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Abstract. This paper investigates the use of a variance reduction, called
importance sampling, for Monte Carlo methods in the case of the stochas-
tic volatility model for option pricing introduced by Hobson and Rogers
(1998). We briefly recall that a European call option contract gives the
right, but not the obligation, to buy a specific amount of a given stock
or index at a specified price (strike price) in a specified time (maturity);
we show some evidence on the call options on MIB30 Italian Index to
verify the performance of the importance sampling in a complete stochas-
tic volatility model. In Monte Carlo method the price of a call option
is obtained as the average value of the simulations of a large number of
independent, uniform variates (prices) by means of pseudo-random num-
ber generators. It is shown, finally, that variance is dramatically reduced
meaning that numerical techniques introduced for variance reduction have
still a lot to say.
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§1. Introduction

Variance reduction methods represent a relevant contribution of stochastic cal-
culus in finance because they improve convergence in Monte Carlo simulations in a
stochastic volatility environment. The pricing of options often requires the applica-
tion of Monte Carlo simulation methods because in many cases it does not exist a
closed formula in a stochastic volatility framework and the numerical solution of the
associated partial differential equation may be too complicated. The main goal of the
present paper is to apply one of the most common methods for variance reduction,
called importance sampling (more details in [9] and [10]), to a complete model for
stochastic volatility introduced by Hobson and Rogers in1998 (see [7]). We find that
the variance reduction allows for a better performance of the model in terms of the
Monte Carlo approximations of option prices.

This paper is the fourth of a series of papers devoted to the analysis of Hobson and
Rogers model, a model that we consider relevant because of its property of maintaining
completeness of the market, of taking advantage of the recent past history of a stock
price and of capturing stylized facts like kurtosis and skewness in distributions.
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In Figà-Talamanca and Guerra (see [1]) we compare Hobson and Rogers model
with Garch model and bivariate stochastic volatility models showing the high perfor-
mance of the complete one in many cases: several maturities, many types of options,
shorter or longer time to maturity and moneyness values far or near to one.

In Guerra and Sorini (see [6]) we test the robustness of some numerical procedures
adopted to calibrate the Hobson and Rogers model: the numerical scheme to solve all
the stochastic differential equations involved, the quadrature formula to approximate
the integral and the number of simulations in Monte Carlo method. Recently in Figà-
Talamanca and Guerra (see [2]) we introduce an econometric procedure to evaluate
the feedback parameter of Hobson and Rogers model and we test the relevance of
the feedback in pricing some new dataset of options traded in financial markets. We
expect to conclude our research in the Hobson and Rogers environment with the
research now in progress that is about the computation of Value at Risk and of
hedging strategies within the cited model.

Contents of paper are organized as follows: in section 2 we present briefly a general
framework of variance reduction methods and in particular the importance sampling
approach that we apply to Hobson and Rogers model in section 3. Some empirical
tests are performed via some data time series of call options on MIB30 Italian index
traded in 2002; selected results are collected in section 4. In section 5 we present
closing observations trying to focus on the challenging aspects of the paper.

§2. Variance Reduction Method

When dealing with variance reduction methods it is possible to distinguish proce-
dures into two classes: in the first one the methodology mainly consists in changing
the underlying probability measure using the Girsanov transformation, in the second
class the variance reduction takes advantage of the Monte-Carlo integration theory.
Here we focus our attention on the second class because in a stochastic volatility sce-
nario we generally compute option prices via Monte Carlo method but a summary of
the most common techniques can be found in [5].

The general framework was mainly introduced by Newton (see [9]) and it can be
described as follows. Given an Ito process X that satisfies the stochastic equation:

Xt = X0 +

t∫

0

b (s,Xs) ds +
m∑

j=1

t∫

0

σj (s,Xs) dW j
s(2.1)

a time discrete approximation Y of X to evaluate functional of the following form:

E [f (XT )](2.2)

where f is a given function, can be deduced.
The expectation E [f (XT )] can be computed on a fixed finite time interval [0, T ]

via a Monte Carlo method.
When applying Euler scheme as follows:

X
h

p+1 = X
h

p + b

(
X

h

p

)
h + σ

(
X

h

p

)
(W ((p + 1) h)−W (ph))(2.3)
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where h is a discretization step, a large number N of independent realizations of the
Gaussian sequence

