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Abstract. Finite element investigations have been carried out to con-
struct composite solutions of transport problems. A variational principle
K+

λ has been implemented numerically, which admitted the use of discon-
tinuous trial functions at the interfaces of regions. The spatial variations
of the angular flux have been modeled by finite elements, while Legendre
polynomials have been utilized to represent the directional dependence.
A computer code has been written for one group multi-regions problems
in one dimension. Different orders of angular approximations have been
employed for the angular flux to reduce computing time. The compos-
ite solutions are compared with the exact solutions as well as with the
conventional continuous finite elements solutions.
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§1. Introduction

Neutron transport problems have been solved in various different ways by using
finite element method ([3], [4], [11], [14]). A weighted residuals approach is adopted
in some formulations, while in others, variational approaches are considered. Euler-
Lagrange, bi-linear functionals and generalized least squares methods are variational
methods. The generalized least-squares method for neutron transport problems was
given by Ackroyd [3]. Already established and new extremum principles can be gen-
erated by this method for both steady state and time dependent transport problems.
This method was also used to generate variational principles for both first and second
order forms of neutron transport equation [1].
The exact solution of the neutron transport equation for angular flux is a continuous
function of position and direction variables. However, in many practical situations
steep or even abrupt changes in the angular flux can be encountered. For example,
at a point on the interface of different media, the angular flux is not continuous for
directions lying in the tangential plane to the interface. In a strongly heterogeneous
medium, Martin and Duderstadt [8] have shown that substantial discontinuities exist
at for various interfaces. The gradient of flux may be very steep at certain interfaces,
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e.g. at an interface between a source and a strong absorber. Such abrupt changes may
better be predicted with the help of discontinuous finite elements. Another advantage
of the use of discontinuous finite elements is that different orders of angular approxi-
mations may be used on the two sides of an interface. In such cases diffusion theory
can be applied in those regions where transport effects are not prominent, while trans-
port calculations can be performed with finer elements meshes in particular regions.
Wilson [14] used discontinuous finite elements in principle, which employs both even
and odd parity fluxes. A maximum principle has been developed by Ackroyd [2] which
admits both continuous and discontinuous finite elements for the even parity form of
the neutron transport equation. This principle not only ensures a global particle bal-
ance for the whole domain, but also gives a detailed balance on region by region scale
if used in conjunction with a discontinuous approach. It employs a penalty parameter
to control the jumps in the angular flux at element interfaces. In this paper principle
is used to obtain composite solutions for neutron transport problems with the help
of discontinuous finite elements. Lagrange interpolation functions have been used as
spatial trial functions and Legendre polynomials for angular representation.

§2. Theoretical background

The neutron transport process is governed by a first order integro-differential
equation called Boltzmann Transport Equation. The distinguishing features of the
transport process are the large mean free paths and less frequent collisions compared
to small mean free paths and more frequent collisions of the particles in the diffusion
process.

2.1 Second Order Even-Parity Transport Equations

The first order neutron transport equation in its steady state one energy group form
can be written as:

Ω · ∇φ + σ(r)φ(r, Ω) =
∫

4π

dΩ′σs(r, Ω′ → Ω)φ(r, Ω′) + s(r, Ω)(2.1)

where φ(r, Ω) is the angular flux, σ(r) is the total macroscopic cross-section,
σs(r, Ω′ → Ω)is the differential form of the macroscopic scattering cross-section and
s(r, Ω) is the rate of production of source neutrons.
In most practical applications, the scattering collisions have got rotational symmetry,
i.e. the scattering cross-section is independent of the incident and scattered directions,
but depends upon the cosine of the angle between the two directions. Thus:

σs(r, Ω′ → Ω) = σs(r, Ω′ · Ω) = σs(r, µ0)(2.2)

Therefore, the scattering kernel can be expanded in terms of Legendre polynomial as:

σs(r, µ0) =
∞∑

l=0

(
2l + 1

4π

)
σsl(r)Pl(µ0)(2.3)
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where Pl(µ0) is the Legendre polynomial of order l and the scattering coefficient σsl

is given by the orthogonality of Legendre Polynomials as:

σsl = 2π

+1∫

−1

dµ0σs(r, µ0)Pl(µ0)(2.4)

