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Abstract. In an endogenous growth model with marginal product of cap-
ital minus population growth rate monotonically decreasing in capital, we
show that the economy has a unique balanced growth path (BGP) equi-
librium which is saddle-point stable. Moreover, along a BGP path, when
all exogenous factors are controlled for, there exists a negative relation
between fertility growth and economic growth as well as between fertility
and environmental quality.
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§1. Introduction

Economists have been interested in dynamic problems since at least the works of
Evans [6], Hotelling [8] and Ramsey [11] in the 1920s. However, it was only after the
1960s that dynamic mathematical techniques were widely introduced into economics.
The methodology used by classical mathematicians, known as the calculus of varia-
tions, has since been generalized in two ways. First, by Bellman [4] who developed the
method of dynamic programming. Second, by Pontryagin et al. [10] who developed
the Maximum principle of optimal control, which furnishes a set of necessary condi-
tions for optimality. In general, these conditions are not sufficient for maximization,
unless certain concavity conditions are satisfied. It was showed by Arrow [2] that if
the maximized current-value Hamiltonian is concave in state variables, given co-state
variables, then the first order conditions, together with a transversality condition, are
necessary and sufficient to characterize the maximum.

In this paper we consider a model with an endogenous fertility choice, where the
number of children enters directly into the utility function of consumers, along with
consumption and environmental quality. In this regard, we employ the standard prac-
tice of the literature on optimizing real growth models with endogenous fertility, see
e.g. [3], [5], [9], [14], and [15]. Since there is an endogenous fertility choice, the pro-
duction possibilities set is not convex. In other words, with the population growth
rate n, as a control variable, nonlinearities and nonconvexities are introduced into
the budget constraint, and so the sufficiency of the necessary conditions are not guar-
anteed. To assure it, some restrictions have to imposed. The assumption that the
marginal product of capital minus the population growth rate is a monotone decreas-
ing function of the capital stock provides a condition for that. Within this framework,
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we prove that there exists a unique balanced growth path (BGP) equilibrium, which
is saddle-point stable. Furthermore, an analysis of the relationship between fertility
and economic growth, as well as between fertility and environmental quality, along a
BGP equilibrium shows the existence of an inverse relationship between them when
all exogenous factors are controlled for. This work generalizes Germanà and Guer-
rini’s paper [7] through the assumption of a more general utility function, technology,
and time cost of child-rearing.

§2. The model

We consider a closed economy inhabited by identical agents who are infinitely
lived. Agent’s preferences are represented by an instantaneous utility function u
which depends on per capita consumption c, on population growth rate n, and on
environmental quality E, that is u(c(t), n(t), E(t)), where t is a time index. The
insertion of the fertility rate into the utility function of the representative agent allows
fertility to be endogenously chosen. Given a zero growth death rate and the absence
of immigration, the fertility rate coincides with population growth.

Each agent has access to a technology described by a production function f such
that

y = f(k, k̄l),(2.2.1)

where y, k, l denote respectively output, capital and time spent producing goods, all
in per capita terms. In (2.1) time index has been dropped to simplify the notation.
The average stock of capital, k̄ > 0, yields an externality such that in equilibrium,
when k = k̄, the production function is linear in accumulating stock of capital as
in Romer [12]. The function f is assumed to be twice continuously differentiable,
linearly homogeneous, strictly increasing and strictly concave with respect to k and l,
and such that the Inada conditions hold. Observe that a consequence of the constant
returns to scale assumption on f is that fkl > 0.

Each agent is endowed with a unit of time that can be allocated either to child-
rearing φ(n) or to labor l, that is

φ(n) + l = 1.(2.2.2)

The function φ(n) is postulated to be twice continuously differentiable, strictly in-
creasing in n, with φ(0) = 0 and φ(1/δ) = 1, where 1/δ > 0 represents the fertility
limit which agents can reach. The second derivative of φ(n) can be of either sign, im-
plying that the marginal time cost of taking care of children can be either increasing,
constant, or decreasing. For any given value of k we impose that the opportunity cost
of children in terms of output, φ′(n)fl(k, k̄(1− φ(n))) + k, is strictly increasing in n,
that is

φ′′(n)fl(k, k̄(1− φ(n)))− k̄(φ′(n))2fll(k, k̄(1− φ(n))) > 0.(2.2.3)

This condition is automatically fulfilled if there is a constant or increasing marginal
cost of child rearing, that is if φ′′(n) ≥ 0.

