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Abstract. In Euclidean geometry, the following are well known. (1)
Through any two distinct points in R2, infinitely many circles can be con-
structed. (2) No circle can be constructed through three distinct collinear
points in R2. (3) Through any three distinct non-collinear points in R2,
one and only one circle can be constructed. In [13], Tian-So-Chen dis-
cussed the validity of these statements in the taxicab plane geometry with
an analytical approach. In this paper, we study, synthetically, the same
subject and determine the number of the taxicab circles through two or
three distinct points using the concept of bisector.
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§1. Introduction

A family of metrics including the taxicab metric was published in [8] by
Minkowski at the beginning of the last century. Later, Menger introduced the taxi-
cab plane geometry in [7] by using the metric dT (P1, P2)=|x1 − x2|+|y1 − y2| instead
of the well known Euclidean metric dE(P1, P2)=

(
(x1 − x2)2+(y1 − y2)2

)1/2 for the
distance between any two points P1=(x1, y1) and P2=(x2, y2) in the analytical plane.
That is, the taxicab distance between the points P1 and P2 is the length of a shortest
path from P1 to P2 composed of the line segments parallel to the coordinate axes. In
[5], Krause developed the taxicab geometry, and this geometry has been studied by
many authors, see ([1], [2], [3], [4], [6], [9], [10], [11]).

Almost all of the investigations on the taxicab geometry have been made with
analytical approach. However, the taxicab geometry is also suitable to study synthet-
ically as Euclidean geometry. Here, we study the problem of existence or nonexistence
of the taxicab circles through two or three distinct points with a synthetic approach.

§2. Preliminaries

Definition 1. Let C be a point in the taxicab plane, and r be a positive real
number. The set of points

{P |dT (C, P ) = r}
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is called taxicab circle, the point C is called center of the taxicab circle, and the
positive real number r is called the length of the radius or simply radius of the
taxicab circle.

Every taxicab circle in the taxicab plane is an Euclidean square having sides with
slope ±1 as in Figure 1.

Figure 1

Definition 2. Let l be a line with slope m in the taxicab plane. l is called a
gradual line, a steep line or a separator if |m| < 1, |m| > 1 or |m| = 1, respectively
(see Figure 2). In particularly, a gradual line is called horizontal if it is parallel to
x-axis, and a steep line is called vertical if it is parallel to y-axis.

Figure 2

Definition 3. Let A and B be any two distinct points in the taxicab plane. The
set of points

{P |dT (A,P ) + dT (B, P ) = dT (A,B)}

is called minimum distance set of A and B.

Let A and B be any two distinct points in the taxicab plane, and l denote the line
through A and B. It is not difficult to see that

(a) if l is a horizontal or a vertical line, then the minimum distance set of A and B is
the line segment AB,
(b) if l is neither a horizontal nor a vertical line, then the minimum distance set of A
and B is a rectangular region with diagonal AB, such that each of its sides is parallel
to a coordinate axis, as seen in Figure 3.
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Figure 3

Definition 4. Let A and B be any distinct two points in the taxicab plane. The
set of points

{PdT (A,P ) = dT (B,P )}

is called bisector of A and B.

In [12], So and Al-Maskari studied the bisectors and classified them in four cate-
gories according to their types. Here, we reclassify them in three categories according
to the positions of A and B as follows:

Definition 5. Let l denote the line through any two distinct points A and B.
Clearly, l is a gradual line or a steep line or a separator. The bisector of A and B is
called a vertical bisector, a horizontal bisector or a regional bisector if l is a
gradual line, a steep line or a separator, respectively. Besides, the line segment with
slope +1 or −1 of a bisector is called generator of the bisector.

The following figures show us the bisector categories and the bisector types in each
categories.

Vertical bisectors Horizontal bisectors
Figure 4 Figure 5

Regional bisectors
Figure 6

After the definitions above one can easily obtain the following results concerning
the number of the points of intersection of two same or different kinds of bisectors:
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(2.1) The number of the points of intersection of two vertical bisectors is 0 or 1 or
2 or infinite.

(2.2) The number of the points of intersection of two horizontal bisectors is 0 or 1
or 2 or infinite.

