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Abstract. The power inverse Gaussian distribution is a common distri-
bution in reliability analysis and lifetime models. In this paper, we give
the geometric structures of the power inverse Gaussian manifold from the
viewpoint of information geometry. Firstly, we obtain the Fisher infor-
mation matrix, Riemannian connections, Gaussian curvature of the power
inverse Gaussian manifold. Then we consider the dual structure of this
manifold and investigate the KullBack divergence. At last we give an
immersion from the power inverse Gaussian manifold into an affine space.
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§1. Introduction

It is well known that information geometry has been successfully applied into
various fields, such as image processing, statistical inference and control theory. Re-
cently, some scholars studied the probability density function from the viewpoint of
information geometry, and use the geometric metrics to give a new description to
the statistical distribution (see [4],[6],[7]). Here, the parameters of the probability
density function play an important role in statistical manifold and can be regard as
the coordinate system of the manifold.

The power inverse Gaussian distribution parameterized by an arbitrarily fixed real
number λ 6= 0 has the probability density function

f(x) =
1√

2πµσ

(x

µ

)−(2+λ/2)

exp
{
− 1

2λ2σ2

((x

µ

)λ/2

−
(x

µ

)−(λ/2))2}
,(1.1)

where 0 < x < ∞, 0 < µ < ∞, 0 < σ < ∞. In particular, for λ = 1 or λ = −1, the
distribution becomes the inverse Gaussian distributions and the reciprocal inverse
Gaussian distributions, respectively. Also when λ → 0, (1.1) reduces to a log-normal
distribution.

In the present paper, we consider the geometric structure of the power inverse
Gaussian manifold. Firstly, we give the Fisher information matrix, the Riemannian
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connections, the Gaussian curvature under the coordinate system (µ, σ). Whilst we
can see that the power inverse Gaussian distribution is an exponential family distrib-
ution, and the corresponding manifold is ±1-flat, so we construct the dual structure
of the power inverse Gaussian manifold. Secondly, we give the Kullback divergence
in this manifold, and it is a distance like measure not satisfying the distance axiom.
Furthermore we give the relation of Kullback divergence and arc length. At last, we
give an immersion from the power inverse Gaussian manifold into the affine space.

§2. The geometric structures of the power inverse Gaussian
manifold

Definition 2.1. The set

S =
{

f(x; ξ)|ξ = (ξ1, ξ2) = (µ, σ) ∈ R+ ×R+
}

,(2.1)

is called the power inverse Gaussian manifold, where f(x; ξ) is in the form of (1.1),
and ξ = (ξ1, ξ2) = (µ, σ) plays the role of the coordinate system.

By a straightforward calculation, we get

Ef

[(x

µ

)λ

−
(x

µ

)−λ]
= −λ2σ2,

Ef

[(x

µ

)λ

+
(x

µ

)−λ]
= 2 + λ2σ2,

Ef

[((x

µ

)λ/2(x

µ

)−λ/2)2]
= λ2σ2.

(2.2)

Using

gij =
∫

∂ log f(x)
∂ξi

∂ log f(x)
∂ξj

f(x)dx,(2.3)

and (2.2), we get the Fisher information matrix with respect to the coordinate system
(µ, σ),

(gij(ξ)) =

(
2+λ2σ2

2µ2σ2 − λ
µσ

− λ
µσ

2
σ2

)
,(2.4)

immediately the square of the element of the arc length is given by

ds2 =
2 + λ2σ2

2µ2σ2
dµ2 − 2λ

µσ
dµdσ +

2
σ2

dσ2.(2.5)

From (2.4), we can get the inverse of the Fisher information matrix

(gij(ξ)) =

(
µ2σ2 λµσ3

2
λµσ3

2
σ2(2+λ2σ2)

4

)
,(2.6)
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Combining

Γijk =
1
2
(∂1gjk + ∂jgki − ∂kgij)

with (2.4), we obtain the Riemannian connections

Γ111 = −2 + λ2σ2

2σ2µ3
, Γ112 =

λσ2 + 1
µ2σ3

,

Γ121 = − 1
µ2σ3

, Γ122 = 0,

Γ221 =
λ

µσ2
, Γ222 = − 2

σ3
,

(2.7)

and

Γ1
11 =

λ− 2
2µ

, Γ2
11 =

λ2σ2 + 2
4µ2σ

,

Γ1
12 = − 1

σ
, Γ2

12 = − λ

2µ
,

Γ1
22 = 0, Γ2

22 = − 1
σ

.