W ((p + 1) h)−W (ph) =
(4h

p+1W,p ∈ N)
(2.4)

has to be simulated.
For each discretization step we get N independent realizations of X

h

p , that are

denoted by X
h

p (ωi) , and we compute:

∼
µ =

1
N

N∑

i=1

f

(
X

h

p (ωi)
)

.(2.5)

A well known result for the estimation in (2.2) is that the estimation error:

∼
µ = ηN − E [f (XT )]

is asymptotically Gaussian distributed with mean zero and variance:

V ar
(∼
µ
)

=
1
N

V arf

(
X

h

p (ωi)
)

The length of the confidence interval decreases only with order N− 1
2 as N → +∞,

so to obtain small confidence interval it is necessary to begin with a small variance

in the random variable f

(
X

h

p (ωi)
)

; a good way to proceed is to fix the variance of

f

(
X

h

p (ωi)
)

to a value which is as close as possible to the variance of f (XT ) .

It often happens that the variance of f (XT ) is very large, this fact depends only on
the form of f and on the stochastic differential equation and it suggests the possibility
of constructing estimators with the same expectation and smaller variance.

By the strong law of large numbers the expression (2.5) gives an approximate

value of E
[
f

(
X

h

p (ωi)
)]

. The choice of the number of the independent realizations

to perform the Monte Carlo computation depends on the desired accuracy. In practice

a good way to proceed is to estimate the maximal value of the variance of f

(
X

h

p

)

by simulating a small number N0 of sample paths of
(

X
h

p

)
and then to simulate

N −N0 other samples to approximate E
[
f

(
X

h

p

)]
with a better accuracy. But this

is just the critical point of the procedure because Monte Carlo algorithms converges
slowly and in practice N must be large, in particular when the variance of f (Xt)
increases with t. Any Monte Carlo method for evaluating the expectation of functional
of the solution of a general SDE produce two kinds of error: the first error depends
on the discretization scheme and it can be reduced by applying an higher order of
convergence scheme like Milstein or Kloeden and Platen (more and rich details in [8]).
The second error is implicit in the Monte Carlo procedure.
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Newton in 1994 (see [9]) develops several variance reduction techniques for the
Monte Carlo integration of functional of the solutions of Ito’s SDE; in particular he
deepens importance sampling (see [10]) that allows variance reduction arising from
the Monte Carlo integration of f : R.d × C

(
[0, T ] ;R.d

) → R with respect to the
multidimensional Wiener measure.

Fouque and Tullie (see [4]) apply the importance sampling developed by Newton
in the case of European call options in a stochastic volatility scenario with two sources
of randomness. Fouque and Tullie use an approximation of the option price obtained
by a fast mean-reversion expansion and they find out that the method is numerically
efficient in particular when a skew is present in the time series. The authors suggest
many interesting generalizations to Asian options like barrier options and to models
that account for jumps in volatility or in the underlying. Fouque and Han (see [3])
investigate in a very recent paper the importance sampling under two-factor stochastic
volatility model and for Asian options.

Given an n−dimensional stochastic process which dynamic is given by:

dPt = Ptα(t, Pt)dt + Ptσ(t, Pt)dWt(2.6)

with the usual property for drift and diffusion coefficients and for Brownian motion
under P, it is possible to define a function:

u (t, p) = E [φ (PT ) | Pt = p]

where φ (p) is a real function; in the next it will be the payoff of a European call
option.

A Monte Carlo simulation is based on the following approximation of the function
u (t, p):

u (t, p) ≈ e−r(T−t)

N

N∑

i=1

φ
(
P

(i)
T

)
(2.7)

where P (i) are independent realizations of the process. The variance reduction method
is based on the research of some functions h (t, p) that produce a smaller variance for
the Monte Carlo approximation we are going to describe, than the variance in (2.7).

