg̃(∇XαX, Xα) ; ε0 = 1

(γ) for a smooth function f defined on U ⊂ M we have

∆gf =
n∑

α=0

εαg̃(∇Xαgradgf,Xα)
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In particular, ρ being an endomorphism (resp. a symmetric bilinear form) on
(M, g, S(TM)), we have

trρ = tracegρ =
n∑

α,β=0

g[αβ]g̃(ρ(∂α), ∂β)

(resp. tracegρ =
n∑

α,β=0

g[αβ]ραβ ).

3 Extrinsic scalar curvature

Consider a lightlike hypersurface (M, g, S(TM)) of a (n+2)-dimensional semi-Riemannian
manifold (M̄, ḡ), with induced Ricci tensor Ric. Then we define the symmetrized in-
duced Ricci tensor to be the (0, 2)-tensor Ricsym on M such that for X, Y tangents
to M ,

(3.1) Ricsym(X, Y ) =
1
2
[Ric(X, Y ) + Ric(Y, X)],

where Ric(X, Y ) = trace{Z 7−→ R(Z,X)Y }. In index notation,

(3.2) Ricsym
αβ =

1
2
[Rαβ + Rβα]

where we brief Rαβ := Ricαβ . Now, g[ ] being the pseudo-inverse of g, contract (3.2)
and obtain the scalar quantity

(3.3) R = g[αβ]Ricsym
αβ .

It is immediate to check that for a fixed triplet (M, g, S(TM)), whereas the pair (ξ, N)
in (2.1) is not uniquely determined being subject to the scaling ξ 7−→ ξ′ = αξ and
N 7−→ N ′ = 1

αN (α smooth nonvanishing function), the right hand side of (3.3) is
independent from the choice of the pair (ξ,N). We define R to be the extrinsic scalar
curvature of the structure (M, g, S(TM)).

Now, we give the expressions of the symmetrized Ricci and the extrinsic scalar
curvature R in terms of induced shape operators AN ,

?

Aξ and ambient curvatures.
Let {E0 = ξ, Ei} be a quasiorthonormal frame for TM induced from a frame {E0 =
ξ, Ei, En+1 = N} for TM̄ such that S(TM) = span{E1, · · · , En} and Rad(TM) =
span{ξ}. We use the following range of indices. Greck letters α, β... run through
0, ..., n and Latin letters i, j, ... through 1, ..., n. By using (2.9) we have

Ric(X, Y ) =
n∑

γ=0

g̃γγ g̃(R(Eγ , X)Y, Eγ)

= g̃00g̃(R(ξ,X)Y, ξ) +
n∑

i=1

g̃iig̃(R(Ei, X)Y, Ei)

= ḡ(R(ξ,X)Y, N) +
n∑

i=1

giig(R(Ei, X)Y, Ei), g̃00 = 1.
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Then, using Gauss-Codazzi equations (2.5,2.6,2.7) provides

Ric(X, Y ) = R̄ic(X, Y )− ḡ(R̄(N,X)Y, ξ) + B(X, Y )trAN − g(ANX,
?

Aξ Y )

= R̄ic(X, Y ) + B(X,Y )trAN − g(ANX,
?

Aξ Y )− η(R̄(ξ, Y )X).

Thus, we obtain the following expression of the symmetrized induced Ricci,

Ricsym(X,Y ) = R̄ic(X, Y ) + B(X, Y )trAN − 1
2
[η(R̄(ξ, Y )X)(3.4)

+η(R̄(ξ,X)Y ) + g(ANX,
?

Aξ Y ) + g(ANY,
?

Aξ X)].

where R̄ic denotes the Ricci curvature of the ambient manifold M̄ . In local coordi-
nates,

Ricsym
αβ = R̄icαβ + BαβtrAN − 1

2
[η(R̄(ξ, ∂β)∂α)(3.5)

+η(R̄(ξ, ∂α)∂β) + g(
?

Aξ AN∂α, ∂β) + g(
?

Aξ AN∂β , ∂α)].

where we make use of the symmetry of
?

Aξ with respect to g. In the sequel, we let

σ =
1√

2(n + 1)
g[αβ]Bαβ

denote the mean curvature function of Mn+1 and

θ̄ = R̄ic(N, N)

represents the transverse energy in null direction N . Now applying (3.3) by contract-
ing (3.5) with respect to g[αβ] we get the following expression of the extrinsic scalar
curvature on the structure (M, g, S(TM)),

R = R̄ +
√

2(n + 1)σtrAN − tr(
?

Aξ AN )

−θ̄ − 1
2
g[αβ][η(R̄(ξ, ∂α)∂β) + η(R̄(ξ, ∂β)∂α)].(3.6)

For ambient manifold M̄ with constant sectional curvature c, we derive the fol-
lowing.

