# On the Blaschke invariants of generalized time-like ruled surfaces

Murat Tosun, Soley Ersoy, Mehmet Ali Gungor

**Abstract.** In this work, we give the relations between Blaschke invariants and principal distribution parameters of (k + 1)-dimensional time-like ruled surfaces in *n*-dimensional Minkowski space  $\mathbf{R}_1^n$ . In addition to this we have obtained statements for 2-dimensional space-like and time-like ruled surfaces generated by a unit vector e(t) of the generator space  $E_k(t)$ . Finally some examples for all the cases are also given.

M.S.C. 2000: 53C40, 53C50.

Key words: Blaschke invariants, distribution parameter, time-like ruled surface.

## §1. Introduction

In literature there are many studies related to ruled surfaces and their invariants (distribution parameters, Blaschke invariants, apex angles, etc.) in *n*-dimensional Euclidean space  $E^n$  and 3-dimensional Euclidean space  $E^3$ , [3, 4, 5, 11]. It is well known that the geometry of ruled surfaces is very important in the study of kinematics or spatial mechanisms in  $E^3$ , [6, 8].

Lorentz metrics in *n*-dimensional Minkowski space  $\mathbf{R}_1^n$  is indefinite. In the theory of relativity, geometry of indefinite metric is very crucial. Hence, the theory of ruled surfaces in Minkowski space  $\mathbf{R}_1^3$ , which has the metric,  $ds^2 = dx^2 + dy^2 - dz^2$  attracted much attention. A series of papers are devoted to the construction of the ruled surfaces, [14, 15, 16].

The situation is much more complicated than the Euclidean case, since the ruled surfaces may have a definite metric (spacelike surfaces), Lorentz metric (time-like surfaces) or mixed metric. Recently, the time-like or space-like ruled surfaces in  $\mathbf{R}_1^3$  and  $\mathbf{R}_1^n$  have been studied systematically, [1, 2, 10, 12, 13, 14, 15, 16].

This paper is organized as follows. In the first part basic concepts have been given in Minkowski space,  $\mathbf{R}_1^n$ . In the next part, (k+1)-dimensional time-like ruled surfaces, their asymptotic bundles and tangential bundles are defined in  $\mathbf{R}_1^n$ . Furthermore, the knowledge about the edge ruled surfaces and central ruled surface of (k+1)-dimensional time-like ruled surface are given.

Finally, the relations between Blaschke invariants of (k + 1) –dimensional time-like ruled surface with distribution parameter and principal distribution parameter have also been expressed. After all, Blaschke invariants of 2–dimensional time-like and

Applied Sciences, Vol.9, 2007, pp. 181-193.

<sup>©</sup> Balkan Society of Geometers, Geometry Balkan Press 2007.

space-like ruled surfaces in  $\mathbf{R}_1^n$  have been evaluated and examples related to these ruled surfaces have been given.

## §2. Preliminaries

We note, first of all, that the notation and fundamental formulas have been used in this study as [10]. The Minkowski space  $\mathbf{R}_1^n$  is the vector space  $\mathbf{R}^n$  provided that the Lorentzian inner product g is given by

$$g = dx_1^2 + dx_2^2 + \dots + dx_{n-1}^2 - dx_n^2$$

where  $(x_1, x_2, ..., x_n)$  is rectangular coordinate system of  $\mathbf{R}_1^n$ . Since g is indefinite metric, recall that a vector  $v \in \mathbf{R}_1^n$  can have one of three Lorentzian casual characters: it can be space-like if g(v, v) > 0 or v = 0, time-like if g(v, v) < 0 and null g(v, v) = 0and  $v \neq 0$ . Similarly, an arbitrary curve  $\alpha = \alpha(s) \subset \mathbf{R}_1^n$  can locally be space-like, time-like or null (light-like), if all of its velocity vectors  $\dot{\alpha}(s)$  are respectively spacelike, time-like or null (light-like). The norm of a vector  $v \in \mathbf{R}_1^n$  is defined as

$$\|v\| = \sqrt{|g(v,v)|}.$$

Let W be a subspace of  $\mathbf{R}_1^n$  and denote  $g_W$  as reduced metric in subspace W of  $\mathbf{R}_1^n$ . A subspace W of  $\mathbf{R}_1^n$  can be space-like, time-like or null (light-like) if  $g_W$  is positive definite,  $g_W$  is non-degenerate with index 1 or  $g_W$  is degenerate, respectively. Let the set of all time-like vectors in  $\mathbf{R}_1^n$  be  $\Gamma$ . For  $u \in \Gamma$ , we call

$$C(u) = \{ v \in \Gamma | g(v, u) < 0 \}$$

as time-conic of Minkowski space  $\mathbf{R}_1^n$  including vector u.

**Lemma 1.** Let v and w be two time-like vectors in Minkowski space  $\mathbf{R}_1^n$ . In this case there exists the following inequality

$$|g(v,w)| \ge ||v|| ||w||$$

In this inequality if one wishes the equality condition, then it is necessary for v and w be linear dependent.