The fundamental idea is to find a probability measure equivalent to P, called Q
such that the new process Qt satisfies:

(QT )−1 =
dQ
dP

(2.8)

where:

Qt = exp





t∫

0

h (s, Ps) dWs +
1
2

t∫

0

‖h (s, Ps)‖2 ds



(2.9)

and h (t, Pt) is a square integrable W−adapted process.
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Under the new measure Q the two processes Pt and Qt can be rewritten in terms
of the following Brownian motion

W̃t = Wt +

t∫

0

h (s, Ps) ds(2.10)

and they become:

dPt = Pt (α(t, Pt)− σ(t, Pt)h (t, Pt)) dt + Ptσ(t, Pt)dW̃t(2.11)

Qt = exp





t∫

0

h (s, Ps) dW̃s − 1
2

t∫

0

‖h (s, Ps)‖2 ds



(2.12)

The function u (t, p) under Q becomes:

u (t, p) = EQ [φ (PT ) QT | Pt = p]

and it can be approximated by the following Monte Carlo simulation:

u (t, p) ≈ 1
N

N∑

i=1

φ
(
P

(i)
T

)
Q

(i)
T(2.13)

Importance sampling consists finally in finding functions h (t, Pt) such that

EQ [φ (PT )QT | Pt = p] = EP [φ (PT ) | Pt = p](2.14)

but a smaller variance is obtained under Q than under P.
If u (t, p) were known then the choice for h that gives zero variance is:

h = − 1
u

σT 5 u

where 5u is the gradient of u with respect to the state variable p.

§3. A Complete Stochastic Volatility Model

An option contract gives the right, but not the obligation, to buy (call option) or
sell (put option) a specific amount of a given stock, commodity, currency, index, or
debt, at a specified price (strike price) at a specified time (fixed maturity for European
options). Each option has a buyer, called the holder, and a seller, known as the writer.
If the option contract is exercised, the writer is responsible for fulfilling the terms of
the contract by delivering the shares to the appropriate party. In the case of a security
that cannot be delivered such as an index, the contract is settled in cash. For the
holder, the potential loss is limited to the price paid to acquire the option. When
an option is not exercised, it expires. No shares change hands and the money spent
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to purchase the option is lost. For the buyer, the upside is unlimited. The costs
of trading options is higher on a percentage basis than trading the underlying stock
because they protect from market risks.

Option pricing models in continuous time are generally introduced in a simple
setting in which only one risky asset (a stock) is available. They describe the stock
price dynamics by means of a stochastic differential equation (SDE) of the following
type:

dPt = α(t, Pt)dt + σ(t, Pt)dWt(3.15)

where Pt is the stock price at time t and σ is the so called volatility of the price
process.

Each model is characterized by the functional form of α and σ; for example, in
Black and Scholes model, α and σ are constant. Note that in most cases the stochastic
differential equation in (3.15) is autonomous (i.e. α and σ do not depend explicitly
on time).

The models which take into account random volatility can be divided into two
broad classes: the level dependent approach, where volatility is considered as a func-
tion of the stock price level Pt, (i.e. σ(t, Pt) = σ(Pt)), and the exogenous stochastic
volatility (SV) approach, where another SDE is introduced to describe the randomness
of the volatility process, which is driven by a second source of risk.

Hobson and Rogers model (see [7]) can be viewed as a good compromise between
the level-dependent and the SV approaches; the random volatility σ may depend on
the entire path of the stock price Pt by introducing a feedback effect into the volatility
process itself. By this way the volatility process becomes more flexible without any
need of new source of randomness.

In addition, the Hobson and Rogers market is complete: every contingent claim
is attainable in the market and its price is obtained by equilibrium or no-arbitrage
arguments. Roughly speaking, market completeness is guaranteed when the number
of stocks and sources of randomness is the same.

More precisely, Hobson and Rogers specify the volatility as a function of a vector
of state variables

(
X

(1)
t , X

(2)
t , ..., X

(m)
t

)
, which are called offsets, defined as follows:

X
(m)
t =

∞∫

0

νe−νu (Zt − Zt−u)m
du(3.16)

where Zt is the discounted log-price process defined as:

Zt = log
{
e−rtPt

}
(3.17)

and ν is a positive constant parameter referred to as the feedback parameter. A
crucial point in the calibration of Hobson and Rogers model is the estimation of the
feedback parameter ν: Figà-Talamanca and Guerra (see [2]) suggest an econometric
procedure for the estimation of the feedback parameter based on the analysis of the
autocorrelation function of the quadratic yields and we present an extensive analysis
on calibration of Hobson and Rogers model showing that it has a high capability
in fitting real markets. The empirical evidence is based on the time series of call
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options on CAC40 index in 1999 (MONEP French market) and on MIB30 index in
2002 (IDEM Italian market).