Theorem 3.1. Let (M, g, S(TM)) be a lightlike hypersurface of a (n+2)-dimensional
space formM̄(c). Then

(3.7) R = n2c +
√

2(n + 1)σtrAN − tr(
?

Aξ AN ).

Proof. In case M̄n+2 has constant curvature c, we have R̄ic = (n+1)cḡ, η(R̄(ξ, Y )X) =
cg(X,Y ), then

Ricsym(X, Y ) = ncg(X, Y ) + B(X,Y )trAN

−1
2
[g(

?

Aξ ANX,Y ) + g(
?

Aξ ANY, X)].
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In local coordinates,

Ricsym
αβ = ncgαβ + BαβtrAN

−1
2
[g(

?

Aξ AN∂α, ∂β) + g(
?

Aξ AN∂β , ∂α)],

and
R = n2c +

√
2(n + 1)σtrAN − tr(

?

Aξ AN ).¤

I◦. t is noteworthy that if (M, g) ⊂ M̄(c) is totally geodesic, then the extrinsic
scalar curvature is independant from the choice of the screen distribution as σ = 0
ans

?

Aξ= 0.

4 Some basic examples

(a) The null cone ∧n+1
0 in Rn+2

1 .

The light cone ∧n+1
0 is given in Rn+2

1 by the equation −(x0)2 +
∑n+1

a=1(xa)2 = 0, x 6= 0.
In fact we shall be using either x0 < 0 or x0 > 0 since we assumed connexity. It is
known that ∧n+1

0 is a lightlike hypersurface with radical distribution spanned by the
global position vector field ξ =

∑n+1
A=0 xA ∂

∂xA on ∧n+1
0 . Corresponding null section

satisfying (2.1) is given by N = 1
2(x0)2 {−x0∂0 +

∑n+1
a=1 xa∂a} and is globally defined.

The associated screen distribution S(T∧n+1
0 ) is such that X =

∑n+1
a=1 Xa∂a belongs

to S(T∧n+1
0 ) if and only if

∑n+1
a=1 xaXa = 0. Then direct calculations using (Eqs. 2.4

- 2.7) leads to the following expressions of the shape operators,
?

Aξ X = −PX and
ANX = − 1

2(x0)2 PX where P denotes the projection morphism of the tangent bundle
T∧n+1

0 onto S(T∧n+1
0 ) with respect to decomposition (2.2). Then we get σ = −n√

2(n+1)
,

?

Aξ AN = 1
2(x0)2 ◦P and trAN = −n

2(x0)2 . Finally, since Rn+2
1 is flat, the extrinsic scalar

curvature of the lightlike cone ∧n+1
0 is given by

(4.1) R =
n2 − n

2(x0)2
.

- Observe that this expression is actually independent from the elements defining the
screen distribution and depends only upon ∧n+1

0 .

- The above screen distribution on ∧n+1
0 is integrable and induces a foliation F . By

(4.1), the extrinsic scalar curvature R is constant along leaves of S(T∧n+1
0 ).

Actually, these leaves are n-spheres (∧n+1
0 ∩ (x0 = cte)).

- R vanishes at infinity on ∧n+1
0 .

(b) Lightlike Monge hypersurfaces of Rn+2
q

Consider a smooth function F : Ω → R, where Ω is an open set of Rn+1, then

(4.2) M = {(x0, · · · , xn+1) ∈ Rn+2
q , x0 = F (x1, · · · , xn+1)}
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is a hypersurface which is called a Monge hypersurface [4]. Such a hypersurface is
lightlike if and only if F is a solution of the partial differential equation

1 +
q−1∑

i=1

(F ′xi)2 =
n+1∑
a=q

(F ′xa)2.

The radical distribution is spanned by a global vector field

(4.3) ξ =
∂

∂x0
−

q−1∑

i=1

F ′xi

∂

∂xi
+

n+1∑
a=q

F ′xa

∂

∂xa
.

Along M consider the constant timelike section V ∗ = ∂
∂x0 of Rn+2

q . The vector
bundle H∗ = span{V ∗, ξ} is nondegenerate on M . The complementary orthogonal
vector bundle S∗(TM) to H∗ in TRn+2

q is an integrable screen distribution on M
called the natural screen distribution on M . The transversal bundle tr∗(TM) is
spanned by N = −V ∗ + 1

2ξ and τ(X) = 0 ∀X ∈ Γ(TM). It follows that S?(TM) is
a globally conformal screen on M with constant positive conformal factor 1

2 , that is

AN = 1
2

?

