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Abstract. We study the availability analysis of two different series system
configurations with cold standby components and general repair times.
The time-to-failure for each of the primary components is assumed to be
exponentially distributed with parameter λ. This article gives a recursive
method using the supplementary variable technique and treating the sup-
plementary variable as the remaining repair time, to develop the steady-
state probability distribution of the number of working components in the
system. We obtain the explicit expressions for the steady-state availability
for two configurations and perform comparisons. For the two configura-
tions comparisons are made for specific values of distribution parameters.
The configurations are ranked based on availability (Av) for two various
repair time distributions: exponential and deterministic where benefit is
availability.
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§1. Introduction

In this article, we use a supplementary variable technique to study the availability
analysis of two different series system configurations with cold standby components.
The steady-state availability (Av) has widely been analyzed in the literature be-
cause of its prevalence in power plants, manufacturing systems and industrial systems.
Maintaining a high or required level of availability is often an essential requisite. A
standby component is called a cold standby if its failure is zero. Primary components
can be considered to be repairable.

The supplementary variable technique was first proposed by Cox (1955) and it
had been widely applied to the M/G/1 queueing system by Cohen (1969) Hokstad
(1975), Keilson and Kooharian (1960), Takacs (1963) and many others.

The problem considered in this paper is to find explicit expressions for the avail-
ability to series system with repair time distribution of the general type. We give a
recursive method using the supplementary variable technique and treating the supple-
mentary variable as the remaining repair time and develop the Avi for configuration
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i where i = 1, 2. Next, for each configuration the explicit expressions for the Av for
two different repair time distributions such as exponential (M) and deterministic (D)
are provided. Finally, we rank the two configurations for the Av based on assumed
numerical values given to the system parameters.

§2. Description of the system

We consider the requirements of a 30 MW power plant for the sake of discussions.
We assume that generators are available in units of 30 MW and 15 MW. We also as-
sume that standby generators are not allowed to fail while inactive before they put into
full operations. It is assumed that all switchover times are instantaneous and switch-
ing is perfect, e.g. primary components can be considered to be repairable. Suppose
that each of the primary components fails independently of the state of the others
and has an exponential time-to-failure distribution with parameter λ. Whenever one
of these components fails, it is immediately replaced by a cold standby component. It
is assumed that the time-to-repair of the components are independent and identically
distributed (i.i.d.) random variables having a distribution B(u) (u ≥ 0), a probability
density function b(u) (u ≥ 0) and mean service time.

If one component is in repair, then arriving failed components have to wait in the
queue until the server is available. Let us assume that failed components arriving at
the server form a single waiting line and are served in the order of their arrivals, i.e.
according to the first-come-first-served basis. Once a component is repaired, it is as
good as new. Suppose that the server can serve only one primary component at a
time, and that the server is independent of the arrival of components. We give below
the two configurations of the system.

We consider two configurations as follows. The first configuration is a series system
of one primary 30 MW component with one cold standby 30 MW component. The
second configuration is a series system of two primary 15 MW components and one
cold standby 15 MW component. The standby unit can replace either one of the
initially working units in case of failure.

§3. Availability analysis of the system

We use the following supplementary variable:
U = remaining repair time for the component under repair.
The state of the system at time t is given by
N(t) = number of working components in the system and
U(t) = remaining repair time for the component being repaired.
Let us define

Pn(u, t)du = Pr[N(t) = n, u < U(t) < u + du], u ≥ 0.

Pn(t) =
∫ ∞

0

Pn(u, t)du
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3.1 Availability for configuration

Relating the state of the system at time t and t + dt, we get

d

dt
P2(t) = −λP2 + P1(0, t)(3.1)

(
∂

∂t
− ∂

∂u
)P1(u, t) = −λP1(u, t) + λP2(u, t) + b(u)P0(0, t)(3.2)

(
∂

∂t
− ∂

∂u
)P0(u, t) = λP1(u, t).(3.3)

In steady-state let us define

Pn = lim
t→∞

Pn(t), n = 0, 1, 2 . . .