(2.8)

Combining

Rijkl = (∂jΓs
ik − ∂iΓs

jk)gsl + (ΓjtlΓt
ik − ΓitlΓt

jk),

(2.4) with (2.8), by a calculation, we get the nonzero component of the Riemannian
curvature tensor

R1212 = − 1
µ2σ4

.(2.9)

Theorem 2.1. The Gaussian curvature of the power inverse Gaussian manifold
is given by

K = −1
2
.(2.10)

Proof. Since the determinant of the Fisher information matrix is

det(gij(ξ)) =
2

µ2σ4
,

and the Gaussian curvature is defined by

K =
R1212

det(gij)
,

from (2.9), we obtain Theorem 2.1. ¤
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§3. The dual structures of the power inverse Gaussian man-
ifold

Proposition 3.1. The power inverse Gaussian distribution is an exponential
family distribution.

Proof. The power inverse Gaussian probability density function (1.1) can be
rewritten as

f(x) = exp
{
− 1

2λ2σ2µλ
xλ − µλ

2λ2σ2
x−λ − (1 +

λ

2
) ln x

−
(

ln σ − 1
λ2σ2

− λ

2
ln µ +

1
2

ln 2π
)}

.

(3.1)

Set

y1 = − xλ

2λ2
, θ1 =

1
σ2µλ

,

y2 = −x−λ

2λ2
, θ2 =

µλ

σ2
,

M(y) = −(
1
4

+
1
2λ

) ln(
y1

y2
),

(3.2)

then the potential function ψ(θ) can be written as

ψ(θ) = −
√

θ1θ2

λ2
− 1

2
ln θ2 +

1
2

ln 2π.(3.3)

That is, the power inverse Gaussian probability density function can be denoted as

f(y) = exp{y1θ1 + y2θ2 − ψ(θ) + M(y)},

so it is an exponential family distribution([1]). ¤
Remark: The power inverse Gaussian manifold is ±1-flat.

Proposition 3.2.

i) θ = (θ1, θ2) =
(

1
σ2µλ , µλ

σ2

)
, is the natural coordinate system of the power in-

verse Gaussian manifold.

ii) ψ(θ) = −
√

θ1θ2
λ2 − 1

2 ln θ2 + 1
2 ln 2π, is the potential function with respect to

natural coordinate system θ.

iii) η = (η1, η2) =
(
− µλ

2λ2 ,− 1+λ2σ2

2λ2µλ

)
, is the dual coordinate system, and is also

called expectation coordinate system.

iv) φ(η) = − 1
2 ln(4λ2η1η2− 1) + 1

2 ln(−η1) + 2 ln λ− 1
2 ln πe, is the dual potential

function with respect to the expectation coordinate system.

Proof. The proof of the (i) and (ii) can be seen in the proof of Proposition 3.1.
Now, let us give the proof of (iii) and (iv).
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From

ηi =
∂ψ(θ)
∂θi

,

we get the expectation coordinate system of the power inverse Gaussian manifold

(η1, η2) =
(
− µλ

2λ2
,−1 + λ2σ2

2λ2µλ

)
.

The dual potential function with respect to the expectation coordinate system is

φ(η) = Σθiη
i − ψ(θ) = −1

2
ln(4λ2η1η2 − 1) +

1
2

ln(−η1) + 2 ln λ− 1
2

ln πe. ¤

Under natural coordinate system, the related geometric metrics can be given by

gij(θ) = ∂i∂jψ(θ),
Tijk(θ) = ∂i∂j∂kψ(θ) = ∂k(gij),

Γ(α)
ijk(θ) =

1− α

2
Tijk(θ),

R
(α)
ijkl =

1− α2

4
(TkmiTjln − TkmjTiln)gmn.