Aξ [2]. From (4.2), the natural parametrization M is as follows.

x0 = F (v0, · · · , vn), xα+1 = vα, α ∈ {0, · · · , n}.

Then the natural frame field on M is globally defined by

(4.4)
∂

∂vα
= F ′xα+1

∂

∂x0
+

∂

∂xα+1
, α ∈ {0, · · · , n}.

Now, direct computations using (4.4) and (4.3) lead to

Bαβ = B

(
∂

∂vα
,

∂

∂vβ

)
= − ∂2F

∂vα∂vβ

Let
?

Aξ
∂

∂vα = Kµ
α

∂
∂vµ . Since

?

Aξ
∂

∂vα belongs to S(TM) we have from (2.9),

B

(
∂

∂vα
,

∂

∂vβ

)
= g

(
?

Aξ
∂

∂vα
,

∂

∂vβ

)
= g̃

(
?

Aξ
∂

∂vα
,

∂

∂vβ

)

Thus,

− ∂2F

∂vα∂vβ
= Kµ

α g̃

(
∂

∂vµ
,

∂

∂vβ

)
= Kµ

α g̃µβ .

That is

Kµ
α = −g[µβ] ∂2F

∂vα∂vβ
,

and

(4.5)
?

Aξ
∂

∂vα
= 2AN

∂

∂vα
= −g[µβ] ∂2F

∂vα∂vβ

∂

∂vµ
.

Let F̃ = (Fαβ) denote the matrix field with entries Fαβ = ∂2F
∂vα∂vβ .
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It follows that

trAN =
1
2
tr

?

Aξ = −1
2
g[αβ]g[µγ] ∂2F

∂vα∂vγ
g̃µβ

= −1
2
g[αβ]Fµ

α g̃µβ = −1
2
tracegF̃(4.6)

Also,

?

Aξ AN
∂

∂vα
=

1
2

?

Aξ

?

Aξ
∂

∂vα
= −g[µβ] ∂2F

∂vα∂vβ

?

Aξ
∂

∂vµ

=
1
2
g[µβ]g[γδ] ∂2F

∂vα∂vβ

∂2F

∂vµ∂vδ

∂

∂vγ
.

Then,

tr(
?

Aξ AN ) = g[αν]g̃

(
?

Aξ AN
∂

∂vα
,

∂

∂vν

)

=
1
2
g[αν]g[µβ]g[γδ] ∂2F

∂vα∂vβ

∂2F

∂vµ∂vδ
g̃γν .

(4.7) tr(
?

Aξ AN ) =
1
2
g[αν]Fµ

α F γ
µ g̃γν =

1
2
traceg(F̃ 2).

From (4.6,4.7) and the definition of σ it follows that for lightlike Monge hypersurfaces,

(4.8) R =
1
2

[
[traceg(F̃ )]2 − traceg(F̃ 2)

]
.

5 Discussion

Clearly, in case of a canonical polarisation of our lightlike hypersurface, we recover
results in [3].

We now examine how the operators and induced geometric objects involved in (3.6)
defining the extrinsic scalar curvature R change with a change in screen distribution.
First, note that the local fundamental form B of M is independent of the choice of
screen distribution. Hence the mean curvature function σ of M is invariant. Now,
starting with a S(TM) with local orthonormal basis {Wi}, consider another screen
distribution S(TM)′ with orthonormal basis

W ′
i =

n∑

j=1

P j
i (Wj − εjcjξ),

where ci and P j
i are smooth functions and {εj} represents the signature of {Wj}.

Below, we let W =
∑n

i=1 ciWi and ρ =
∑n

i=1 εi(ci)2 denote characteristic vector and
scalar field in respect of this screen change. Then, the following local transformations
are derived.

η′ = η + ω,
?

A
′
ξ=

?

Aξ −µ⊗ ξ,



18 Cyriaque Atindogbé

with ω = g(W, ·) and µ = B(W, ·). Also,

AN ′X = AN +
n∑

i

{εiciX(cc)− τ(X)εi(ci)2 +
1
2
εi(ci)2µ(X)

−ciC(X, Wi)}ξ +
n∑

i

{ci(τ(X) + µ(X))−X(ci)}Wi

−
∑

i

ci

?

∇X Wi − 1
2
ρ

?

Aξ X

for X ∈ Γ(TM |U ) and

θ̄′ = θ̄ − 1
2
ρ2R̄ic(ξ, ξ) + R̄ic(W,W )− ρR̄ic(N, ξ)

−ρR̄ic(ξ,W ) + 2R̄ic(W,N).

Finally, the following problem is still open: Given a triplet (M, g, S(TM)) with induced
extrinsic scalar curvature R, how to characterize the set S(R) of screen structures on
M that preserve R? Related results can be found in [5, 7].
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