Thus within group steady-state neutron transport equation can be written as,

Ω · ∇φ(r, Ω) +
∞∑

l=0

(
2l + 1

4π

)
σl(r)

∫

4π

dΩ′φ(r, Ω′)Pl(Ω′ · Ω) = s(r, Ω)(2.5)

where

σl(r) = σ(r)− σsl(r)(2.6)

The second order forms of the transport equation are obtained by splitting the angular
flux φ(r, Ω) into even- ψ(r, Ω) and odd-parity χ(r, Ω) components, defined by:

ψ(r, Ω) = 1
2 [φ(r, Ω) + φ(r,−Ω)]

χ(r, Ω) = 1
2 [χ(r, Ω)− χ(r,−Ω)](2.7)

and the even- and odd-parity sources are defined as:

s±(r, Ω) =
1
2

[s(r, Ω)± s(r,−Ω)](2.8)

These parity fluxes and sources are substituted into the first order transport equation
to obtain the mixed parity equations:

Ω · ∇χ(r, Ω) + Hψ(r, Ω) = s+(r, Ω)
Ω · ∇ψ(r, Ω) + G−1χ(r, Ω) = s−(r, Ω)(2.9)

where the leakage G and removal H operators are defined as:

Gf(r, Ω) =
∑

lodd

(
2l+1
4π

)
σ−1

l (r)
∫
4π

dΩ′f(r, Ω′)Pl(Ω′ · Ω)

Hf(r, Ω) =
∑

leven

(
2l+1
4π

)
σl(r)

∫
4π

dΩ′f(r, Ω′)Pl(Ω′ · Ω)
(2.10)

Both the operators G and H and their inverse G−1 and H−1 are both self-adjoint
and positive definite. Second order equations for the even-parity flux ψ(r, Ω) can be
obtained from the (2.9) and are given by:
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−Ω · ∇G[Ω · ∇ψ] + Hψ(r, Ω) = s+(r, Ω)− Ω · ∇G[s−(r, Ω)](2.11)

This equation is called even-parity transport equation. This parity flux is in general
subjected to bare surface, perfect reflector, surface with source and interface surface
type boundary conditions. These conditions along with their illustrations are listed
in Table (1).

Table 1: Boundary Conditions for the Even-Parity Transport Equation

Surface Type Boundary Condition

Bare Surfacea ψ0 + G [s− − Ω · ∇ψ0] = 0 for Ω · n < 0
Sb ψ0 −G [s− − Ω · ∇ψ0] = 0 for Ω · n > 0

Surface Ss with ψ0 + G [s− − Ω · ∇ψ0] = T (r, Ω) for Ω · n < 0
source T (r, Ω) ψ0 −G [s− − Ω · ∇ψ0] = T (r, Ω) for Ω · n > 0

Perfect Reflectorb ψ0(r, Ω) = ψ0(r, Ω∗)
Spr G [s−(r, Ω)− Ω · ∇ψ0(r, Ω)− s−(r, Ω∗) + Ω∗ · ∇ψ0(r, Ω∗)] = 0

Inreface Surfacec ψ0(r, Ω) and G [s− − Ω · ∇ψ0] are continuous
Si ∩ Sj for Ω · ni 6= 0

an is an outward normal to the exterior surface
bΩ∗ is the reflected direction to the incident direction Ω
cni is the outward normal to the surface Si

2.2 K+[ψ], a variational principle admitting continuous trial
functions

K+[ψ] principle is a maximum principle for solving even parity neutron transport
equation. This principle admits trial functions which are continuous in space and
angular variables. The variational functional K+[ψ] can be written as:

K+[ψ] = 2F+
s [ψ]− F+[ψ, ψ](2.12)

In particular, for one dimensional slab geometry, with a surface source T (r, Ω) and
with an isotropic fixed source, the functionals F+[ψ1, ψ2] and F+

s [ψ1] can be written
as:

F+ [ψ1, ψ2] = 2π
b∫

a

dx
+1∫
−1

dµ
[
µ∂ψ1

∂x Gµ∂ψ2
∂x + ψ1Hψ2

]

+ 2π
+1∫
−1

dµ |µ| [laψ1(a, µ)ψ2(a, µ) + lbψ1(b, µ)ψ2(b, µ)]

+ 2π
+1∫
−1

dµ |µ| [kaψ1(a, µ)ψ2(a, µ) + kbψ1(b, µ)ψ2(b, µ)]

(2.13)
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F+
s [ψ1] = 2π

b∫
x=a

dx
+1∫
−1

dµ
[
ψ1s

+ + µ∂ψ1
∂x Gs−

]

+ 4π
+1∫
−1

dµ |µ| [kaψ1(a, µ)T (a, µ) + kbψ1(b, µ)T (b, µ)]
(2.14)

where (b− a) is the thickness of the slab. Also la = 0 for a perfect reflector Spr and
la = 1 for a bare surface, and vice versa. Also ka = 0 for surface without source and
ka = 1 for a surface with a source.