If time-like vectors v and w stay inside the same time conic, then there is a single number of  $\theta \ge 0$  such that

$$g(v,w) = - \|v\| \|w\| \cosh \theta$$

where the number  $\theta$  is called an angle between the time-like vectors, [10]. Let v and w be two space-like vectors in Minkowski space  $\mathbf{R}_1^n$ . Then, we write the following inequality

$$|g(v,w)| \ge ||v|| ||w||$$

If v and w are two space-like vectors in Minkowski space, then there is a single number of  $0 \le \theta \le \pi$  such that

$$g(v, w) = \|v\| \|w\| \cos \theta$$

where the number  $\theta$  is called the angle between space-like vectors v and w, [10]. Considering v and w to be space-like and time-like vector, respectively, in Minkowski space  $\mathbf{R}_1^n$  there is a number  $\theta$  such that

$$g(v,w) = \|v\| \|w\| \sinh \theta$$

where the number  $\theta$  is called the angle between space-like vector v and time-like vector w, [9].

#### §3. Time-like ruled surfaces

Let  $\{e_1(t), ..., e_k(t)\}$  be an orthonormal vector field, which is defined at each point  $\alpha(t)$  of a space-like curve of a *n*-dimensional Minkowski space,  $\mathbf{R}^n$ . This system spanning at the point  $\alpha(t) \in \mathbf{R}_1^n$  a *k*-dimensional subspace is denoted by  $E_k(t)$  and is given by  $E_k(t) = Sp\{e_1(t), ..., e_k(t)\}$ . If the subspace  $E_k(t)$  moves along the curve  $\alpha$ , we obtain a (k+1)-dimensional surface in  $\mathbf{R}^n$ . This surface is called a (k+1)-dimensional time-like ruled surface of the *n*-dimensional Minkowski space,  $\mathbf{R}^n$  and is denoted by M.

The subspace  $E_k(t)$  and space-like curve  $\alpha$  are called the generating space and the base curve, respectively. A parametrization of the ruled surface is the following:

(3.1) 
$$\phi(t, u_1, ... u_k) = \alpha(t) + \sum_{i=1}^k u_i e_i(t)$$

Throughout the paper we assume that the system  $\left\{ \dot{\alpha}(t) + \sum_{i=1}^{k} u_i \dot{e}_i(t), e_1(t), ..., e_k(t) \right\}$  is linear independent and is time-like subspace, [1]. We call

(3.2) 
$$Sp \{e_1(t), ..., e_k(t), \dot{e}_1(t), ... \dot{e}_k(t)\}$$

the asymptotic bundle of M with respect to  $E_k(t)$  and denote it by A(t). We have dim A(t) = k + m,  $0 \le m \le k$ . There exists an orthonormal base of A(t) that we denote as  $\{e_1(t), \dots, e_k(t), a_{k+1}(t), \dots, a_{k+m}(t)\}$ . It is clear that the asymptotic bundle is time-like subspace. The space

(3.3) 
$$Sp\{e_{1}(t),...,e_{k}(t),\dot{e}_{1}(t),...,\dot{e}_{k}(t),\dot{\alpha}(t)\}$$

includes the union of all the tangent spaces of  $E_k(t)$  at a point p. This space is denoted by T(t) and called the tangential bundle of M in  $E_k(t)$ . It can be easily seen that

$$k+m \leq \dim T\left(t\right) \leq k+m+1 \ , \ 0 \leq m \leq k.$$

In what follow we examine separately two cases. Let  $\dim T(t) = k + m$ , then  $\{e_1(t), \dots e_k(t), a_{k+1}(t), \dots a_{k+m}(t)\}$  is an orthonormal bases of the asymptotic bundle A(t) and the tangential bundle T(t). Let  $\dim T(t) = k + m + 1$ , then  $\{e_1(t), \dots e_k(t), a_{k+1}(t), \dots a_{k+m}(t), a_{k+m}(t), a_{k+m}(t)\}$  is an orthonormal bases of T(t). The tangential bundle T(t) is in both cases a time-like subspace, [1].

If dim T(t) = k+m, then (k+1) –dimensional time-like ruled surface M has (k-m) –dimensional

subspace and this subspace is called edge space of M and denoted as  $K_{k-m}(t) \subset E_k(t)$ . Edge space  $K_{k-m}(t) \subset E_k(t)$  is either time-like or space-like subspace. If we take edge space  $K_{k-m}(t)$  to be generated space and base curve  $\alpha$  of M to be base curve, then there will be (k-m+1)-dimensional ruled surface contained by M. This surface is called edge ruled surface. If  $K_{k-m}(t)$  is space-like (time-like), then edge ruled surface becomes space-like (time-like) ruled surface, [1].

If dim T(t) = k + m + 1, then (k + 1) -dimensional time-like ruled surface has a (k - m)-dimensional subspace called central space of M and denoted as  $Z_{k-m}(t) \subset E_k(t)$ . This space is either time-like or space-like subspace. Similarly, if we take base curve of M to be the base curve and  $Z_{k-m}(t)$  to be the generating space, we get a (k - m + 1)-dimensional ruled surface contained by M in  $\mathbf{R}_1^n$  and this is called central ruled surface and denoted by  $\Omega$ . If  $Z_{k-m}(t)$  is space-like (time-like), then central ruled surface  $\Omega$  is space-like (time-like) surface, [1].

