
The stability of tachyonic field system

by factorization method

Ali Reza Amani, Jafar Sadeghi and Taghi Barzegar

Abstract. Using the associated Jacobi differential equation, we obtain
the solution for the tachyonic potential. The stability of the tachyonic
field is discussed by the factorization method. According to this method,
we decompose the second order equation in terms of first order equations.
The first order equations lead us to obtain the shape invariance condition.
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1 Introduction

The brane theory is a good candidate for the fundamental problem in High Energy
Physics [7, 11, 21, 27], and the formulation of brane in terms of a single infinite extra
dimension plays an important role in this field.

The brane scenario starts with the five dimensional space time with anti-de Sitter
(AdS5) with warped geometry, and the warped geometry in the brane theory described
by the single real function and depends only bulk coordinate on the extra dimension.
Also, the presence of scalar fields for the weak stabilizing brane depends only on the
extra dimension ([4, 5, 6, 7, 11, 21, 23, 26, 27]).

As we know the standard cosmological model describes standard gravity with
scalar curvature R, cosmological constant and non-relativistic dust-like matter.

Recently, the braneworld model is described by tachyon scalar field in five-dimensional
space-time with AdS5 geometry. On the other hand a number of authors have already
demonstrated that the tachyon could play a useful role in cosmology [9, 10, 16, 17, 15,
24], independent of the fact that it is an unstable field. It can act as a source of dark
matter and can lead to a period of inflation depending on the form of the associated
potential.

Indeed it has been proposed as the source of dark energy for a particular class of
potentials [1, 2, 3, 12, 18]. For example Sami & all ([25]) discussed the cosmological
prospects of the rolling tachyon with exponential potential.

In this paper we obtain the potential which corresponds to the tachyon potential
in presence of curvature R. This potential, in the special case complectly agree with
Ref. [25].
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The stability of the system and the property of shape invariance are considered in
correspondence with the Schrödinger equation by the tachyonic potential. We obtain
the normal mode of the system by factorization method [8, 13, 14, 22]. But the shape
invariance is just an integrability condition - an interesting feature in supersymmetric
quantum mechanics, and the entire modes of system can be determined algebraically
without ever refereing to underlying differential equations [23, 26].

The paper is organized as follows. In the next section we study the dynamics of
the tachyon to solve the tachyon potential. The equations of motion are presented
and the Einstein equations are discussed. By using the equation of motion and Ein-
stein equation we obtain the warp factor, which leads us to obtain the corresponding
potential for the tachyon field. In section 3, normal modes of tachyon system are
obtained in the Schrödinger equation by the associated Jacobi differential equation.
In section 4, we factorize the corresponding second order differential equation and
obtain raising and lowering operators with respect to m ([19, 20]). A summary and
an outlook are given in the conclusion.

2 The dynamics of the tachyon

The standard braneworld scenario is described by the real scalar field interaction
with gravity via the usual Einstein Hilbert action, which has the general form,

(2.1) S =
∫

d4xdy
√

g

(
− 1

16πG
R + LT

)
,

where R is the scalar curvature.
We now turn attention to the case of the tachyonic field. We consider that tachyons

dominate in univese. In this case, the Lagrange density is given by,

(2.2) LT = −V (T (y))
√

1− ∂µT∂µT ,

where T is the tachyon field, and V (T ) is the tachyonic field potential.
In this theory the line element is given by

(2.3) dS2
5 = e2A(y)ηµνdxµdxν − dy2,

where e2A(y) is the warp factor and A(y) is the real function of the extra dimension,
which gives rise to the warped geometry, and η = diag(+ − −−) describes the four-
dimensional flat space-time with µ, ν = 0, 1, 2, 3. The geometry of the five dimensional
space-time is then described by A(y) and is driven by the extra coordinate y.

We consider the tachyon action and suppose that the tachyon field only depends
on the extra dimension, that is, T = T (y). The variation of the action with respect
to the field leads to the following equation of motion,

(2.4) T ′′(y) +
(

4A′(y)T ′(y) +
VT

V (T )

)
(1− T ′2) = 0,

where VT = dV
dT .

The Einstein equation is then

(2.5) Rµν − 1
2
gµνR =

8πG

c4
Tµν ,
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where Rµν is the Ricci tensor, R = gµνRµν is the Ricci scalar, the metric of the
five dimensional is gµν = diag(e2A,−e2A,−e2A,−e2A,−1) and Tµν is the energy-
momentum tensor. We can simply consider 4πG = 1 and c = 1. We are also using
the following energy - momentum tensor corresponding to the LT given by (2.2),

(2.6) Tµν =
2√
g

δ(
√

gL)
δgµν

,

so, we can obtain the following equations,

T00 = e2A(y)V (T )
√

1− T ′2

T11 = T22 = T33 = −e2A(y)V (T )
√

1− T ′2

T44 =
−V (T )√
1− T ′2

.

(2.7)

The components of the Ricci tensor are,

R00 =
(
4A′2 + A′′

)
e2A

R11 = R22 = R33 = − (
4A′2 + A′′

)
e2A

Rµν = ηµνe2A
(
4A′2 + A′′

)

R44 = −4
(
A′2 + A′′

)
,

(2.8)

thus, the Ricci scalar is given by,

(2.9) R(y) = 20A′2 + 8A′′,

where R is in term of y.
We substitute the above results into equation (2.5) to obtain the two equations, using
(2.5), (2.7) and (2.8) one can obtain,

(2.10)
1
2

(
4A′2 + A′′

)− 1
4
R = V

√
1− T ′2,

and

(2.11) 2
(
A′2 + A′′

)− 1
4
R =

V√
1− T ′2

.