2.3 K+
λ [ψ], a variational principle admitting continuous trial

functions

The K+
λ [ψ] functional admits trial functions which are in general discontinuous across

the interfaces of the elements. Maximum principle is written as:

K+
λ [ψ] = K+ [ψ]

−




λ+
∫

∪(Si∩Sj)

∫
4π

{Ω · ni [ψ(ri, Ω)− ψ(rj , Ω)]}

G {Ω · ni [ψ(ri, Ω)− ψ(rj ,Ω)]} dΩdS





≤ F+ [ψ0, ψ0] + 1
λ+

∫
∪(Si∩Sj)

dS
∫
4π

dΩχ0G
−1χ0

(2.15)

where λ+ is a positive number called penalty parameter, and is used to control the
jump discontinuity [ψ(ri, Ω)−ψ(rj ,Ω)] at an interface Si∩Sj . The proof and deriva-
tion of the K+

λ [ψ] maximum principle is given elsewhere [7][8]. For the particular case
of one dimensional slab geometry, this principle can be written as:

K+
λ [ψ] = K+ [ψ]

− λ+
∑Nf

i=1

+1∫
−1

dµ {µ [ψ(xi, µ)− ψ(xj , µ)]}G {µ [ψ(xi, µ)− ψ(xj , µ)]}

(2.16)

where Nf is the number of interfaces.

§3. The finite element formulation

3.1 Finite element trial functions for even-parity angular flux

The spatial domain is first of all discretized into a finite number of sub-domains
called finite elements. The spatial dependence of the even-parity angular flux is
represented in terms of the nodal values of the flux and the finite element shape
functions. Also even order Legendre polynomials have been used to represent the
directional dependence of the even-parity flux respectively. This representation is
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equivalent to an odd PN method [9]. The even parity flux can thus be approximated
by the trial functions ψ(x, µ) as:

ψ(x, µ) = BT (x)⊗QT (µ)ψ(3.17)

3.2 Finite element trial functions for spatial domain

The spatial domain is discretized into E elements. Each element has Ne nodes (which
can vary from region to region). The angular moments ψl(x) for even-parity are then
expanded in terms of a linear combination of spatial basis Be

i (x) for elemente and
the nodal values. Thus the even-parity angular moments ψl(x) can be written for an
element e as:

ψe
l (x) = BeT (x)ψe

l
(3.18)

Element shape functions Bi(x) can be represented in various different ways. In case
of Lagrange polynomial interpolation, the shape function Bi(x) can be written as

Be
i (x) =

Ne∏

k=1,k 6=i

(x− xk)
(xi − xk)

(3.19)

3.3 The discretized K+ functional

The maximum principle given by K+ functional admits continuous trial functions.
The trial functions are forced to obey the continuity condition at the interfaces be-
tween the regions. Substitution of the even parity trial function from (3.17) into K+

functional (2.12) gives us the discretized K+ functional:

K+[ψ] =
E∑

e=1

K+e(ψ) =
E∑

e=1

{2F+e
s [ψ]− F+e[ψ,ψ]}(3.20)

and later maximization of the local functional K+e[ψ] with respect to the unknown
coefficient ψe vector gives the following local set of simultaneous linear algebraic
equations:

Aeψe = Be(3.21)

where Ae is the element stiffness matrix and Be is the element source vector. Ae is a
symmetric matrix. For all the elements apart from the boundary elements, its general
form is given by:

Ae = Se
3 ⊗A3 + Se

2 ⊗A2(3.22)
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while for the boundary elements it can be written as:

Ae = Se
3 ⊗A3 + Se

2 ⊗A2 + liS
e
4 ⊗A4 + kiS

e
4 ⊗A4(3.23)

where li = 0 for a perfect reflector and li = 1 for a bare surface. ki = 0 for surface
without source and ki = 1 for surface with a source. Also the element source vector
can be written as,

Be = Se
1 ⊗A1 + kiS

i
1 ⊗Ai

1(3.24)

The Se
i matrices contain all spatial integrations and are dependent only on the type of

the element being used. Similarly, all angular integrations are grouped in Ai matrices,
which depend on the material properties and the order of angular approximation being
used. The definitions of both spatial and angular matrices are given in Table (2).

