
Stabilizing the chaotic dynamics of the Lü system

G. Tigan

Abstract. The chaotic dynamics of the Lü system introduced in [5] is
stabilized. First, we suppress the chaos stabilizing the dynamics of the
system to the unstable equilibria. Then, using a simple linear controller,
the system is driven to a stable state. The Lyapunov function method is
employed. Numerical illustrations are presented to support the analytical
results.
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§1. Introduction

In general, the chaotic oscillations in a physical system are harmful and sometimes
they can lead even to disasters. Chaotic behavior is observed in practical applications
of many fields, from engineering to biology and economics. In Physics it is studied the
control of turbulence, control of lasers, control of chaos in plasma, control of the dipole
domains. In Medicine study and treatment of cardiac arrythmia was among the most
promising among the early applications of chaos control. In Mechanics it is studied
the control of pendulums, beams, plates and so on. A survey on the applications
of the control of chaos is [1] which cites about 200 papers. Various mathematical
definitions of chaos are known, but all of them contain the property of ”sensitivity
to the initial conditions”, that is, roughly speaking, even small perturbations to the
initial conditions lead to divergent trajectories. Chaos can be suppressed using linear
or nonlinear feedback methods [2], [8], [6], [7], [3].

Consider the nonlinear n−dimensional differential system [3], n > 0,

ẋ = f(x), x ∈ M ⊆ Rn, f ∈ C1(Rn),(1.1.1)

assumed dissipative and having an unstable equilibrium point x0. Suppose that (1.1.1)
displays a chaotic dynamics. To control the chaotic dynamics to a stable state, con-
sider a control function u(t) := A(x−x0)+ g(x−x0, t), where A is a constant control
matrix, and g is a nonlinear vectorial control function. Define the controlled system
associated to the system (1.1.1) by:

ẋ = f(x) + A(x− x0) + g(x− x0, t).(1.1.2)
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Assume that g ∈ C1(Rn) and g(0, t) = 0 to ensure the existence and uniqueness of the
solution of the systems (1.1.1) and (1.1.2). It is clear that x0 is an equilibrium point of
the system (1.1.2). The control u(t) is chosen such that the trajectories of the system
(1.1.1) to converge to the unstable equilibrium point x0, i.e. limt→+∞ ‖x(t)−x0‖ = 0.
Applying the Taylor expansion on the right part in (1.1.2) around the point x0, we
get:

Ẋ = J(x0)X + h(X, A, t),(1.1.3)

where
X = x− x0, J(x0) = ∂f(X)

∂X |X=0, and h(X,A, t) is the Taylor rest. Suppose that
h(X,A, t) satisfies:
a) h(0, A, t) = 0;
b) h(X, A, t) and ∂h(X,A,t)

∂X are continue in a bounded neighborhood ‖X‖ < +∞;
c) lim‖X‖→+∞ ‖h(X,A, t)‖/‖X‖ = 0 uniformly in t ∈ [0, +∞).

Definition 1.1. The system (1.1.1) is said to be controlled to the unstable equi-
librium point x0, if the matrix A is chosen such that X = 0 is an equilibrium stable
point of the linearized system of the system (1.1.3).

The present work is organized as follows. In Section 1 we record some basic details
of the system under study. Section 2 describes the methods to control chaos to the
unstable fixed points, while Section 3 presents a linear feedback control of the system.
Numerical illustrations are presented in all three sections.

§2. Description of the system

The Lü system is a three-dimensional differential system given by:

ẋ = a(y − x)
ẏ = cy − xz(2.2.4)
ż = −bz + xy

where a, b, c ∈ R, a, b > 0, and it was introduced recently in [5]. In Fig.1 is presented
a chaotic attractor of the Lü system [13]. In the present work, we study the Lü system
in order to drive the chaotic dynamics of the system to a stable state.