Let us complete the orthonormal basis  $\{e_1(t), ..., e_k(t), a_{k+1}(t), ..., a_{k+m}(t), a_{k+m+1}(t)\}$  of tangential bundle T(t) to the orthonormal basis

 $\{e_{1}(t),...e_{k}(t),a_{k+1}(t),...a_{k+m}(t),a_{k+m+1}(t),a_{k+m+2}(t),...,a_{n}(t)\}$ 

of  $\mathbf{R}_{1}^{n}$ . For these basis vectors we write the following derivative equations, [1];

(3.4)

$$\begin{split} \dot{e}_{\sigma}\left(t\right) &= \sum_{\nu=1}^{k} \alpha_{\sigma\nu} e_{\nu}\left(t\right) + \kappa_{\sigma} a_{k+\sigma}\left(t\right), \qquad 1 \leq \sigma \leq m \\ \dot{e}_{m+p}\left(t\right) &= \sum_{\nu=1}^{k} \alpha_{(m+p)\nu} e_{\nu}\left(t\right), \qquad 1 \leq p \leq k-m \\ \left(\kappa_{\sigma} &= \|\dot{e}_{\sigma}\| \geq 0 \quad , \quad \varepsilon_{\nu} \alpha_{\sigma\nu} = -\alpha_{\nu\sigma} \quad , \quad \varepsilon_{\nu} = \langle e_{\nu}, e_{\nu} \rangle = \mp 1) \\ \dot{a}_{k+\sigma}\left(t\right) &= -\varepsilon_{\sigma} \kappa_{\sigma} e_{\sigma}\left(t\right) + \sum_{l=1}^{m} \tau_{\sigma l} a_{k+l}\left(t\right) + \omega_{\sigma} a_{k+m+1}\left(t\right) + \sum_{\lambda=2}^{n-k-m} \gamma_{\sigma\lambda} a_{k+m+\lambda}\left(t\right), \qquad 1 \leq \sigma \leq m \\ \dot{a}_{k+m+1}\left(t\right) &= -\sum_{l=1}^{m} \omega_{l} a_{k+l}\left(t\right) - \sum_{\lambda=2}^{n-k-m} \beta_{\lambda} a_{k+m+\lambda}\left(t\right) \\ \dot{a}_{k+m+s}\left(t\right) &= -\sum_{l=1}^{m} \omega_{sl} a_{k+l}\left(t\right) + \beta_{s} a_{k+m+1}\left(t\right) + \sum_{\lambda=2}^{n-k-m} \beta_{s\lambda} a_{k+m+\lambda}\left(t\right), \qquad 2 \leq s \leq n-k-m \\ \left(\tau_{\sigma l} = -\tau_{l\sigma} \quad , \quad \beta_{s\lambda} = -\beta_{\lambda s} \quad , \quad \omega_{sl} = -\gamma_{\sigma\lambda}) \end{split}$$

Let subspace  $F_m(t) = Sp\{e_1(t), \dots e_m(t)\}$  be totally orthogonal to generating space  $Z_{k-m}(t)$  of  $\Omega$  and orthogonal trajectories of central ruled surface  $\Omega$  be r. If generating space  $F_m(t)$  moves along base curve r, it produces a (m + 1) –dimensional ruled surface. This surface is known as principal ruled surface and denoted by  $\Lambda$ , [1]. If central ruled surface  $\Omega$  is time-like, then direction vector F(t) along space-like curve  $\alpha$  produces 2–dimensional space-like ruled surfaces of number m called principal ray surfaces since each direction vector  $F(t) = Sp\{e_i(t)\}, 1 \leq i \leq m$  is space-like, [1]. If central ruled surface  $\Omega$  is space-like, since one direction vector of  $F(t) = Sp\{e_i(t)\}, 1 \leq i \leq m$  is space-like and (m-1) direction vectors are space-like. Direction vector F(t) along space-like curve  $\alpha$  will produce one time-like and (m-1) space-like principal ray ruled surfaces. These principal ray ruled surfaces are parametrized as follows:

$$\phi_i(t, x) = \alpha(t) + xe_i(t).$$

If (k + 1) –dimensional time-like ruled surface M is cylindrical (i.e., m = 0), then there is no principal ray ruled surface of M. A base curve  $\alpha$  of (k + 1) –dimensional ruled surface M is a base curve of edge or central ruled surface  $\Omega \subset M$ , too iff its tangent vector has the form

(3.5) 
$$\dot{\alpha}(t) = \sum_{i=1}^{k} \zeta_i e_i + \eta_{m+1} a_{k+m+1}$$

where  $\eta_{m+1} \neq 0$ ,  $a_{k+m+1}$  is a unit vector well defined up to the sign with the property that  $\{e_1, ..., e_k, a_{k+1}, ..., a_{k+m}, a_{k+m+1}\}$  is an orthonormal base of the tangential bundle of M. One shows:  $\eta_{m+1} = 0$ , in  $t \in J$  iff generator  $E_k(t) \subset M$  contains the edge space  $K_{k-m}(t)$ , [1].