Table 2: Angular and Spatial Matrices

Matrix Definition

A1

+1∫
−1

s+(x, µ)Q(µ)dµ

A2

N−1∑
leven

(
2l+1

2

)
σl

+1∫
−1

Pl(µ)Q(µ)dµ
+1∫
−1

Pl(µ)QT (µ)dµ

A3

N∑
lodd

(
2l+1

2

)
σ−1

l

+1∫
−1

Pl(µ)Q(µ)dµ
+1∫
−1

Pl(µ)QT (µ)dµ

A4 2
+1∫
0

µQ(µ)QT (µ)dµ

Se
1

x2∫
x1

Be(x)dx

Se
2

x2∫
x1

Be(x)BeT (x)dx

Se
3

x2∫
x1

dBe

dx
dBeT

dx dx

Se
4 Be(xi)BeT (xi)dx, xi is the boundary node

Following the general finite element modeling technique, all the local systems of equa-
tions are assembled to form the global set of algebraic equations:

Aψ = B(3.25)

where A is the global stiffness matrix and the B is the global source vector. In
this case the global system is obtained by forcing the continuity of the trial function
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at element interfaces and making use of element connectivity. The global matrix
A is a diagonally dominant, symmetric and banded matrix. The symmetric and
diagonally dominant properties of the global matrix are due to the self-adjoint and
positive definite nature respectively of the operator G and H used in the even parity
formulation of the problem. These features ensure the stability and convergence of
the solution. A banded system is obtained because each element in the finite element
grid is connected to only to its neighbouring elements. Because of the banded and
symmetric nature of the global matrix, only the upper half band of the matrix is
needed to be stored, thus reducing the computer storage requirements.

3.4 The discretized K+
λ functional

K+
λ functional admits not only the continuous but also discontinuous trial functions.

The discontinuous trial functions do not have to obey the continuity condition at the
region interfaces. In the work presented, discontinuities are considered at all inter-
faces between adjoining regions.
These types of discontinuities at adjoining interfaces have the advantage that differ-
ent orders of angular approximations can be considered in different regions. In one
dimensional slab geometry, discretized K+

λ functional can be written as:

K+
λ [ψ] = K+e[ψ]−

Nf∑

i=1

Ii[ψ(xi, µ)](3.26)

where Nf is the number of interfaces and the interfatial functional Ii is given by

Ii[ψ(xi, µ)] = λ+
i

∫ +1

−1

{µ[ψ(xi−, µ)− ψ(xi+, µ)]}G{µ[ψ(xi−, µ)− ψ(xi+, µ)]}dµ

(3.27)

Equation (3.27) is the interfacial functional. Substitution of the even parity trial
function (3.17) into (3.26) gives the local system of equations for element e and an
interfacial system of equations for interface I. The local stiffness matrix obtained
in this case is the same as that obtained in case of K+ principle. The interface
matrix Ai

f is obtained by substituting the trial function into the interfacial functional
Ii[ψ(xi, µ)]. The global system of equations is obtained by assembling the local and
interfacial systems of equations, which can be represented by:

(A + Af )ψ = B(3.28)

The global matrix A + Af obtained in this case is also banded, symmetric and diag-
onally dominant.