If c > 0 the Lü system has three isolated equilibria O(0, 0, 0), A1 (x0, y0, z0),
A2 (−x0,−y0, z0),where x0 = y0 =

√
bc, z0 = c and it has only one isolated equilib-

rium O(0, 0, 0) if c ≤ 0.

Proposition 2.1. ( [13] ) The following statements are true :
a) if a > 0, b > 0 and c < 0, then O(0, 0, 0) is asymptotically stable,
b) if a > 0, b > 0 and c > 0, then O(0, 0, 0) is saddle,
c) if a > 0, b > 0 and 0 < c < (a+b)/3, then the equilibrium points A1,2 (±x0,±y0, z0)
are stable.

Observe that for some values of the parameters of the system the equilibrium
points can be unstable. In the next section we deal only with these cases.
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Figure 1: Chaotic attractor of the Lü system (2.2.4), corresponding to the parameters
(a, b, c) = (36, 3, 20) and the initial values (−1, 0.1, 4).

Proposition 2.2. ( [13] ) If c = (a+b)/3 the Lü system displays a Hopf bifurcation
at points A1,2.

A generalization of the Lü system has been recently considered in [10],[11],[12].

§3. Controlling chaos to unstable fixed points

In this section, using a feedback linear control we drive the chaotic trajectory
(x(t), y(t), z(t)) of the Lü system to a desired unstable equilibrium point (x0, y0, z0).

Assume that the controlled system associated to the Lü system is given by:

ẋ = a(y − x)− u1

ẏ = cy − xz − u2(3.3.5)
ż = xy − bz − u3

where u1, u2 and u3 are external laws of input and a, b, c > 0 are chosen such that
the all equilibrium points are unstable. It is known that in applications is more
desirable a simple control. So we consider here: u1 = k(x− x0), u2 = m(y − y0) and
u3 = n(z − z0), where (k,m, n) ∈ R3. Therefore, the system (3.3.5) leads to:

ẋ = a(y − x)− k(x− x0)
ẏ = cy − xz −m(y − y0)(3.3.6)
ż = xy − bz − n(z − z0).

The controlled system (3.3.6) has one equilibrium point (x0, y0, z0). The linear system
associated to the controlled system (3.3.6) about this equilibrium point is:

Ẋ = −(a + k)X + aY

Ẏ = −z0X + (c−m)Y − x0Z(3.3.7)
Ż = y0X + x0Y − (b + n)Z.
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Figure 2: The time series x(t) (left), y(t) (right) and z(t) (bellow) of the uncontrolled
system (2.2.4), corresponding to the parameters (a, b, c) = (2.1, 0.6, 30) and the initial
values (0.1,−0.3, 0.2). One can observe the irregular oscillations of the system.

Consider now the first unstable point (x0, y0, z0) = (0, 0, 0). Then system (3.3.7) leads
to:

Ẋ = −(a + k)X + aY

Ẏ = (c−m)Y(3.3.8)
Ż = −(b + n)Z.

Define in the following the Lyapunov function of the system (3.3.8) by:

V (X, Y, Z) =
X2 + Y 2 + Z2

2
.(3.3.9)

The function V satisfies:
i) V (0, 0, 0) = 0
ii) V (X, Y, Z) > 0 for X,Y, Z in the neighborhood of the origin, therefore V (X, Y, Z)
is positive definite. In addition, the time derivative of the function V is:

dV
dt = XẊ + Y Ẏ + ZŻ = −(a + k)X2 + aXY + (c−m)Y 2 − (b + n)Z2 =

= −
(√

a + kX − a
2
√

a+k
Y

)2

+ Y 2
(

a2

4(a+k) + c−m
)
− (b + n)Z2.

Hence the derivative dV
dt < 0 whenever,

a + k > 0,
a2

4(a + k)
+ c−m < 0, b + n > 0,(3.3.10)

i.e, dV
dt is negative definite under condition (3.3.10). Therefore, we have the proposi-

tion:
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Proposition 3.3. If the feedbacks k,m, n satisfy a + k > 0, a2

4(a+k) + c−m < 0 and
b + n > 0 then the equilibrium solution (0, 0, 0) of the controlled system (3.3.6) is
asymptotically stable.