Pn(u) = lim
t→∞

Pn(u, t), n = 0, 1, 2 . . .

and further define

P2(u) = P2b(u)(3.4)

From (1)-(4), the steady-state equations are given by

0 = −λP2 + P1(0)(3.5)

− d

du
P1(u) = −λP1(u) + λP2(u)b(u) + P0(0)b(u)(3.6)

− d

du
P1(u) = λP1(u).(3.7)

From (1) it follows that

P1(0) = λP2.(3.8)

Define

B∗(s) =
∫∞
0

e−sudB(u) =
∫∞
0

e−sub(u)du

P ∗(s) =
∫∞
0

e−suPn(u)du

Pn = P ∗n(0) =
∫∞
0

Pn(u)du

and
∫ ∞

0

e−su d

du
Pn(u)du = sP ∗n(s)− Pn(0).
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Taking Laplace Stieltjes transforms on both sides of (6)-(7) and using (8) we obtain

(λ− s)P ∗1 (s) = P1(0)B∗(s) + P0(0)B∗(s)− P1(0)(3.9)

−sP ∗0 (s) = λP ∗1 (s)− P0(0).(3.10)

A recursive method is used to develop the steady-state solutions P ∗n(0), (n = 0, 1).
Put s = λ and s = 0 in (9) respectively to obtain

P0(0) =
λ[1−B∗(s)]

B∗(λ)
P2(3.11)

and

P ∗1 (0) =
P0(0)

λ
=

[1−B∗(s)]
B∗(λ)

P2.(3.12)

Differentiating (10) with respect to s and putting s = 0 finally gives

P ∗0 (0) = −λP
∗(1)
1 (0).(3.13)

Similarly, differentiating (9) with respect to s and putting s = 0 gives

λP
∗(1)
1 (0) = P ∗1 (0) + b1[P0(0) + P1(0)](3.14)

where b1 = −B∗(1)(0) denotes the mean repair time. From (13)-(14) we get

P ∗0 (0) = −P ∗1 (0)− b1[P0(0) + P1(0)](3.15)

and (11)-(12) on (15) gives finally

P ∗0 (0) =
P2

B∗(λ)
[b1λ− 1 + B∗(s)](3.16)

To find P2 we substitute (12) and (16) in the normalizing condition

P2 + P ∗1 (0) + P ∗0 (0) = 1

which yields

P2 =
B∗(λ)

[b1λ + B∗(λ)]
(3.17)

Thus

P ∗0 (0) =
λb1 − 1 + B∗(λ)

b1λ + B∗(λ)
.(3.18)

For configuration 1, the explicit expressions for the Av1 is given by

Av1 = 1− P ∗0 (0) =
1

b1λ + B∗(λ)
.(3.19)
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3.1.1 Special cases

We present two special cases for two different repair time distributions such as expo-
nential (M) and deterministic (D). The explicit expressions for Av1 for two different
repair time distributions such as exponential and deterministic are given in the fol-
lowing cases.

Case 1: The repair time has exponential distribution. We set the mean repair
time b1 = 1

µ , where µ is the repair rate. In this case, we have B∗(s) = µ
µ+s . From

(19) the explicit expression for the Av1(M) is given by

Av1(M) =
µ(λ + µ)

(λ)2 + µ(λ + µ)
(3.20)

Case 2: The repair time distribution is deterministic. We set the mean repair time
b1 = 1

µ , In this case, we have B∗(s) = e
s
µ . Hence it follows from (19) that the explicit

expression for the is Av1(D) is given by

Av1(D) =
µ

λ + µe−
λ
µ

.(3.21)

3.2 Availability for configuration 2

Following the same procedure given in the section that analyzes the configuration 1
case, we set up the steady-state equations as follows.