If  $\eta_{m+1} \neq 0$ , we call *m*-magnitudes

$$(3.6) P_i = \frac{\eta_{m+1}}{\kappa_i} \quad , \quad 1 \le i \le m$$

the principal parameter of distribution, [1]. Moreover, in [1] the parameter of distribution of a generalized ruled surface M is given by

$$(3.7) P = \sqrt[m]{|P_1...P_m|}$$

and the total parameter of distribution of M is defined to be

$$(3.8) D = \prod_{i=1}^{m} P_i.$$

For two-dimensional ruled surface M for which the base curve is space-like curve  $\alpha$  and its generating space is  $E(t) = Sp\{e(t)\}$  in  $\mathbf{R}_{1}^{n}$ , the magnitude of

$$(3.9) b = \frac{\zeta}{\kappa}$$

is called Blaschke invariant of M, [5].

Let M be a (k+1)-dimensional time-like ruled surface in  $\mathbf{R}_1^n$ . If dimension of the asymptotic bundle A(t) of M is (k+m), then the magnitudes

$$(3.10) b_i = \frac{\zeta_i}{\kappa_i} \quad , \quad 1 \le i \le m$$

are called the principal Blaschke invariants of M and

$$(3.11) B = \sqrt[m]{|b_1...b_m|}$$

is called the Blaschke invariant of M, [7].

## §4. The Blaschke invariants of ruled surfaces in $\mathbf{R}_1^n$

In this section, the Blaschke invariants of two-dimensional and (k + 1) –dimensional time-like ruled surface in n-dimensional Minkowski space  $\mathbf{R}_1^n$  and relations between these Blaschke invariants and distribution parameters are expressed.

**Theorem 1.** Let M be a (k + 1)-dimensional time-like ruled surfaces with central ruled surfaces  $\Omega$ . The relation between the Blaschke invariants and principal parameter of M is

(4.12) 
$$B = \frac{1}{\eta_{m+1}} \sqrt[m]{\left| \prod_{i=1}^{m} \zeta_i P_i \right|}.$$

*Proof.* From equation (3.6) we know that the principal distribution parameter of M is

$$P_i = \frac{\eta_{m+1}}{\kappa_i} \quad , \quad 1 \le i \le m.$$

From this last equation, we can write

$$\kappa_i = \frac{\eta_{m+1}}{P_i} \quad , \quad 1 \le i \le m$$

and substituting this equation into equation (3.10) we reach

$$b_i = \frac{1}{\eta_{m+1}} \zeta_i P_i \quad , \quad 1 \le i \le m.$$

The last equation with equation (3.11) completes the proof.  $\Box$ This theorem with equation (3.7) and (3.8) give us the following results.

**Result 1.** In  $\mathbb{R}^n_1$ , the relation between distribution parameter and Blaschke invariants of M is

(4.13) 
$$B = \frac{1}{\eta_{m+1}} \sqrt[m]{\left| \prod_{i=1}^{m} \zeta_i \right|} P.$$

**Result 2.** In  $\mathbb{R}^n_1$ , the relation between total distribution parameter and Blaschke invariants of M is

(4.14) 
$$B = \frac{1}{\eta_{m+1}} \sqrt[m]{\left| D \prod_{i=1}^{m} \zeta_i \right|}.$$

In  $\mathbf{R}_{1}^{n}$ , let M be (k + 1) -dimensional time-like ruled surface with dimensional central ruled surface  $\Omega$ . If m = k, then the central ruled surface  $\Omega$  of M will be degenerate in the situation line of M. This case, 1-dimensional generating space  $Sp\{e(t)\} = E(t)$ , which is inside the generating space  $E_k(t)$  of M produces 2-dimensional ruled surface  $\psi$ . The generating space  $E(t) = Sp\{e(t)\} \subset E_k(t)$  (unitary direction vector) is either time-like or space-like. Now we consider these two cases separately. First, we suppose that the subspace  $E(t) = Sp\{e(t)\}$  is time-like subspace of  $E_k(t)$ .

Then, for unit time-like vector e(t) we can write

$$e(t) \in Sp\{e_1(t), ..., e_k(t)\}$$
,  $||e(t)|| = 1$ 

and

(4.15)  
$$e(t) = \sum_{\nu=1}^{k-1} \sinh \theta_{\nu} e_{\nu} + \cosh \theta_{k} e_{k} \quad , \quad \sum_{\nu=1}^{k-1} \sinh^{2} \theta_{\nu} - \cosh^{2} \theta_{k} = 1 \quad , \quad \theta_{\nu}, \theta_{k} = \text{constant}$$

where the angles between unit time-like vector e(t) and unit vectors  $e_1(t), ..., e_k(t)$  are  $\theta_1, \theta_2, ..., \theta_k$ , respectively. Since  $E_k(t) = Sp\{e_1(t), ..., e_k(t)\}$  is time-like subspace we adopt that  $e_1(t), ..., e_{k-1}(t)$  vectors as space-like and  $e_k(t)$  to be a time-like vector. Therefore we can give the following theorem.