Environmental quality, which is measured by the rate of deforestation, is assumed
to have a finite upper bound. Hence, E is negative being measured by the difference
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between the actual level and this upper limit. As in Aghion and Howitt [1], we
suppose that there exists a finite lower limit for E, say Emin, under which there will
be a catastrophe. Thus, Emin ≤ E ≤ 0. The evolution of environmental quality is
described by

.

E = −ηE − θn,(2.2.4)

where η ∈ (0, 1) characterizes the capacity of natural regeneration of the environment,
θ > 0 measures the importance of the environmental destruction due to demographic
pressures, and a dot over the variable E denotes time derivative.

Regarding the utility function u, we assume that it is additively separable in
consumption, on the one hand, and fertility and environmental quality, on the other,
that is

u(c, n, E) = ln(c) + v(n,E).

The function v is postulated to be nonnegative, twice continuously differentiable,
strictly increasing and strictly concave in its arguments, with the partial derivative
vn increasing in E, and such that

lim
n→0

vn(n,E) = ∞, lim
n→1/δ

vn(n,E) < ∞,

and

lim
E→0

vE(n,E) = 0, lim
E→Emin

vE(n, E) < ∞.

Given the initial capital stock, k(0) > 0, the representative agent seeks to maxi-
mize the following intertemporal utility function

∞∫

0

u(c, n,E) e−ρtdt

subject to the constraints (2.2), (2.4) and the flow budget constraint

c +
.

k + nk = f(k, k̄l).(2.2.5)

ρ > 0 denotes the constant rate of time preference. To derive the necessary conditions
for an optimal policy, we apply the Pontryagin maximum principle. The current-value
Hamiltonian is defined as

H(c, n, k, E, λ, µ) = u(c, n, E) + λ[f(k, k̄(1− φ(n)))− nk − c] + µ[−ηE − θn],

where µ and λ denote the co-state variables associated with the constraints (2.4) and
(2.5), respectively. Maximizing H with respect to c and n yields

Hc = 0 ⇒ c−1 = λ(2.2.6)
Hn = 0 ⇒ vn(n,E) = λ[k̄φ′(n)fl(k, k̄(1− φ(n))) + k] + µθ(2.2.7)
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where a subindex denotes the variable with respect to which the partial derivative is
taken.

¿From the Pontryagin maximum principle, we also obtain the following differential
equations, which govern the behaviour of λ and µ,

.

λ = ρλ−Hk ⇒
.

λ = ρλ− λ[fk(k, k̄(1− φ(n)))− n](2.2.8)
.
µ = ρµ−HE ⇒ .

µ = (ρ + η)µ− vE(n,E)(2.2.9)

plus the transversality condition at infinity

lim
t→∞

(e−ρtλk + e−ρtµE) = 0.(2.2.10)

Equations (2.6) − (2.10) constitute the set of necessary conditions for the optimum.
In order to proceed our analysis, we will express the variables c and n in terms of k,
E, λ, and µ. From (2.6) it is immediate that

c = c(λ).(2.2.11)

Next, we set

F (n, k, E, λ, µ) = vn(n,E)− λk̄φ′(n)fl(k, k̄(1− φ(n)))− λk − µθ.(2.2.12)

¿From (2.7) we find that F (n, k, E, λ, µ) = 0. Since

(2.2.13) Fn(n,X, E, µ) = vnn(n,E)

− λk̄[φ′′(n)fl(k, k̄(1− φ(n)))− k̄(φ′(n))2fll(k, k̄(1− φ(n)))] < 0,

an application of the Implicit function theorem yields

n = n(k, E, λ, µ) and F (n(k, E, λ, µ), k, E, λ, µ) = 0.(2.2.14)

Assumption (2.3) together with ucc < 0 ensure that the Hessian of the current-value
Hamiltonian is negative definite with respect to c and n, which is a sufficient condition
for a maximum of H. We define the maximized current-value Hamiltonian as

(2.2.15) H0(k, E, λ, µ) = max
c,n

H(c, n, k, E, λ, µ)

= H(c(λ), n(k, E, λ, µ), k, E, λ, µ).