(2.3) The number of the points of intersection of a horizontal and a vertical bisector
is 1 or infinite. There are infinitely many points in the intersection if and only if the
generators of the bisectors have at least the same two distinct points.

(2.4) The number of the points of intersection of a horizontal and a regional
bisector is 1 or infinite.

(2.5) The number of the points of intersection of a vertical and a regional bisector
is 1 or infinite.

(2.6) The number of the points of intersection of two regional bisectors is 1 or
infinite. There is only one point in the intersection if and only if the generators of the
bisectors intersect in exactly one point which is not a common endpoint of them.

§3. Some Lemmas About Intersection of Bisectors

Now, we give some lemmas leading to the main theorem which gives a complete
answer to the problem. In what follows, ”a side of a line l” means ”the union of the
line l and a half-plane with edge l”. That is, both side of a line l contains the line l.

Lemma 1. Bisectors of two pairs of points, each of which lies on a gradual line, do
not have any point of intersection if the minimum distance sets of these two pairs of
points lie in opposite sides of a vertical line.

Proof. Let A, B and C, D be two pairs of points, each of which lies on a gradual
line in the taxicab plane. Then the bisectors of A, B and C, D are vertical. If the
minimum distance sets of A, B and C, D lie in opposite sides of a vertical line v, then
the bisectors of the pairs of points lie in opposite sides of v, and do not intersect (see
Figure 7). Thus, these bisectors do not have any point of intersection. ¤

Figure 7

Lemma 2. Bisectors of two pairs of points, each of which lies on a steep line, do
not have any point of intersection if the minimum distance sets of these two pairs of
points lie in opposite sides of a horizontal line.

Proof. Proof is similar to that of Lemma 6. ¤

Lemma 3. Bisectors of two pairs of points, each of which lies on a separator, have
infinitely many points of intersection if the minimum distance sets of these two pairs
of points lie in opposite sides of a vertical or a horizontal line.

Proof. Let A, B and C, D be two pairs of points, each of which lies on a separator
in the taxicab plane. Then the bisectors of A, B and C, D are regional. If the
minimum distance sets of A, B and C, D lie in opposite sides of a vertical line v
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or a horizontal line h, then the generators of the bisectors of A, B and C, D either
intersect in a common endpoint of the generators or do not intersect (see Figures
8.a,b,c,d). Thus, these bisectors have infinitely many points of intersection. ¤

Figure 8.a Figure 8.b Figure 8.c Figure 8.d

Lemma 4. Bisectors of two pairs of points, one of which lies on a separator and
the other one lies on a gradual line, have infinitely many points of intersection if the
minimum distance sets of these two pairs of points lie in opposite sides of a vertical
line.

Proof. Let A, B be a pair of points on a separator, and C, D be a pair of points
on a gradual line in the taxicab plane. Then the bisector of A, B is regional, and the
bisector of C, D is vertical. If the minimum distance sets of A, B and C, D lie in
opposite sides of a vertical line v, then a vertical ray of the vertical bisector and a
planar region of the regional bisector have infinitely many points of intersection (see
Figure 9). Thus, these bisectors have infinitely many points of intersection. ¤

Figure 9

Lemma 5. Bisectors of two pairs of points, one of which lies on a separator and
the other one lies on a steep line, have infinitely many points of intersection if the
minimum distance sets of these two pairs of points lie in opposite sides of a horizontal
line.

Proof. Proof is similar to that of Lemma 9. ¤

Lemma 6. Bisectors of two pairs of points, one of which lies on a gradual line and the
other one lies on a steep line, have exactly one point of intersection if the generators
of the bisectors lie in the same separator.

Proof. Let A, B be a pair of points on a gradual line, and C, D be a pair of
points on a steep line in the taxicab plane. Then the bisector of A, B is vertical, and
the bisector of C, D is horizontal. If the generators of the bisectors of A, B and C,
D do not lie in the same separator, then the generators have either exactly one or
no points of intersection. Since a vertical and a horizontal bisectors have infinitely
many points of intersection if and only if their generators have infinitely many points
of intersection, the bisectors of A, B and C, D have exactly one point of intersection
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(see Figures 10.a,b). ¤

Figure 10.a Figure 10.b

Lemma 7. Bisectors of two pairs of points, one of which lies on a gradual line and
the other one lies on a steep line, (i) have infinitely many points of intersection if the
generators of the bisectors lie in the same separator and the sum of the lengths of the
generators is bigger than two times of the distance between midpoints of the pairs of
points, (ii) have exactly one point of intersection if the generators of the bisectors lie
in the same separator and the sum of the lengths of the generators is not bigger than
two times of the distance between midpoints of the pairs of points.