(3.4)

Then, by a direct calculation, we get the following geometric metrics of the power
inverse Gaussian manifold with respect to the coordinate system (θ1, θ2),

(gij(θ)) =

(
σ2µ2λ

4λ2 − σ2

4λ2

− σ2

4λ2
2λ2σ4+σ2

4λ2µ2λ

)
,(3.5)

(gij(θ)) =

(
4λ2σ2+2

σ4µ2λ
2

σ4

2
σ4

2µ2λ

σ4

)
,(3.6)

T111 = −3µ3λσ4

8λ2
,

T112 = T121 = T211 =
µλσ4

8λ2
,

T122 = T212 = T221 =
σ4

8λ2µλ
,

T222 = −8λ2σ6 + 3σ4

8λ2µ3λ
.

(3.7)
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and

Γ(α)
111 = −1− α

2
3µ3λσ4

8λ2
,

Γ(α)
112 = Γ(α)

121 = Γ(α)
211 =

1− α

2
µλσ4

8λ2
,

Γ(α)
122 = Γ(α)

212 = Γ(α)
221 =

1− α

2
σ4

8λ2µλ
,

Γ(α)
222 = −1− α

2
8λ2σ6 + 3σ4

8λ2µ3λ
.

(3.8)

From the above, we obtain the nonzero component of the curvature tensor with
respect to the natural coordinate system,

R
(α)
1212 =

(1− α2)σ6

16λ2
,(3.9)

and the α-Gaussian curvature is

K(α) = −1− α2

2
.(3.10)

When α = 0, it is the Riemannian case, and K = − 1
2 , it is the same as (2.10).

§4. The Kullback divergence

Now, let us give a new distance like measure which is different from the arc length,
Kullback divergence. It plays an important role in statistical manifold.

Proposition 4.1. Let P and Q be two points in the power inverse Gaussian
manifold with coordinates (µP , σP ) and (µQ, σQ), respectively. Then the Kullback
divergence between P and Q is given by

D(P,Q) =
λ

2
ln

µQ

µP
+ ln

σP

σQ
+

1
2λ2σ2

P

(µλ
Q

µλ
P

+
µλ

P

µλ
Q

)
+

1
2

σ2
Q

σ2
P

µλ
P

µλ
Q

− 1
λ2σ2

P

− 1
2
.(4.1)

Proof. From the dual structure we construct above, we can get the Kullback
divergence between P and Q

D(P,Q) = ψ(θP ) + φ(ηQ)− θP · ηQ.(4.2)

The natural coordinate system θP , the potential function ψ(θP ) of the point P , the
expectation coordinate system ηQ and the dual potential function φ(ηQ) of the point
Q are given by



200 Zhenning Zhang, Huafei Sun and Fengwei Zhong

θP = (θ1P , θ2P ) =
( 1

σ2
P µλ

P

,
µλ

P

σ2
P

)
,

ψ(θP ) = −
√

θ1P θ2P

λ2
− 1

2
ln θ2P +

1
2

ln 2π,

ηQ = (η1
Q, η2

Q) =
(
− µλ

Q

2λ2
,−1 + λ2σ2

Q

2λ2µλ
Q

)
,

φ(ηQ) = −1
2

ln(4λ2η1
Qη2

Q − 1) +
1
2

ln(−η1
Q) + 2 ln λ− 1

2
ln πe,

(4.3)

respectively.
Combining (4.2) with (4.3), by a computation, we get Proposition 3.3. ¤
Now, let us consider some special cases:
i) When the parameter θ1 = µ is fixed, i.e., µP = µQ, we have

D(P, Q) = ln
σP

σQ
+

σ2
Q

2σ2
P

− 1
2
.(4.4)

From (4.4), we see that when µ is fixed, the Kullback divergence doesn’t depend on
µ.