**Theorem 2.** Let  $\psi$  ( $\psi \subset M$ ) be 2-dimensional time-like ruled surface in n-dimensional Minkowski space  $\mathbb{R}^n_1$ . The Blaschke invariant of 2-dimensional time-like ruled surface  $\psi$  is

$$b = \frac{\sum_{\nu=1}^{k-1} \zeta_{\nu} \sinh \theta_{\nu} - \zeta_{k} \cosh \theta_{k}}{\left| \left| \sum_{\mu=1}^{k-1} \left[ \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \sinh \theta_{\nu} + \alpha_{k\mu} \cosh \theta_{k} \right)^{2} + (\kappa_{\mu} \sinh \theta_{\mu})^{2} \right] + (\kappa_{k} \cosh \theta_{k})^{2} \right| - \left( \sum_{\nu=1}^{k-1} \alpha_{\nu k} \sinh \theta_{\nu} + \alpha_{kk} \cosh \theta_{k} \right)^{2} \right|}$$

*Proof.* Considering equations (3.5) and (4.15) gives us

$$\zeta = \left\langle \dot{\alpha}\left(t\right), e\left(t\right) \right\rangle = \left\langle \sum_{\mu=1}^{k} \zeta_{\mu} e_{\mu}\left(t\right) + \eta_{m+1} a_{k+m+1}\left(t\right), \sum_{\nu=1}^{k-1} \sinh \theta_{\nu} e_{\nu}\left(t\right) + \cosh \theta_{k} e_{k}\left(t\right) \right\rangle$$

(4.16) 
$$\zeta = \sum_{\nu=1}^{k-1} \zeta_{\nu} \sinh \theta_{\nu} - \zeta_k \cosh \theta_k$$

From equation (4.15) we get

$$\dot{e}(t) = \sum_{\nu=1}^{k-1} \sinh \theta_{\nu} \dot{e}_{\nu}(t) + \cosh \theta_{k} \dot{e}_{k}(t) \,.$$

Substituting equation (3.4) into the last equation above we reach

$$\dot{e}\left(t\right) = \sum_{\nu=1}^{k-1} \sinh \theta_{\nu} \left(\sum_{\mu=1}^{k} \alpha_{\nu\mu} e_{\mu}\left(t\right) + \kappa_{\nu} a_{k+\nu}\left(t\right)\right) + \cosh \theta_{k} \left(\sum_{\mu=1}^{k} \alpha_{k\mu} e_{\mu}\left(t\right) + \kappa_{k} a_{2k}\left(t\right)\right)$$

$$(4.17)$$

$$\dot{e} = \sum_{\mu=1}^{k} \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \sinh \theta_{\nu} + \alpha_{k\mu} \cosh \theta_{k} \right) e_{\mu} (t) + \sum_{\nu=1}^{k-1} \kappa_{\nu} \sinh \theta_{\nu} a_{k+\nu} (t) + \kappa_{k} \cosh \theta_{k} a_{2k} (t) .$$

.

Thus we find

(4.18)  

$$\kappa = \sqrt{\left| \sum_{\mu=1}^{k-1} \left[ \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \sinh \theta_{\nu} + \alpha_{k\mu} \cosh \theta_k \right)^2 + \left( \kappa_{\mu} \sinh \theta_{\mu} \right)^2 \right] + \left( \kappa_k \cosh \theta_k \right)^2} - \left( \sum_{\nu=1}^{k-1} \alpha_{\nu k} \sinh \theta_{\nu} + \alpha_{kk} \cosh \theta_k \right)^2}$$

Substituting equations (4.16) and (4.18) into equation (3.10) we find

$$b = \frac{\sum_{\nu=1}^{k-1} \zeta_{\nu} \sinh \theta_{\nu} - \zeta_{k} \cosh \theta_{k}}{\left| \left| \sum_{\mu=1}^{k-1} \left[ \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \sinh \theta_{\nu} + \alpha_{k\mu} \cosh \theta_{k} \right)^{2} + (\kappa_{\mu} \sinh \theta_{\mu})^{2} \right] + (\kappa_{k} \cosh \theta_{k})^{2} \right| - \left( \sum_{\nu=1}^{k-1} \alpha_{\nu k} \sinh \theta_{\nu} + \alpha_{kk} \cosh \theta_{k} \right)^{2} \right|}$$

Now we suppose that  $E(t) = Sp\{e(t)\}$  is space-like. Therefore, for unit space-like vector e(t) it follows that

$$e(t) \in Sp\{e_1(t), ..., e_k(t)\}$$
,  $||e(t)|| = 1$ 

and

(4.19)  
$$e(t) = \sum_{\nu=1}^{k-1} \cos \theta_{\nu} e_{\nu} - \sinh \theta_k e_k \quad , \quad \sum_{\nu=1}^{k-1} \cos^2 \theta_{\nu} - \sinh^2 \theta_k = 1 \quad , \quad \theta_{\nu}, \theta_k = \text{constant}$$

where, as we did in the first assumption, the angles between unit vectors  $e_1(t), ..., e_k(t)$ and unit space-like vector e(t) are  $\theta_1, \theta_2, ..., \theta_k$ , respectively. In the subspace  $E_k(t) = Sp \{e_1(t), ..., e_k(t)\}, e_k(t)$  will be time-like whereas others are space-like vectors. Thus we can give the following theorem.