3.5 Determination of Integral Quantities of Interest

After the even parity flux becomes known, the integral quantities of interest can be
determined as follows,
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• Element Flux Integral: This can be determined by integrating over the whole
size of the element and over all possible directions,

Ie =
∫ xe

2

xe
1

dx

∫ +1

−1

dµφ0(x, µ) =
∫ xe

2

xe
1

dx

∫ +1

−1

dµψ0(x, µ) = Se
1 ⊗ 2π

∫ +1

−1

QeT (µ)dµψe

(3.29)

• Element Capture Rate: Once the element flux integral becomes known, ele-
ment capture rate can be determined by taking its product with the absorption
cross-section for that element,

Ce = (σe − σe
s0)I

e(3.30)

• Element Average Scalar Flux: This is given by dividing Ie by the size of
the element,

φe = Ie/(xe
2 − xe

1)(3.31)

• Element Source Input: The rate of production of source neutrons in the ele-
ment (for fixed source problems) is obtained by multiplying the element source
strength with the element size,

Se = S(xe
2 − xe

1)(3.32)

• Net Element Current: The net current at a point x in the direction of the
x-axis is,

J0(x) = 2π

∫ +1

−1

µG

[
s− − µ

∂ψ0

∂x

]
dµ(3.33)

The net current out of an element is then determined by calculating the difference,

Je
0 = J0(xe

2)− J0(xe
1)(3.34)

§4. Numerical results

The comparative study of continuous and discontinuous finite elements is emphasized
in this section. The overall computational procedure of the code is shown in the form
of a flow diagram in Fig.1. The established K+ principle for even parity transport
equation has been used for the continuous formulation, while the maximum principle
K+

λ has been utilized for the discontinuous approach.
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4.1 A homogeneous slab of a pure absorber

This problem is used by Splawski [13] in a study of the effectiveness of K+ variational
principle for the even parity angular flux. A homogenous slab with thickness 1.0cm,
σa = 1.0 , TA = 1, TB = 0 and S = 0 is considered. The problem is solved by
discretizing the region into 20 linear elements and using different orders of PN ap-
proximations. The results reproduced for scalar flux by using K+ principle are shown
in Fig. (2). The same problem was also run for a discontinuous mesh comprising of
20 linear elements using K+

λ principle. Therefore, in applying K+
λ principle, P5,7,9

approximation is used in system. Fig. (3) shows the percentage errors in different
even parity solutions with respect to the exact solution. As indicated by Figs. (2)
and (3) P5,7,9 discontinuous solution is in very good agreement with P9 continuous
solution. Comparison of the overall integral quantities obtained in the continuous and
discontinuous approaches is given in Table 3.

Table 3: Comparison of Integral Quantities for Homogeneous Slab of a Pure Absorber

Quantity Exact K+ Principle K+
λ

Angular Approx. P9 P5,9

Absorption Rate R 0.3903 0.3925 0.3926
Flux at x = 0 1.0 0.9786 0.9796
Flux at x = 1 0.1485 0.1477 0.1449

Net Current at x = 0 0.5 0.5022 0.5019
Net Current at x = 1 0.1097 0.1098 0.1093

Neutron balance 0 4.1828E-05 7.5626E-5

4.2 Repeating lattice cell problems

A thermal nuclear reactor core can be considered to be made up of an assembly of
fuel-moderator lattice cells. A schematic diagram for a two region lattice cell problem
in slab geometry is illustrated in Fig. (4). The material properties of the fuel and the
moderator regions, along with there width are given in Table 4.

Problem 1: A test problem In this problem a unit neutron source is considered
in one half 0.0 ≤ x ≤ 1.0 of the lattice cell, while a zero source is assumed in the
second half 1.0 ≤ x ≤ 2.0. The problem is solved with 20 linear elements. P1,
P3, P5, P7, P9 and a composite P5,9 solution for the scalar flux are obtained and
compared with the exact solution (see Fig. (5)). K+

λ principle is used to obtain
the P5,9 composite solution. The angular flux in this problem is most anisotropic
at the point x = 1.0cm because of the change in the source. Therefore, in applying
K+

λ principle a higher order P9 approximation is used in the region 0.1 ≤ x ≤ 1.8
while a lower order P5 approximation is used for the rest of the system. Fig. (6)
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Table 4: Material Properties for Repeating Lattice Cell Problem

Region Parameter Problem 1 Problem 2
Test Case Strong Absorber

σs(cm−1) 0.37 1.00
Fuel σa(cm−1) 0.44 9.00

Width a(cm) 1.00 1.00
σs(cm−1) 0.37 1.00

Moderator σa(cm−1) 0.44 9.00
Width a + b(cm) 2.00 2.00

also shows the percentage errors in different even parity solutions with respect to the
exact solution. As indicated by Figs. (5) and (6) P5,9 discontinuous solution is in
very good agreement with P9 continuous solution. Table 5 shows the comparison of
the integral quantities obtained by both continuous and discontinuous finite elements.
This problem was solved exactly by Wilson [14].