ii) When the parameter θ2 = σ is fixed, i.e., σP = σQ, we have

D(P, Q) =
λ

2
ln

µQ

µP
+

1
2λ2σ2

P

(µλ
Q

µλ
P

+
µλ

P

µλ
Q

)
+

1
2

µλ
P

µλ
Q

− 1
λ2σ2

P

− 1
2
.(4.5)

Next, using (2.5), we obtain the arc length in the 1-dimensional parameter space
from the point P (µP , σP ) to Q(µQ, σQ) as follows:

i) When ξ1 = µ is fixed, and ξ2 = σ is free, we get

Sµ =
∫ ξQ

ξP

√
2

σ
dσ =

√
2

∣∣∣∣ln
σQ

σP

∣∣∣∣ .(4.6)

ii) When ξ2 = σ is fixed, and ξ1 = µ is free, we get

Sσ =
∫ ξQ

ξP

√
2 + λ2σ2

2σ2

dµ

µ
=

√
2 + λ2σ2

2σ2

∣∣∣∣ln
µQ

µP

∣∣∣∣ .(4.7)

Then from the above results, we get

Proposition 4.2. Let P and Q be two points in the power inverse Gaussian
manifold with coordinates (µP , σP ) and (µQ, σQ) respectively. Then the Kullback di-
vergence D and the arc length S are connected in the following ways

i) when µ is fixed,

Dµ =
√

2
Sµ

+
1
2
e
√

2Sµ − 1
2
.(4.8)
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The relation between Sµ and Dµ can be seen in Figure 1 and 2.
ii) when σ is fixed,

Dσ =
λσ√

4 + 2λ2σ2
Sσ +

1
2λ2σ2

(
e

√
2λσSσ√
2+λ2σ2 + e

−
√

2λσSσ√
2+λ2σ2

)
+

1
2
e
−

√
2λσSσ√
2+λ2σ2 − 1

λ2σ2
− 1

2
.

(4.9)

The relation between Sσ and Dσ can be seen in Figure 3.

§5. Affine immersions

Let M be an m-dimensional manifold, f be an immersion from M to Rm+1, and ξ
be a transversal vector field along f . We can identify TxRm+1 ≡ Rm+1 for ∀x ∈ Rm+1.
The pair {f, ξ} is said to be an affine immersion from M to Rm+1, if for each point
P ∈ M , the following formula holds

Tf(P )R
m+1 = f∗(TP M)⊕ spanξP .(5.1)

We denote the standard flat affine connection of Rm+1 with D. Identifying the co-
variant derivative along f with D, we have the following decompositions

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,
DXξ = −f∗(Sh(X)) + τ(X)ξ.

(5.2)

The induced objects ∇, h, Sh and τ are the induced connection, the affine funda-
mental form, the affine shape operator and the transversal connection form, respec-
tively.

From the fundamental concepts of the affine immersions, we have the following
Proposition of the power inverse Gaussian manifold.

Proposition 5.1. Since (S, h,∇,∇∗) is the inverse Guassian manifold, it is
dually flat space with a global coordinate system. θ is an affine coordinate system
of ∇, and ψ is a θ-potential function. Then the power inverse Gaussian manifold
(S, h,∇) can be immersed into R3 by the following way

f :S → R3

[
1

σ2µλ

µλ

σ2

]
→




1
σ2µλ

µλ

σ2

−
√

θ1θ2
λ2 − 1

2 ln θ2 + 1
2 ln 2π


 ,

(5.3)

which is called a graph immersion from S into R3. And the transversal vector ξ =
(0, 0, 1)

′
.

6 Figures.

By choosing suitable constants, we draw the pictures below.
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Fig 1. Dµ =
√

2
Sµ

+ 1
2e
√

2Sµ − 1
2 , 0 < Sµ < 1.
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Fig 2. Dµ =
√

2
Sµ

+ 1
2e
√

2Sµ − 1
2 , Sµ > 1.
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Fig 3. Setting λ = 1, and σ =
√

2, (4.9) be-
comes to Dσ = Sσ

2 + 1
4eSσ + 3

4e−Sσ−1, Sσ > 0.
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