The solution of the equations (2.10) and (2.11) lead us to obtain T ′2 and V,

(2.12) T ′2 =
6A′′

8(A′′ + A′2)−R
,

and

(2.13) V =
3
2
A′

√
R−A′2.

In the presence of the scalar field, we consider the specific case when R is constant.
So that we can obtain A′(y) from (2.9) as follows,

(2.14) A′(y) =
2
5
γ tanh(γy),
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where γ =
√

5R
4 . By using (2.13) and (2.14), the corresponding potential for the

tachyon field will be,

(2.15) V (y) =
12γ2

25
tanh(γy)

√
5− tanh2(γy).

Now we draw V with respect to y, in that case this graph will be equivalent to the
following equation,

(2.16) V (y) = η tanh(γy),

so η will become the functional of R. The graphs of the potentials (2.15) and (2.16)
are kink-like.

3 The stability of the system and the normal mode

The corresponding Schrödinger equation for the tachyonic potential (2.15) can
be easily written as,

(3.1) −d2Ψ(y)
dy2 + V (y)Ψ(y) = k2Ψ(y),

and

(3.2)
d2Ψ(y)

dy2 +
(
k2 − η tanh(γy)

)
Ψ(y) = 0,

With the definition of variable x = tanh(γy) and Ψ(x) = Pα,β
n,m(x)U(x), we obtain the

following Schrödinger equation,

(1− x2)P ′′n,m(x)dx2 +

[
2(1− x2)

U
′
(x)

U(x)
− 2x

]
P ′n,m(x)

+

[
(1− x2)

U
′′
(x)

U(x)
− 2x

U
′
(x)

U(x)
+

k2

γ2(1− x2)
− ηx

γ2(1− x2)

]
Pn,m(x) = 0,

(3.3)

where Pα,β
n,m(x) = Pn,m(x).

Also here, in order to obtain the parameters, the eigenfunction and the normal mode
for the tachyon potential, we compare (3.3) with the following associated Jacobi
differential equation ([8, 13, 14, 22]),

(1− x2)P ′′n,m(x)− [α− β + (α + β + 2)x]P ′n,m

+
[
n(α + β + n + 1)− m(α + β + m + (α− β))x

1− x2

]
Pn,m(x) = 0.

(3.4)

We compare (3.3) and (3.4), and obtain U(x) and k2 as follows,

(3.5) U(x) = (−1)
α+β

2 (1− x)
α
2 (1 + x)

β
2 ,
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and

k2 = −γ2

[
m(α + β + m) +

(β − α)2

4

]

η = −γ2(β − α)
[
α + β

2
+ m

]

α + β = 0.

(3.6)

Finally, we obtain the solution of equation for the corresponding tachyon potential,

(3.7) Ψ(y) = (−1)
α+β

2 (1− tanh(γy))
α
2 (1 + tanh(γy))

β
2 Pn,m(tanh(γy)).

As well, we infer the normal mode,

(3.8) k2 = −γ2(m2 + β2) = −5R

16
(m2 + β2).

We note that the stability of system is satisfied assuming the condition (k2 > 0), so
we have R < 0. In that case, for the negative R case (2.9) is written as,

(3.9) −R = 20A′2 + 8A′′,

so that we can obtain A′(y) in the form,

(3.10) A′(y) = −2
5
γ tanh(γy).

In that case the graph of the corresponding potential will be anti-kink.

4 The factorization method and shape invariance

As follows from [8, 13, 14, 22], any second order equation which has an exact so-
lution or a normal mode can be factorized in terms of first order equations. These first
order equations lead us to have raising and lowering operators. These first operators
give us the shape invariance condition.

As we know, the associated Jacobi differential equation can be factorized by ladder
and lower operators with respect to the parameter m as [13, 14],

(4.1) A+
m(x)A−m(x)Pn,m(x) = En,mPn,m(x),

(4.2) A−m(x)A+
m(x)Pn,m−1(x) = En,mPn,m−1(x),

where

(4.3) A+
m(x) =

√
1− x2

d

dx
+

(m− 1)x√
1− x2

,

(4.4) A−m(x) = −
√

1− x2
d

dx
+

(α− β) + (α + β + m)x√
1− x2

,
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(4.5) En,m = (n−m + 1)(α + β + n + m).

On the other hand, by comparing the Jacobi differential equation with the tachyonic
equation we replace (3.6) into (4.3) and (4.4), and we get,

(4.6) A+
m(x) =

√
1− x2

d

dx
+

(m− 1)x√
1− x2

,

(4.7) A−m(x) = −
√

1− x2
d

dx
+

η + m2γ2x

mγ2
√

1− x2
.

If we express the above equations with respect to y, so we obtain

(4.8) A+
m(y) =

1√
1− tanh2(γy)

[
1
γ

d

dy
+ (m− 1) tanh(γy)

]
,

(4.9) A−m(y) =
1√

1− tanh2(γy)

[
− 1

γ

d

dy
+

η

mγ2
+ m tanh(γy)

]
.

We remark that (4.8) and (4.9) are first order equations and correspond to (3.2). It is
interesting to link these first order operators to the generators of the N = 2 algebra.

5 Conclusions

In this paper, we have discussed the tachyon field and obtained the corresponding
potential in the braneworld scenario. We solved the corresponding potential in the
case of constant curvature. Also, we calculated the energy spectrum (normal mode)
and bound states of energy and obtained the stability of system in the case of negative
curvature. Using the factorization method, we derived some laddering operators. The
investigation of the shape invariance condition will be an interesting problem in future.
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