Proof. Let A, B be a pair of points on a gradual line, and C, D be a pair of
points on a steep line in the taxicab plane. Then the bisector of A, B is vertical,
and the bisector of C, D is horizontal. Let the generators of the bisectors of A, B
and C, D lie in the same separator, the lengths of the generators be 2a and 2b, and
the distance between midpoints of A, B and C, D be d. If (2a + 2b) > 2d, then
(a + b) > d, and the bisectors have infinitely many points of intersection (see Figure
11.a). If (2a + 2b) ≤ 2d, then (a + b) ≤ d, and the bisectors have exactly one point of
intersection (see Figure 11.b). ¤

Figure 11.a Figure 11.b

§4. Main Theorem

The following theorem shows that statement (1) given in the abstract is valid but
the statements (2) and (3) are invalid in the taxicab plane, and determines in what
conditions how many circles can be constructed through given distinct two or three
points in the taxicab plane.

Theorem. In the taxicab plane, the following statements are valid:
(4.1) Through any two distinct points, infinitely many taxicab circles can be con-
structed.
(4.2) No taxicab circle can be constructed through three distinct collinear points lying
on a gradual line.



A synthetic approach to the taxicab circles 73

(4.3) No taxicab circle can be constructed through three distinct collinear points lying
on a steep line.
(4.4) Infinitely many taxicab circles can be constructed through three distinct collinear
points lying on a separator.
(4.5) No taxicab circle can be constructed through any three distinct non-collinear
points which determine three gradual lines.
(4.6) No taxicab circle can be constructed through any three distinct non-collinear
points which determine three steep lines.
(4.7) Infinitely many taxicab circles can be constructed through three distinct non-
collinear points which determine a separator and two gradual lines.
(4.8) Infinitely many taxicab circles can be constructed through three distinct non-
collinear points which determine a separator and two steep lines.
(4.9) Infinitely many taxicab circles can be constructed through three distinct non-
collinear points which determine two separators and a gradual line.
(4.10) Infinitely many taxicab circles can be constructed through three distinct non-
collinear points which determine two separators and a steep line.
(4.11) One and only one taxicab circle can be constructed through any three distinct
non-collinear points which determine a gradual line and two steep lines.
(4.12) One and only one taxicab circle can be constructed through any three distinct
non-collinear points which determine a steep line and two gradual lines.
(4.13) Through three distinct non-collinear points which determine a separator, a
gradual line and a steep line, (i) infinitely many taxicab circles can be constructed if
the point which is not on the separator lies out of the circles, whose vertices are the
remaining two points determining the separator, (ii) one and only one taxicab circle
can be constructed if the point which is not on the separator do not lie out of the
circles, whose vertices are the remaining two points determining the separator.

Proof. Clearly, the number of the circles through three distinct points is equal the
number of the points of intersection of the bisectors of any two pairs of points from
these points. This property has a main role in the proof of the theorem.

(4.1) It is obvious that there exist infinitely many points equidistant from any
two distinct points in the taxicab plane. Therefore, through any two distinct points,
infinitely many circles can be constructed.

(4.2) Let A, B and C be three distinct collinear points lying on a gradual line, such
that B is between A and C in the taxicab plane (see Figure 12). Then the bisectors
of A, B and B, C are vertical, and the minimum distance sets of A, B and B, C lie in
opposite sides of the vertical line v through B. From Lemma 1, these bisectors do not
have any point of intersection. Thus, no taxicab circle can be constructed through
three distinct collinear points lying on a gradual line.

Figure 12

(4.3) Proof is similar to that of (4.2), using Lemma 2 instead of Lemma 1.
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(4.4) Let A, B and C be three distinct collinear points lying on a separator, such
that B is between A and C in the taxicab plane (see Figure 13). Then the bisectors of
A, B and B, C are regional, and the minimum distance sets of A, B and B, C lie in
opposite sides of the vertical line v through B, or horizontal line h through B. From
Lemma 3, these bisectors have infinitely many points of intersection. Thus, infinitely
many taxicab circles can be constructed through three distinct collinear points lying
on a separator.