The capability of Hobson and Rogers model to capture option prices is highlighted
in Figà-Talamanca and Guerra (see [1]) in terms of comparison with some important
stochastic volatility models like GARCH models and stochastic volatility models with
two sources of risk.

The state variables in (3.16) represent the exponentially weighted moments of the
historical logreturns according to different time scales. In practice the logreturn for
the time interval (t − u, t) becomes less significant in the definition of the offsets as
long as the time-lag u increases; the feedback parameter ν represents the rate at which
past information on logreturns is actually discounted.

The process Zt solves the following SDE:

dZt = α(X(1)
t , X

(2)
t , ..., X

(m)
t )dt + σ(X(1)

t , X
(2)
t , ..., X

(m)
t )dWt(3.18)

where α () and σ () are Lipschitz functions and σ () is strictly positive.
Hobson and Rogers compute the option price by numerically solving a PDE subject

to some boundary condition. To reduce the complexity of the model, volatility is
allowed to depend only on the first order offset (hence X

(1)
t = Xt) with the following

functional dependence:

σ (Xt) = inf
{

η
√

1 + εX2
t ,M

}
(3.19)

where M is large constant that guarantees the function σ to be bounded. Hobson
and Rogers show that the simple setting (3.19) accounts for the possibilities of smiles
and skews in the implied volatility structure; in particular, the size of the smile in the
term structure of volatility is directly related to the parameter ε and inversely to the
parameter ν (larger values of ν are associated with a shorter half-life lookback period).
The estimation of the two other parameters η and ε relies on the minimization of the
mean quadratic error between the volatility specification in (3.19) and a filtered time
series for the volatility process; different results are achieved according to different
filtering methodologies as in Figà-Talamanca and Guerra (see [2]).

In Hobson and Rogers model, the importance sampling technique to reduce vari-
ance, described in the previous section, can be applied as follows. Equation (3.18)
can be rewritten in the following way:

dZt = αXtdt + η
√

1 + εX2
t dWt(3.20)

where Xt is the offset that in this simpler setting becomes an autonomous diffusion
satisfying the SDE:

dXt = (α(Xt)− νXt) dt + σ(Xt)dWt(3.21)

with

Zt = log
{
e−rtPt

}
= Z0 + (Xt −X0) + ν

t∫

0

Xudu(3.22)
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The price of a call option at time zero is computed by:

P (0, p) = EP
[
e−rT φ (p) | P0 = p

]
(3.23)

where φ (p) = (p−K)+ .

It is then possible to apply the property in (2.10) to obtain W̃t that admits the
density (QT )−1 = dQ

dP .; under the new measure (3.23) becomes:

P (0, p) = EQ
[
e−rT φ (p)QT | P0 = p

]
(3.24)

First of all it is necessary to find an approximation of P (t, p), then it is possible
to determine h (t, p) in order to approach the quantity in (3.24) via Monte Carlo
simulations described in (2.13).

In Guerra and Sorini (see [6]) a robustness analysis is carried on with respect of
several aspects of numerical procedures implemented in the calibration of the model.
One of these aspects is to find out the minimum good number of simulations to
perform Monte Carlo method: they find that this number is equal to 10000.

In details P can be determined in many ways, Fouque and Tullie suggest the
small noise expansion and the fast mean-reversion expansion but they do not show
any empirical example.

A second way to compute option price is based on the solution of a Partial Differ-
ential Equation associated to the model, we only give a flavour of the latter method
because we do not show any empirical evidence by numerically solving a PDE; the
following transformations must be introduced:

P = eZ

U = Z −X

with the interest rate r taken to be zero and the strike price K taken to be 1, the
option pricing problem must be solved for

V = V (Zt, Ut, T − t; η, ε, ν)

where V satisfies the PDE:

Vt =
1
2
σ (z − u)2 [Vzz − Vz] + ν (z − u) Vu(3.25)

subject to the boundary condition

V (Z, U, 0) =
(
eZ − 1

)+
=

(
eln(Pe−r) − 1

)+

= (P − 1)+

A numerical solution of (3.25) must be implemented because of the difficulty to
derive analytical properties of the explicit solution. In Hobson and Rogers paper it
is not written how they estimate their option prices, probably they apply a finite
difference scheme or use numerical integration to solve (3.25).