**Theorem 3.** Let  $\psi$  ( $\psi \subset M$ ) be 2-dimensional space-like ruled surface in n-dimensional Minkowski space  $\mathbb{R}^n_1$ . The Blaschke invariant of 2-dimensional space-like ruled surface  $\psi$  is

$$b = \frac{\sum_{\nu=1}^{k-1} \zeta_{\nu} \cos \theta_{\nu} + \zeta_{k} \sinh \theta_{k}}{\left| \left| \sum_{\mu=1}^{k-1} \left[ \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \cos \theta_{\nu} - \alpha_{k\mu} \sinh \theta_{k} \right)^{2} + \left( \kappa_{\mu} \cos \theta_{\mu} \right)^{2} \right] + \left( \kappa_{k} \sinh \theta_{k} \right)^{2} \right| - \left( \sum_{\nu=1}^{k-1} \alpha_{\nu k} \cos \theta_{\nu} - \alpha_{kk} \sinh \theta_{k} \right)^{2} \right|}$$

188

On the Blaschke invariants

*Proof.* Considering equations (3.5) and (4.19) we find

$$\zeta = \left\langle \dot{\alpha}\left(t\right), e\left(t\right) \right\rangle = \left\langle \sum_{\mu=1}^{k} \zeta_{\mu} e_{\mu}\left(t\right) + \eta_{m+1} a_{k+m+1}\left(t\right), \sum_{\nu=1}^{k-1} \cos \theta_{\nu} e_{\nu}\left(t\right) - \sinh \theta_{k} e_{k}\left(t\right) \right\rangle$$

(4.20) 
$$\zeta = \sum_{\nu=1}^{k-1} \zeta_{\nu} \cos \theta_{\nu} + \zeta_k \sinh \theta_k.$$

From equation (4.19) we get

$$\dot{e}(t) = \sum_{\nu=1}^{k-1} \cos \theta_{\nu} \dot{e}_{\nu}(t) - \sinh \theta_{k} \dot{e}_{k}(t) \,.$$

Substituting equation (3.4) into the last equation gives us

$$\dot{e}(t) = \sum_{\nu=1}^{k-1} \cos \theta_{\nu} \left( \sum_{\mu=1}^{k} \alpha_{\nu\mu} e_{\mu}(t) + \kappa_{\nu} a_{k+\nu}(t) \right) - \sinh \theta_{k} \left( \sum_{\mu=1}^{k} \alpha_{k\mu} e_{\mu}(t) + \kappa_{k} a_{2k}(t) \right)$$

(4.21)  
$$\dot{e}(t) = \sum_{\mu=1}^{k} \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \cos \theta_{\nu} - \alpha_{k\mu} \sinh \theta_{k} \right) e_{\mu}(t) + \sum_{\nu=1}^{k-1} \kappa_{\nu} \cos \theta_{\nu} a_{k+\nu}(t) - \kappa_{k} \sinh \theta_{k} a_{2k}(t)$$

Therefore, from equations (3.4) and (4.21) we find

$$\kappa = \sqrt{\left| \begin{array}{c} \sum_{\mu=1}^{k-1} \left[ \left( \sum_{\nu=1}^{k-1} \alpha_{\nu\mu} \cos \theta_{\nu} - \alpha_{k\mu} \sinh \theta_{k} \right)^{2} + \left( \kappa_{\mu} \cos \theta_{\mu} \right)^{2} \right] + \left( \kappa_{k} \sinh \theta_{k} \right)^{2}} \\ - \left( \sum_{\nu=1}^{k-1} \alpha_{\nu k} \cos \theta_{\nu} - \alpha_{kk} \sinh \theta_{k} \right)^{2} \right|}.$$

Substituting (4.20) and (4.22) into equation (3.10) completes the proof.  $\Box$ 

**Example 1.** In 3-dimensional Minkowski space  $\mathbf{R}_1^3$  let us define

$$\Phi(s,v) = \left(\sqrt{2}\cos s - 2\sqrt{2}v\sin s, \sqrt{2}\sin s + 2\sqrt{2}v\cos s, s + 3v\right)$$

to be the space-like base curve of 2-dimensional time-like ruled surface given by

$$\alpha\left(s\right) = \left(\sqrt{2}\cos s, \sqrt{2}\sin s, s\right)$$

and generating vector to be

$$e(s) = \left(-2\sqrt{2}\sin s, 2\sqrt{2}\cos s, 3\right)$$



where the time-like subspace  $E(t) = Sp\{e(t)\}$  is generating space of  $\Phi$ , (see Figure).