Figure 13

(4.5) Let A, B and C be three distinct non-collinear points which determine three
gradual lines, such that B is between A and C according to their x-coordinates (see
Figure 14). Then the bisectors of A, B and B, C are vertical, and the minimum
distance sets of A, B and B, C lie in opposite sides of the vertical line v through
B. From Lemma 1, these bisectors do not have any point of intersection. Thus, no
taxicab circle can be constructed through three distinct non-collinear points which
determine three gradual lines.

Figure 14

(4.6) Proof is similar to that of (4.5), using Lemma 2 instead of Lemma 1.

(4.7) Let A, B and C be three distinct non-collinear points which determine a
separator and two gradual lines, such that A and B determine the separator. Then
the bisector of A, B is regional, and the bisectors of A, C and B, C are vertical, and
either A is between B and C or B is between A and C according to their x-coordinates.
If B is between A and C, then the minimum distance sets of A, B and B, C lie in
opposite sides of the vertical line v through B (see Figure 15.a). If A is between B
and C, then the minimum distance sets of A, B and A, C lie in opposite sides of
the vertical line v′ through A (see Figure 15.b). From Lemma 4, these bisectors have
infinitely many points of intersection. Thus, infinitely many taxicab circles can be
constructed through three distinct non-collinear points which determine a separator
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and two gradual lines.

Figure 15.a Figure 15.b

(4.8) Proof is similar to that of (4.7), using Lemma 5 instead of Lemma 4.

(4.9) Let A, B and C be three distinct non-collinear points which determine two
separators and a gradual line, such that A and C determine the gradual line. Then
the bisectors of A, B and B, C are regional, and B is between A and C according
to their x-coordinates, and the minimum distance sets of these pairs of points lie in
opposite sides of the vertical line v through B (see Figure 16). From Lemma 3, these
bisectors have infinitely many points of intersection. Thus, infinitely many taxicab
circles can be constructed through three distinct non-collinear points which determine
two separators and a gradual line.

Figure 16

(4.10) Proof is similar to that of (4.9).

(4.11) Let A, B and C be three distinct non-collinear points which determine a
gradual and two steep lines, such that A and B determine the gradual line. Then the
bisector of A, B is vertical, and the bisector of A, C is horizontal, and the midpoints
of A, B and A, C determine a steep line. Since the midpoints of A, B and A, C are
not on the same separator, the generators of the bisectors of A, B and C, D do not lie
in the same separator (see Figure 17). From Lemma 6, these bisectors have exactly
one point of intersection. Thus, one and only one taxicab circle can be constructed
through any three distinct non-collinear points which determine a gradual line and
two steep lines.

Figure 17
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(4.12) Proof is similar to that of (4.11).

(4.13) Let A, B and C be three distinct non-collinear points which determine a
separator, a gradual line and a steep line, such that A and B determine the separator.
Then C lies in the shaded region in Figure 18.a, and the one of the bisectors of A, C
and B, C is a vertical, and the other one is horizontal.

(i) If C lies out of the circles with vertices A and B, then the generators of the
bisectors of A, C and B, C lie in the same separator, and the sum of the lengths of
the generators is bigger than two times of the distance between midpoints of A, C and
B, C (see Figure 18.b). From Lemma 7, these bisectors have infinitely many points
of intersection. Thus, infinitely many taxicab circles can be constructed through A,
B and C.

(ii) If C does not lie out of the circles with vertices A and B, then either the generators
of the bisectors of A, C and B, C do not lie in the same separator or the generators of
the bisectors of A, C and B, C lie in the same separator and the sum of the lengths
of the generators is not bigger than two times of the distance between midpoints of
A, C and B, C (see Figures 18.c,d). From Lemma 6 and Lemma 7, the bisectors have
exactly one point of intersection. Thus, only one taxicab circle can be constructed
through A, B and C. ¤

Figure 18.a Figure 18.b

Figure 18.c Figure 18.d
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