Table 5: Comparison of Integral Quantities for Lattice Cell Test Problem

Quantity K+ Principle K+
λ

Angular Approx. P9 P5,9

Average Flux 1.1364 1.1364
Capture Rate 1.0 1.0
Source Input 1.0 1.0

Surface Leakage 5.6352E-06 6.0100-09
Neutron balance 5.6352E-06 2.0099-09

Problem 2: A strong absorber lattice cell problem In this problem a medium
with large absorption cross section is considered. In the first half of the slab 0.0 ≤
x ≤ 1.0cm a uniform source of neutron is considered which is producing neutrons
isotropically at the rate of 10n−cm−3−s−1 . The second half 1.0 ≤ x ≤ 2.0 of the slab
is strong absorber. A 20 element continuous and discontinuous finite element solutions
are compared with the exact solution by Wilson [14] (Fig. (7)). Discontinuous solution
is in very good agreement with continuous and exact solutions. The comparison of
the integral quantities obtained by both continuous and discontinuous approaches is
given in Table 6.
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Table 6: Comparison of Integral Quantities for a Strong Absorber Lattice Cell Prob-
lem

Quantity K+ Principle K+
λ

Angular Approx. P7 P3,7

Average Flux 5.5560E-01 5.5560E-01
Capture Rate 10 10
Source Input 10 10

Surface Leakage 5.0122E-06 2.1675-03
Neutron balance 5.0122E-06 2.1675-03

4.3 Multi-layered shield problem

A multi-layered shield problem with a symmetry about x = 0 is considered here. In
this problem, there are two layers of fuel materials, two layers of reflecting materials
and two layers of thermal and biological shields. The material properties are given
in Table 7. The geometry of the problem is shown in Fig. (8). A spatial mesh of 52
linear elements was used for continuous K+ and discontinuous K+

λ principles. The
scalar flux falls off very rapidly (almost exponentially) in this case as the distance
is increased from the center of the core. Use of a P1 approximation throughout the
problem domain gives very poor results, especially near the bare surface boundary.
Thus higher order angular approximations were found to be necessary to predict
the scalar flux near the bare surface. This problem has been solved exactly for the
scalar flux by Galliara [9]. As the order of angular approximation is increased in the
continuous formulation, the solution converges (see Fig. (9)). For the discontinuous
approach, the angular approximations used in the regions were P1 , P3 , and P7. The
composite solution obtained in this manner agrees very well with continuous results
(see Fig. 7). The comparison of the integral quantities obtained by both continuous
and discontinuous approaches is given in Table 8.

Table 7: Material Properties for Multi-Layered Shield Problem

Region Total Cross Section Scattering Cross Section Source Strength
σ(cm−1) σs(cm−1) s (arbitray units)

Fuel 1 0.0732 0.0 1.907× 106

Fuel 2 0.0732 0.0 1.209× 106

Reflector 1 0.0732 0.0 0.0
Reflector 2 0.0772 0.0 0.0
Iron/Steel 0.1102 0.0 0.0
Concrete 0.07987 0.0 0.0
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Table 8: Comparison of Integral Quantities for Multi-layered Shield Problem

Quantity K+ Principle K+
λ

Angular Approx. P7 P1,3,7

Average Flux 1.0347E+07 1.0347E+07
Capture Rate 2.7533E+08 2.7533E+08
Source Input 2.7533E+08 2.7533E+08

Surface Leakage 4.0195E-02 4.3187E-02
Neutron balance 6.6362E-02 7.1639E-02

4.4 Reed’s edge cell problem

The edge cell problem provides a good test of methods because of different regions
have different material properties. Thus in some regions it is necessary to use a
high order angular approximation. Suitable composite angular approximations can
be chosen for different regions. The edge cell consists of multi-regions with symmetric
boundary conditions on the edge only. A four region edge cell with an air-gap is
studied using the spatial finite element technique.
This one dimensional slab geometry problem was first studied by Reed [12] using
discrete ordinate method. Solution suffered from oscillations in the scalar flux due
to the ray effects. Galliara [9] employed K+ principle to solve this problem using
finite elements for spatial variables and Legendre polynomials for angular variables.
Smooth results were obtained in this case when mesh refinements were made near
material interfaces. These results have been reproduced here in this paper with the
computer code which employs the same strategy for continuous approach. The results
thus obtained are then compared with the new discontinuous approach implemented
using K+