Replacing c and n in (2.15) with their expressions derived in (2.11) and (2.14), we
have

H0(k, E, λ, µ) = ln c(λ) + v(n(k,E, λ, µ), E) + λ[f(k, k̄(1− φ(n(k, λ, µ))))
− n(k, E, λ, µ)k − c(λ)] + µ[−ηE − θn(k, λ, µ)].

Differentiating the latter with respect to k, and using (2.6) and (2.7), we obtain

H0
k(k, E, λ, µ) = λ[fk(k, k̄(1− φ(n(k, E, λ, µ))))− n(k, E, λ, µ)].(2.2.16)
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Proposition 1. The first order necessary conditions for optimality are also sufficient
if the marginal product of capital minus the population growth rate is monotonically
decreasing in k, that is if

∂

∂k
[fk(k, k̄(1− φ(n)))− n] < 0.(2.2.17)

Proof. Assumption (2.17) together with (2.16) imply that H0(k, E, λ, µ) is concave
with regard to k, given E, λ and µ. Moreover, as

H0
EE(k,E, λ, µ) = vEE(n,E) < 0,

it is also concave with respect to E. An application of Arrow’s theorem [2] gives the
result.

§3. Equilibrium and stability analysis

In this section we introduce the variable X = c−1k and use the equilibrium con-
dition k = k̄. Recalling that if a function is homogeneous of degree 1, then its first
partial derivatives are homogeneous of degree 0, we have that (2.12) and (2.13) rewrite
as

F (n,X, E, µ) = vn(n,E)−X[φ′(n)fl(1, 1− φ(n)) + 1]− µθ,

and

Fn = vnn(n,E)−X[φ′′(n)fl(1, 1− φ(n))− (φ′(n))2fll(1, 1− φ(n))] < 0.

Since

F (n,X, E, µ) = 0,(3.3.18)

the Implicit function theorem ensures the existence of a function

n = n(X, E, µ)

such that

F (n(X, E, µ), X, E, µ) = 0.

Furthermore, a simple differentiation of this equation yields

nX(X, E, µ) = −FX(n(X, E, µ), X, E, µ)
Fn(n(X,E, µ), X,E, µ)

nE(X,E, µ) = −FE(n(X, E, µ), X, E, µ)
Fn(n(X,E, µ), X,E, µ)

nµ(X,E, µ) = −Fµ((n(X, E, µ), X, E, µ)
Fn(n(X,E, µ), X, E, µ)

where FX < 0, Fµ < 0, and FE ≥ 0. Consequently, we have proved the following
result.
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Lemma 1. Let X = c−1k. Then

n = n(X,E, µ), with nX(X, E, µ) < 0, nE(X,E, µ) ≥ 0 and nµ(X, E, µ) < 0.

The introduction of the new variable X allows to reduce the dynamical system
(2.6)− (2.9) to a system of three differential equations in (X, E, µ).

Proposition 2. The dynamical system
.

X = f(1, 1− φ(n(X,E, µ)))X + fk(1, 1− φ(n(X, E, µ)))X + ρX − 1
.

E = −ηE − θn(X,E, µ)
.
µ = (ρ + η)µ− vE(n(X, E, µ), E)

together with the transversality condition lim
t→∞

(e−ρtX + e−ρtµE) = 0, describes the

dynamic behaviour in the (X, E, µ) space of the system of necessary conditions for an
optimal program.