Velocity vector of base curve  $\alpha$  is

$$\dot{\alpha}(s) = \left(-\sqrt{2}\sin s, \sqrt{2}\cos s, 1\right).$$

Let us complete  $E(t) = Sp\{e(t)\}$  to orthonormal base  $\{e, a_2, a_3\}$  of  $\mathbf{R}_1^3$  as

$$a_{2}(s) = (-\cos s, -\sin s, 0), a_{3}(s) = (-3\sin s, 3\cos s, 2\sqrt{2}).$$

Derivative equations of these base vectors are found to be

$$\dot{e}(s) = 2\sqrt{2a_2}(s), \dot{a}_2(s) = 2\sqrt{2}e(s) - 3a_3(s), \dot{a}_3(s) = 3a_2(s).$$

Therefore, the Blaschke invariant of 2-dimensional time-like ruled surface  $\Phi$  and the distribution parameter are evaluated to be

$$b = \frac{\zeta}{\kappa} = -\frac{\sqrt{2}}{4},$$
$$P = \frac{\eta}{\kappa} = \frac{1}{2},$$

respectively. Thus, there is a relation between Blaschke invariant and distribution parameter of 2-dimensional time-like ruled surface  $\Phi$  as follows

$$b = \frac{1}{\eta}\zeta P = -\frac{\sqrt{2}}{2}P.$$

On the Blaschke invariants

**Example 2.** In 5-dimensional Minkowski space  $\mathbf{R}_1^5$ , let

$$\alpha\left(t\right) = \frac{1}{\varepsilon} \left(\kappa, \kappa^{2} \sinh \varepsilon t + \varepsilon \tau^{2} t, \tau, \kappa \tau \sinh \varepsilon t - \varepsilon \kappa \tau t, \kappa \varepsilon \cosh \varepsilon t\right)$$

be space-like base curve of 3-dimensional ruled surface given by

$$M(t, u_1, u_2) = \alpha(t) + \sum_{v=1}^{2} u_v e_v(t)$$

and time-like subspace  $E_{2}(t) = Sp\{e_{1}(t), e_{2}(t)\}$  be generating space for which

$$e_{1}(t) = \frac{1}{\varepsilon} \left( (\kappa + \tau), \sqrt{3}\kappa \sinh \varepsilon t, (\kappa - \tau), \sqrt{3}\tau \sinh \varepsilon t, \sqrt{3}\varepsilon \cosh \varepsilon t \right) \\ e_{2}(t) = \frac{1}{\sqrt{3}\varepsilon} \left( (\tau - \kappa), \kappa \cosh \varepsilon t, (\kappa + \tau), \tau \cosh \varepsilon t, \varepsilon \sinh \varepsilon t \right)$$

where  $\kappa$ ,  $\tau$  and  $\varepsilon = \sqrt{\kappa^2 + \tau^2}$  are arbitrary constants. Since  $\langle e_1, e_1 \rangle = -1$ , base vector  $e_1$  is time-like and since  $\langle e_2, e_2 \rangle = 1$ , base vector  $e_2$  is space-like. Velocity vector of base curve  $\alpha$  is

$$\dot{\alpha}(t) = \left(0, \kappa^2 \cosh \varepsilon t + \tau^2, 0, \kappa \tau \cosh \varepsilon t - \kappa \tau, \kappa \varepsilon \sinh \varepsilon t\right).$$

Therefore we can complete orthonormal base  $\{e_1(t), e_2(t)\}$  of generating space  $E_2(t)$  of M to orthonormal base  $\{e_1(t), e_2(t), a_3(t), a_4(t), a_5(t)\}$  of  $\mathbf{R}_1^5$  as

$$\begin{aligned} a_3\left(t\right) &= \frac{1}{\sqrt{6\varepsilon}} \left(-\left(\tau - \kappa\right), 2\kappa \cosh \varepsilon t, -\left(\kappa + \tau\right), 2\tau \cosh \varepsilon t, 2\varepsilon \sinh \varepsilon t\right), \\ a_4\left(t\right) &= -\frac{1}{\sqrt{2\varepsilon}} \left(\sqrt{3}\left(\kappa + \tau\right), 2\kappa \sinh \varepsilon t, \sqrt{3}\left(\kappa - \tau\right), 2\tau \sinh \varepsilon t, 2\varepsilon \cosh \varepsilon t\right), \\ a_5\left(t\right) &= \frac{1}{\varepsilon} \left(0, \tau, 0, -\kappa, 0\right). \end{aligned}$$

From these equations we get the following derivative equations

$$\begin{split} \dot{e}_1\left(t\right) &= \varepsilon e_2\left(t\right) + \sqrt{2}\varepsilon a_3\left(t\right),\\ \dot{e}_2\left(t\right) &= \varepsilon e_1\left(t\right) + \sqrt{\frac{2}{3}}\varepsilon a_4\left(t\right),\\ \dot{a}_3\left(t\right) &= \sqrt{2}\varepsilon e_1\left(t\right) + \frac{2}{\sqrt{3}}\varepsilon a_4\left(t\right),\\ \dot{a}_4\left(t\right) &= -\sqrt{\frac{2}{3}}\varepsilon e_1\left(t\right) - \frac{2}{\sqrt{3}}\varepsilon a_3\left(t\right),\\ \dot{a}_5\left(t\right) &= 0. \end{split}$$

Thus 1st and 2nd principal Blaschke invariants of 3- dimensional time-like ruled surface M are calculated to be

$$b_1 = 0 \quad , \quad b_2 = \frac{\kappa}{\sqrt{2}}$$

and 1st and 2nd principal distribution parameter are found to be

$$P_1 = \frac{\tau}{\sqrt{2}}$$
 ,  $P_2 = \sqrt{\frac{3}{2}}\tau$ .