λ principle. A discontinuous finite element solution was obtained by Wilson
[14] using non-conforming finite elements. He used K+− variational principle, which
employs both even and odd-parity fluxes. In the present scheme only even-parity flux
is being used, thus reducing the number of unknowns by at least one half as compared
to K+− principle.
The geometry of the problem is shown in Fig. (10). The cell is made up of five
regions, material properties of which are given in Table 9. The edge cell problem
provides a strenuous test for the numerical approximation methods due to presence
of strong heterogeneities in the material properties of various regions in the cell over
very small distances. A spatial mesh of 58 linear elements was used for continuous
K+ and discontinuous K+

λ principles (see Fig. (11)). Higher order angular approxi-
mations were used in regions where the transport effects are more prominent, while
lower order approximations were found to be sufficient in the remaining regions. A
P3 approximation is chosen in region 5 where the angular flux is fairly anisotropic.
The angular flux in regions 2 and 4 is highly anisotropic and therefore also highly
anisotropic in region 3 (the air gap). Therefore, P7 approximation is adopted in these
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regions. A P1 approximation with only two elements in 0.0 ≤ x ≤ 1.9 region of
the fuel material was found to be sufficient to estimate the correct scalar flux. The
scalar flux of this problem was calculated using FN method by Garcia and Siewert
[10]. The comparison of the integral quantities by both continuous and discontinuous
approaches is given in Table 10.

Table 9: Material Properties for Edge Cell Problem

Region Total Cross Section Scattering Cross Section Source Strength
σ(cm−1) σs(cm−1) s (arbitray units)

Fuel 50.0 0.0 50.0
Clad 5.0 0.0 0.0

Air gap 1× 10−3 0.0 0.0
Moderator 1 1.0 0.9 1.0
Moderator 2 1.0 0.9 0.0

Table 10: Comparison of Integral Quantities for Edge Cell Problem

Quantity K+ Principle K+
λ

Angular Approx. P7 P1,3,7

Average Flux 9.5360E-01 9.5620E-01
Capture Rate 1.0087E+02 1.0087E+02
Source Input 1.0100E+02 1.0100E+02

Surface Leakage 1.3150E-01 1.3157E-01
Neutron balance 1.6408E-04 1.7499E-04

§5. Conclusions

In this paper a variational formulation of the even parity transport equation has been
presented for solving neutron transport problems using discontinuous finite elements
approach. Numerical simulations have been carried out in Matlab r©to test the vari-
ational scheme. Both continuous and discontinuous finite element options have been
implemented to solve one dimensional slab geometry, one group fixed source problems.
The spatial dependence of the even-party angular flux has been modeled using finite
elements and directional dependence has been expanded in terms of even Legendre
moments. Composite solutions were obtained by varying the order of angular ap-
proximations in different parts of the system. It was found that a P1 approximation
could be employed in regions where the angular flux was almost isotropic and give
an accurate solution. A high order PN approximation is adopted in regions of highly
anisotropic angular flux. Several one group slab geometry problems were solved nu-
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merically. Results were found to be in excellent agreement with analytical results as
well as with conventional continuous finite element method results.
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Figure 1: Flow chart of the code for even-parity Boltzmann transport equation
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Figure 2: Even parity solutions (scalar flux) using K+ and K+
λ principles for homoge-

nous slab of pure absorber

Figure 3: Percentage error for homogenous slab of pure absorber with respect to exact
solution

Figure 4: Geometry of two region lattice cell problem
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Figure 5: Even parity solutions (scalar flux) using K+ and K+
λ principles for lattice

cell test problem

Figure 6: Percentage errors for lattice cell test problem with respect to the exact
solution
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Figure 7: Scalar flux using K+ and K+
λ principles for strong absorber lattice cell

problem

Figure 8: Geometry of for multi-layered shield problem

Figure 9: Even parity solutions (scalar flux) using K+ and K+
λ principles for multi-

layered shield problem
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Figure 10: Geometry of for edge cell problemn

Figure 11: Even parity solutions (scalar flux) using K+ and K+
λ principles for edge

cell problem
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