Proof. It remains only to prove the law motion of X. This follows immediately by
differentiating X = c−1k with respect to time and using equations (2.6) and (2.8)
with the condition k = k̄.

We recall a balanced growth path (BGP henceforth) equilibrium to be a set of
paths {c, n, k, E, µ}, which solves the optimal control problem, such that the variables
c and k grow at the same constant rate, E and µ are constant, and n = n(X, E, µ).

Proposition 3. If condition (2.17) holds, the model has a unique BGP equilibrium
which is saddle-point stable.

Proof. First, since
.

k/k =
.
c/c on the BGP, X is also constant. So lim

t→∞
e−ρtX = 0.

Furthermore, since E and µ are constant, lim
t→∞

e−ρtµE = 0. Hence, the transversality

condition (2.10) is satisfied. Now balanced growth equilibrium is attained when
.

X =
.

E =
.
µ = 0

and is therefore characterized by the following conditions

X =
1

f(1, 1− φ(n(X, E, µ))) + fk(1, 1− φ(n(X, E, µ))) + ρ

E = −θn(X, E, µ)
η

µ =
vE(n(X, E, µ),−θn(X, E, µ)/η)

ρ + η
.

¿From these and (3.1) we find that

vn(n,−θn/η) =
φ′(n)fl(1, 1− φ(n)) + 1

f(1, 1− φ(n)) + fk(1, 1− φ(n)) + ρ
+

θvE(n,−θn/η)
ρ + η

.
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The left hand side of this equality is a function strictly decreasing in n. Its right
hand side is instead a function strictly increasing in n. Hence, taking into account
the behaviour at the boundary of the functions v and φ, we see that this equation
has a unique solution n∗, and, consequently, there exist unique X∗, E∗ and µ∗. This
proves the first statement of the Proposition. The purpose is now to analyze the
eigenvalue structure of the Jacobian matrix corresponding to the linearization of the
above dynamical system around the steady state equilibrium (X∗, E∗, µ∗). Hence,
we first characterize this Jacobian matrix evaluated at the equilibrium point, say J∗.
This takes the form

J∗ =




J∗11 J∗12 J∗13

J∗21 J∗22 J∗23

J∗31 J∗32 J∗33


 ,

where

J∗11 =
∂

.

X

∂X
|(X∗,E∗,µ∗) = f∗ + f∗k + ρ + [f∗l + f∗kl]φ

′(n∗)X∗(−n∗X)

J∗12 =
∂

.

X

∂E
|(X∗,E∗,µ∗) = [f∗l + f∗kl]φ

′(n∗)X∗(−n∗E)

J∗13 =
∂

.

X

∂µ
|(X∗,E∗,µ∗) = [f∗l + f∗kl]φ

′(n∗)X∗(−n∗µ)

J∗21 =
∂

.

E

∂X
|(X∗,E∗,µ∗) = θ(−n∗X)

J∗22 =
∂

.

E

∂E
|(X∗,E∗,µ∗) = −η + θ(−n∗E)

J∗23 =
∂

.

E

∂µ
|(X∗,E∗,µ∗) = θ(−n∗µ)

J∗31 =
∂

.
µ

∂X
|(X∗,E∗,µ∗) = v∗En(−n∗X)

J∗32 =
∂

.
µ

∂E
|(X∗,E∗,µ∗) = −v∗EE + v∗En(−n∗E)

J∗33 =
∂

.
µ

∂µ
|(X∗,E∗,µ∗) = ρ + η + v∗En(−n∗µ).

In the above, functions beneath overstars are evaluated at the stationary values, that
is n∗ = n(X∗, E∗, µ∗), f∗ = f(1, 1 − φ(n∗)), v∗En = vEn(n∗, E∗), and so on. The
signs of the eigenvalues of the matrix J∗ can be derived looking at the trace and the
determinant of J∗. The trace of J∗ is given by

Trace(J∗) = J∗11 + J∗22 + J∗33 = f∗ + f∗k + 2ρ + [f∗l + f∗kl]φ
′(n∗)X∗(−n∗X).