Hence, there exists a relation between principal Blaschke invariants and distribution parameters of M as follows

$$b_1 = 0 P_1$$
 ,  $b_2 = \frac{\kappa}{\sqrt{3}\tau} P_2$ .

1-dimensional subspace  $E(t) = Sp\{e(t)\} \subset E_2(t)$  is either time-like or space-like subspace. Thus, 2-dimensional ruled surface  $\psi \subset M$  will be time-like or spacelike ruled surface according to whether  $E(t) = Sp\{e(t)\}$  is time-like or space-like subspace. Now let us calculate these two cases separately.

1. If  $E(t) = Sp\{e(t)\} \subset E_2(t)$  is time-like subspace, then

 $e(t) = \cosh \theta e_1 + \sinh \theta e_2 \quad , \quad \|e(t)\| = 1.$ 

Therefore, the Blaschke invariant of 2-dimensional time-like ruled surface  $\psi \subset M$  is found to be

$$b = \frac{\kappa \sinh \theta}{\sqrt{\left|9\cosh^2 \theta - \sinh^2 \theta\right|}}$$

2. If  $E(t) = Sp\{e(t)\} \subset E_2(t)$  is space-like subspace, then

 $e(t) = \cosh \theta e_1 + \sinh \theta e_2 \quad , \quad ||e(t)|| = 1.$ 

Therefore, the Blaschke invariant of 2-dimensional space-like ruled surface  $\psi \subset M$  is found to be

$$b = \frac{\kappa \sinh \theta}{\sqrt{\left|9\cosh^2 \theta - \sinh^2 \theta\right|}}$$

# References

- I. Aydemir, Time-like ruled surfaces in the Minkowski space R<sup>n</sup><sub>1</sub>, Int. J. Appl. Math. 10, 2 (2002), 149-159.
- [2] J. K. Beem, P.E. Ehrlich, *Global Lorentzian Geometry*, Marcel Dekker Inc. New York, 1981.
- [3] H. Frank, O. Giering, Verallgemeinerte Regelflachen, Math. Z. 150 (1976), 261-271.
- [4] H. Frank, O. Giering, Regelflachen mit Zentralchen, Math. Öster. Akad. Wiss., Wien Math-Naturwiss. Kl. Abst.II 187, 1978, 139-163.
- [5] H. Frank, O. Giering, Verallgemeinerte Regelflachen im Grassen II, Journal of Geometry Vol. 1, 23, 1984, 128-140.
- [6] O. Gursoy, On the Integral Invariants of a Closed Surface, Journal of Geometry 39 (1990), 80-91.
- S. Keles, R. Aslaner, E<sup>n</sup> de (k + 1) regle yuzeylerin Blaschke invaryantlari uzerine, Erciyes Universitesi, Fen Bilimleri Dergisi, 6, 1-2 (1990), 928-935.
- [8] O. Kose, Contribution to the theory of integral invariants a closed ruled surface, Mechanism and Machine Theory, 32 (1997), 61-77.
- [9] E. Nesovic, M. Petrovic-Torgasev, Some trigonometric relations in the Lorentzian plane, Kragujevac J. Math. 25 (2003), 219-225.
- [10] B. ONeill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [11] C. Thas, Properties of ruled surfaces in the Euclidean space E<sup>n</sup>, Bulletin of Institute of Math., Academia Sinica 6, 1 (1978).

- [12] M. Tosun, N. Kuruoglu, On (k + 1) dimensional time-like ruled surfaces in the Minkowski space R<sup>n</sup><sub>1</sub>, J. Inst. Math. Comput. Sci. Math., Ser. 11, 1 (1998), 1-9.
- [13] M. Tosun, I. Aydemir, On (k + 1) dimensional space-like ruled surfaces in the Minkowski space  $\mathbb{R}^{n}_{1}$ , Commun Fac. Sci. Univ. Ank., Ser.A1 Math. 46, 1-2 (1998), 27-36.
- [14] A. Turgut, H.H. Hacisalihoglu, Space-like ruled surfaces in the Minkowski 3-space, Commun. Fac. Sci. Univ. Ank., Ser. A1, Math. 46, 1-2 (1998), 83-91.
- [15] A. Turgut, H.H. Hacisalihoglu, *Time-like ruled surfaces in the Minkowski 3-space*, Tr. J. of Math., Tubitak, 22 (1998), 33-46.
- [16] V.D.I. Woestijine, Minimal surfaces of 3-dimensional Minkowski Space, Word Scientific Publishing, Singapore, 1990, 344-369.

Authors' addresses:

Murat Tosun, Soley Ersoy, Mehmet Ali Gungor Sakarya University, Department of Mathematics, Faculty of Arts and Sciences, Sakarya, Turkey. e-mail: tosun@sau.edu.tr, sersoy@sau.edu.tr, agungur@sau.edu.tr