0 = −2λP3 + P2(0)(3.22)

− d

du
P2(u) = −2λP2(u) + 2λP3b(u) + P1(0)b(u)(3.23)

− d

du
P1(u) = 2λP2(u)(3.24)

where we define

P3(u) = P3b(u).(3.25)

From (22) we have

P2(0) = 2λP3.(3.26)

Taking Laplace Stieltjes transforms on both sides of (23)-(24) and using (26) we have

(2λ− s)P ∗2 (s) = P2(0)B∗(s) + P ∗1 (s)B∗(s)− P2(0)(3.27)

−sP ∗1 (s) = 2λP ∗2 (s)− P1(0).(3.28)

Put s = 2λ and s = 0 in (27) we get

P ∗1 (0) =
2λ(1−B∗(2λ))

B∗(2λ)
P3(3.29)
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and

P ∗2 (0) =
(1−B∗(2λ))

B∗(2λ)
P3.(3.30)

Differentiating (28) with respect to s and putting s = 0 we get

P ∗1 (0) = −2λP
∗(1)
2 (0).(3.31)

Similarly differentiating (27) with respect to s and putting s = 0 we obtain

2λP
∗(1)
2 = P ∗2 (0)− b1[P2(0) + P1(0)].(3.32)

As well, from (31)-(32) we infer that

P
∗(0)
1 = −P ∗2 (0) + b1[P2(0) + P1(0)].(3.33)

Using (26) and (29)-(30) we yield

P ∗2 (0) =
(1−B∗(2λ))

B∗(2λ)
P3

with

P ∗1 (0) =
2λb1 + B∗(2λ)− 1

B∗(2λ)
P3.(3.34)

In order to find P3, we use (30) and (34) in the normalizing condition

P3 + P ∗2 (0) + P ∗1 (0) = 1

to give

P3 =
B∗(2λ)

2λb1 + B∗(2λ)
.(3.35)

Hence from (34) we obtain

P ∗1 (0) =
2λb1 + B∗(2λ)− 1

B∗(2λ)
.(3.36)

Thus for configuration 2, the explicit expression for the Av2 is given by

Av1 = 1− P ∗0 (0) =
1

2b1λ + B∗(2λ)
.(3.37)

3.2.1 Special cases

For configuration 2, we consider two special cases for two different repair time distrib-
ution such as exponential (M) and deterministic (D). We give the explicit expression
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for the Av2(M) and Av2(D) for two different repair time distributions: exponential
and deterministic respectively.

Av2(M) =
2µλ + (µ)2

4λ2 + 2λµ + (µ)2
(3.38)

Av2(D) =
µ

2λ + µe−
2λ
µ

.(3.39)

§4. Comparison of the two configurations

4.1 Comparison of the availability

In this section, the computer software, e.g. MATLAB is used to compare the two
configurations in terms of their Avi (i=1, 2) for two different repair time distributions:
exponential and deterministic.

We first perform a comparison for the Av of the configuration 1 and 2 when the
repair time distribution is exponential or deterministic. We choose µ = 1.5 and vary
the values of λ from 0.2 to 1.6. Numerical results of the Avi(M) and Avi(D) for
configuration i(i = 1, 2) are shown for cases 1 and 2 respectively. Next, we perform a
comparison for the Av of the configurations 1 and 2 when the repair time distributions
is exponential or deterministic. We choose λ = 0.2 and vary the values of µ from 0.5
to 3. Numerical results of the Avi(M) and Avi(D) for configuration i(i = 1, 2) are
shown for cases 1 and 2 respectively.

For the case of exponential distribution with 0.2 < λ < 1.6, Av1(M) > Av2(M).
Here in both the configurations availability decreases.

For the deterministic case with 0.2 < λ < 1.6, Av1(D) > Av2(D). Here also in
both the configurations availability decreases.

Similarly, for the case of exponential distribution with 0.5 < µ < 3, Av1(M) >
Av2(M). Here in both the configurations availability increases.

Again, in the case of deterministic distribution with 0.5 < µ < 3, Av1(D) >
Av2(D), with the same result as in case 1.

§5. Conclusion

In this article, we have first used the supplementary variable technique to develop
the steady-state availability, Av of two different series system configurations with
cold standby components and general repair times. Next, for each configuration, we
present the explicit expressions for the Av for two various repair time distributions
such as exponential (M) and deterministic (D). Finally we rank the two configura-
tions based on the availability Av for two various repair time distributions.
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