As n∗X < 0, the sign of Trace(J∗) is positive. Since this trace is also equal to the sum
of the eigenvalues of J∗, there must be at least one eigenvalue with positive real part.
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On the other hand, the determinant of J∗ is given by

Det(J∗) = (f∗ + f∗k + ρ)[−η(ρ + η) + ηv∗Enn∗η − (ρ + η)θn∗E − θv∗EEn∗η]

+ [f∗l + f∗kl]φ
′(n∗)X∗η(ρ + η)n∗X .

As v∗En ≥ 0, v∗EE < 0, n∗X < 0, n∗E ≥ 0, and n∗µ < 0, the sign of Det(J∗) is negative.
Since Det(J∗) is the product of the eigenvalues of J∗, this leaves two possibilities
open for the eigenvalues of J∗. They can be either three eigenvalues with negative real
parts or one negative and two with positive real parts (recall that complex eigenvalues
must occur as conjugate pairs). Since we already know that there cannot be three
eigenvalues with negative real part, we can exclude the first case. This implies that
the stationary solution (X∗, E∗, µ∗) is locally saddle-point stable.

§4. Fertility, growth and environmental quality

We are going to examine the relationship between population growth, economic
growth and environmental quality. Along a balanced growth path c and k grow at
the same constant rate, say g∗. Therefore, it follows from (2.6) and (2.8) that

g∗ = fk(1, 1− φ(n∗))− n∗ − ρ.(4.4.19)

Hence, by differentiating (4.1) with respect to n∗ we find that

∂g∗

∂n∗
= −[1 + φ′(n∗)fkl(1, 1− φ(n∗))] < 0.

We have proved the following result.

Proposition 4. There exists an inverse relationship between economic growth and
population growth when all exogenous factors are controlled for.

Regarding the relationship between population growth and environmental quality,
from being E∗ = −θn∗/η at the BGP equilibrium, we can conclude that an increase
in population growth damages environmental quality. High values of n∗ will lead E∗

to reach its lower limit Emin, and consequently to an environmental catastrophe.
In our analysis of how the BGP equilibrium values react to exogenous parame-

ter change, we now examine the case when some of the exogenous factors are not
controlled for, but are allowed to vary. For example, let consider an improvement
in technological progress. For simplicity, we assume the production function f to
be Cobb-Douglas, i.e. of the form f(k, k̄l) = Akαl1−αk̄1−α, where A > 0 is a scale
parameter and 0 < α < 1. Since (4.1) writes as

g∗ = Aα(1− φ(n∗))1−α − n∗ − ρ,

we get the following comparative static result

∂g∗

∂A
= α(1− φ(n∗))1−α − [α(1− α)Aφ′(n∗)(1− φ(n∗))−α + 1]

∂n∗

∂A
.(4.4.20)
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Next, (2.4), (2.5) and (3.1) along the BGP equilibrium imply that

g∗ = A(1− φ(n∗))1−α − n∗ − (X∗(n))−1.(4.4.21)

with

X∗ = X∗(n∗) =
vn(n∗,−θn∗/η)− θvE(n∗,−θn∗/η)

ρ + η

A(1− α)(1− φ(n∗))−αφ′(n∗) + 1
.

Hence, by differentiating (4.3) with respect to A and using (4.2), we get

∂n∗

∂A
=

(1− α)(1− φ(n∗))1−α

A(1− α)2(1− φ(n∗))−αφ′(n∗)−X ′(n∗)/X(n∗)2
.

Now ∂n∗/∂A > 0 since X ′(n∗) > 0, while ∂g∗/∂A is ambiguous in sign. Furthermore,
we have that ∂E∗/∂A = −(θ/η)∂n∗/∂A < 0. Consequently, we can conclude that the
relation between n∗ and g∗ is generally indeterminate, while, concerning environmen-
tal quality, we have that the technological progress implies an increase in population
growth rate and a degradation of environmental quality.
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