§4. Evidence on IDEM Market
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In IDEM market, options on the MIB30 Italian index are of the European type
and six maturities are available.

The estimates of the feedback that we finally take as an input for calculating
model option prices are obtained mostly from the naive estimation results for the
autoregressive order.

In Figà-Talamanca and Guerra (see [2]) we find out that the so-called E-CEMY
calibration gives the best results with respect of the other estimation approach; it
consists in obtaining a value of the feedback via an econometric procedure and then
in calibrating the Hobson and Rogers volatility model finding the estimation of two
additional parameters.

Estimation on historical time series is considered with daily observation frequency
from December 1996 to March 2002 for the MIB30 Index.

The estimation results are then used to compute model option prices on January
23rd, February 20th and March 20th,2002. A comparison of model and market prices
provides a test of Hobson and Rogers model performance in the computation of option
prices and thus in fitting the implied volatility smile shown by market data.

Strike Market BS(relative error) E-CEMY(relative error)

30000 1907 0.035 0.019
31000 1211 0.070 0.163
31500 771 0.321 0.156
32000 531 0.476 0.150
32500 340 0.735 0.115
33000 201 1.116 0.251
33500 120 1.604 0.174
34000 65 2.381 0.221
35000 26 2.908 0.175

Variance 1.0611 0.0042

(A)

In Table A we collect call options on MIB30 index traded on January, 23rd, 2002,
with a time to maturity of 23 days, a feedback parameter ν = 12.6 corresponding to a
lookback period of 750 observations. Nine strike prices were available and we report
market prices together with Black and Scholes relative errors and E-CEMY relative
errors again. The variance for each method of pricing is also reported. Note that we
obtain E-CEMY prices via Monte Carlo method with 10000 simulations and we apply
the variance reduction in this case.

Maturity Variance Variance Reduction
30 0.0458 0.0234
58 0.0134 0.0065
93 0.0224 0.0089
184 0.00282 0.00013

(B)

In Table (B) we show the effects of the variance reduction for call options on
MIB30 index traded on March, 20th, 2002, with four different maturities written in
days and a feedback parameter ν = 12.6.
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Feedback Variance Variance Reduction
22.9 0.0903 0.00676
19.38 0.0852 0.00432
15.75 0.0768 0.00211
14 0.0767 0.00194

12.6 0.0616 0.00086
11.45 0.0348 0.00064
10.96 0.0092 0.00031

(C)

In Table (C) we show the effects of the variance reduction for call options on
MIB30 index traded on February, 20th, 2002, with 23 days to maturity and all the
values of the feedback parameter. On this day fifteen strike prices were available
ranging from 28500 to

36000.

Feedback Variance Variance Reduction
22.9 0.0976 0.0323
19.38 0.0675 0.00762
15.75 0.0573 0.00537
14 0.0467 0.00308

12.6 0.0213 0.00113
11.45 0.0098 0.00021
10.96 0.0065 0.00015

(D)

In Table (D) we show the effects of the variance reduction for call options on
MIB30 index traded on January, 23rd, 2002, with 51 days to maturity and all the
values of the feedback parameter. On this day twelve strike prices sharing the same
maturity were available, ranging from 31000 to 41000.

In Figure (1) all empirical results are collected for all strike prices in the three
trading days in 2002: January, 23rd, February, 20th, March, 20th. The variance and
reduced variance are the mean values in all cases depending on the different values of
time to maturity ranging from one months to a period longer than one year. Obviously
the sets of time to maturity are disjoint and < 90 days means a period from 60 to 90
days to maturity. As observed before the variance reduces as long as time to maturity
increases.

§5. Conclusions

In the stochastic volatility environment of a complete market importance sampling
can be used to reduce sensibly the variance in Monte Carlo simulations for options
prices. In the case of call option prices on MIB30 Italian index traded in 2002 we
show that the variance of relative errors can be reduced in all cases by varying the
time to maturity, the feedback value (measuring the look back period) and the trading
day. More tests on data are important to validate the methodology; in particular by
choosing different kind of options and more liquid financial markets. Numerical tech-
niques for variance reduction have probably to be improved but preliminary results
are still satisfactory.
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Figure 1: All matuirites and all strikes for three trading days; feedback corresponding
to 750 past observations.
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