For the second unstable point A1

(√
bc,
√

bc, c
)
, (for A2 is similar) system (3.3.7)

leads to:

Ẋ = −(a + k)X + aY

Ẏ = −cX + (c−m)Y −
√

bcZ(3.3.11)

Ż =
√

bcX +
√

bcY − (b + n)Z.

We choose the Lyapunov function for the system (3.3.11) given by:

V (X, Y, Z) =
c
aX2 + Y 2 + Z2

2
(3.3.12)

The function V satisfies:
i) V (0, 0, 0) = 0
ii) V (X, Y, Z) > 0 for X,Y, Z in the neighborhood of the origin, therefore V (X, Y, Z)
is positive definite. In addition, we have that the time orbital derivative of the func-
tion V is:

dV
dt = − c

a (a + k)X2 + (c−m)Y 2 +
√

bcXZ − (b + n)Z2 =

= −
(√

c
a (a + k)X −

√
ab

2
√

a+k
Z

)2

+ (c−m)Y 2 +
(

ab
4(a+k) − b− n

)
Z2.

Therefore the derivative dV
dt < 0 whenever,

a + k > 0, c−m < 0,
ab

4(a + k)
− b− n < 0,(3.3.13)

i.e dV
dt is negative definite under condition (3.3.13). Consequently, we get the second

proposition:

Proposition 3.4. If the feedbacks k,m, n satisfy a + k > 0, c−m < 0 and ab
4(a+k) −

b − n < 0, then the equilibrium solutions A1

(√
bc,
√

bc, c
)

of the controlled system
(3.3.6) is asymptotically stable.

§4. Linear feedback control

Consider in this section a simple controller u1(t) = kx, k ∈ R. Adding it to the
second equation of the system Lü, it leads to:

ẋ = a(y − x)
ẏ = (c− a)x− axz + kx(4.4.14)
ż = xy − bz
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The equilibrium points of the controlled system (4.4.14) are A(x0, y0, z0), where x0 =
y0 = z0 = 0 or x0 = y0 =

√
b(k + c), z0 = k + c if k + c > 0. The Jacobian matrix

associated to this system in A(x0, y0, z0) is :



−a a 0
k − z0 c −x0

x0 x0 −b


(4.4.15)

with the equation associated to the characteristic polynomial given by

λ3 + (a + b− c)λ2 +
(
x2

0 + ab + az0 − cb− ac− ak
)
λ− acb + 2x2

0a− akb + az0b = 0.

(4.4.16)

From Routh-Hurwitz conditions, this equation has all roots with negative real parts
if and only if A > 0, C > 0 and AB − C > 0 where A = a + b − c,B = x2

0 + ab +
az0 − cb − ac − ak, C = −acb + 2x2

0a − akb + az0b. Consider the first equilibrium
point O(0, 0, 0). Then from C > 0 and AB − C > 0 we get c + k < 0 and AB − C =
−a2k + cak + a2b− 2acb− a2c + ab2 − cb2 + c2b + ac2 > 0. Remark that if c + k < 0
the system does not possess another equilibrium point, so the system is completely
controlled to a stable state. Numerical illustrations can be seen in Fig.3.
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Figure 3: The time series x(t) (left), y(t) (right) and z(t) (bellow) of the controlled
system (4.4.14), corresponding to the parameters (a, b, c) = (36, 3, 20), the initial
values (0.1, 0.1, 0.1) and k = −6c

§5. Conclusions

Methods to suppress chaos in the Lü dynamical system were presented. First,
using the Lyapunov function method we stabilized the chaotic trajectories to the
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unstable fixed points. Then, by a linear control, the system is controlled to a stable
state. Analytical results are accompanied by numerical illustrations.
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