Upper top spaces

M.R. Molaei and M.R. Farhangdoost

Abstract. In this paper a method for constructing new top spaces by using of universal covering spaces of special Lie subsemigroups of a top space is presented. As a result a generalization of the notion of fundamental group which is a completely simple semigroup is deduced. The persistence of MF-semigroups under isomorphisms of top spaces is proved.

M.S.C. 2000: 22A15.

Key words: top space, upper top space, fundamental group.

1 Introduction

Top spaces are generalization of Lie groups [3]. In this paper we begin with a top space and then by use of it we will construct an upper top space for it.

Let us to recall the definition of a top space [3, 4].

A top space is a smooth manifold T (not necessary connected) admitting an operation called multiplication, subject to the set of rules given below:

(i) (xy)z = x(yz) for all x, y, z in T (associative law).

(ii) For each x in T there exists a unique z in T such that xz = zx = x, we denote z by e(x) (existence and uniqueness of identity).

(iii) For each x in T there exists y in T such that xy = yx = e(x) (existence of inverse).

(iv) The mapping $m_1 : T \to T$ is defined by $m_1(u) = u^{-1}$ and the mapping $m_2 : T \times T \to T$ is defined by $m_2(u_1, u_2) = u_1 u_2$ are smooth maps. (v) e(xy) = e(x)e(y) for all $x, y \in T$.

The properties (i), (ii), and (iii) imply that T is a completely simple semigroup [1].

If T is a top space then $T = \bigcup_{t \in T} T_{e(t)}$ where $T_{e(t)} = \{s \in T : e(s) = e(t)\}$. Moreover

for each $t \in T$, $T_{e(t)}$ with the differentiable structure and product of T is a Lie group. Let T and S be two top spaces and let $f: T \to S$ be an algebraic homomorphism, i.e., f(xy) = f(x)f(y) for all $x, y \in T$. Then f(e(x)) = e(f(x)) and $f: T_{e(x)} \to S_{e(f(x))}$ is a group homomorphism, where $x \in T$. The kernel of f defined by $Kerf = \bigcup_{t \in T} kerf_t$

where f_t is the restriction of f on $T_{e(t)}$ [4]. We will use of this notion to present a generalization of the notion of fundamental group as the kernel of covering map of an

Applied Sciences, Vol.8, 2006, pp. 128-131.

[©] Balkan Society of Geometers, Geometry Balkan Press 2006.

upper top space of a given top space. We will show, the persistence of this structure under the isomorphisms of top spaces.

2 A method for constructing new top spaces

In this section we assume that for all $t \in T$, the set $T_{e(t)}$ is a connected set [5]. If $(\tilde{T}_{e(t)}, p_t, \tilde{e(t)})$ is a universal covering space of $(T_{e(t)}, e(t))$, then $\tilde{T}_{e(t)}$ is a Lie group with the multiplication $\tilde{m}_t(\tilde{t_1}, \tilde{t_2})$ with $\tilde{t_1}, \tilde{t_2} \in \tilde{T}_{e(t)}$ such that $p_t o \tilde{m}_t(\tilde{t_1}, \tilde{t_2}) = m_t(p_t(\tilde{t_1}, \tilde{t_2}))$ where m_t is the restriction of m on $T_{e(t)} \times T_{e(t)}$.

Let \tilde{T} be the disjoint union of $\tilde{T}_{e(t)}$ where $t \in T$. Then we define the product \tilde{m} on $\tilde{T} \times \tilde{T}$ such that $p_{st}o\tilde{m}(\tilde{s},\tilde{t}) = m(p_s(\tilde{s}), p_t(\tilde{t}))$ and $\tilde{m}(e(\tilde{s}), e(\tilde{t})) = e(\tilde{s}t)$.

Theorem 2.1 \tilde{m} is determined uniquely by the above equalities.

Proof. If $\tilde{s}, \tilde{t} \in T$ then $m(p_s(\tilde{s}), p_t(\tilde{t}))$ is a unique member of $T_{e(st)}$. Since p_{st} is a local diffeomorphism on the connected component $T_{e(st)}$ then $\tilde{m}(\tilde{s}, \tilde{t})$ determines uniquely. q.e.d.

Theorem 2.2 (\tilde{T}, \tilde{m}) is a top space.

Proof. If $\tilde{r}, \tilde{s}, \tilde{t} \in \tilde{T}$ then $p_{r(st)}o(\tilde{m}o(id_{\tilde{T}}\times\tilde{m})) = mo(p_r\times p_{st})o(id_{\tilde{T}}\times\tilde{m}) = mo(p_r\times (p_{st}o\tilde{m})) = mo(p_r\times p_{st})o(id_{\tilde{T}}\times\tilde{m}) = mo(p_r\times p_{st})o(id_{\tilde{$ $mo(p_s \times p_t)) = mo(id_T \times m)o(p_r \times p_s \times p_t).$ Moreover we have $p_{r(st)}o(\tilde{m}o(\tilde{m}\times id_{\tilde{T}})) = p_{(rs)t}o(\tilde{m}o(\tilde{m}\times id_{\tilde{T}})) = mo(m\times id_T)o(p_r\times p_s\times p_t).$ So $p_{r(st)}o(\tilde{m}o(id_{\tilde{T}}\times\tilde{m})) = p_{r(st)}o(\tilde{m}o(\tilde{m}\times id_{\tilde{T}})).$ Moreover $\tilde{m}o(id_{\tilde{T}} \times \tilde{m})(\tilde{e(r)}, \tilde{e(s)}, \tilde{e(t)}) = \tilde{m}o(\tilde{m} \times id_{\tilde{T}})(\tilde{e(r)}, \tilde{e(s)}, \tilde{e(t)}).$ Thus $\tilde{m}o(id_{\tilde{T}} \times \tilde{m}) = \tilde{m}o(\tilde{m} \times id_{\tilde{T}}).$ For $u \in T_{e(v)}$ we have $p_{v}(\tilde{m}(\tilde{u}, e(v)) = m(p_{v}(\tilde{u}, p_{e(v)}(e(v))) = m(p_{v}(\tilde{u}), e(v)) = p_{v}(\tilde{u})$ and $\tilde{m}(e(v), e(v)) = e(v).$ So $\tilde{m}(\tilde{v}, e(v)) = \tilde{v}$ for all $\tilde{v} \in \tilde{T}$. Now for given $t \in T$ let $\tilde{i}: \tilde{T} \to \tilde{T}$ be the lifting of the mapping $iop_t: \tilde{T} \to T$ with $\tilde{i}(e(t)) = e(t)$ where i is the inverse map of T (i.e. $i(t) = t^{-1}$). Since $p_t o(\tilde{m}(\tilde{t}, \tilde{i}(\tilde{t})) = mo(p_t \times p_t)(\tilde{t}, \tilde{i}(\tilde{t})) = m(p_t(\tilde{t}), po\tilde{i}(\tilde{t})) = m(p_t(\tilde{t}), (p_t(\tilde{t}))^{-1}) = e(t)$ and $\tilde{m}(e(t), \tilde{i}(e(t)) = e(t)$, then $\tilde{m}(\tilde{t}, \tilde{i}(\tilde{t})) = e(t)$. The set $\tau_{\tilde{T}} = \{ \tilde{U} \subseteq \tilde{T} : \tilde{U} \cap T_{e(t)} \text{ is open in } T_{e(t)} \text{ for all } t \in T \}$ is a topology for \tilde{T} . With this topology we can extend the differentiable structure of $T_{e(t)}$ on \tilde{T} and with this differentiable structure \tilde{T} is a top space. q.e.d.

The straightforward calculations show that the mapping $p: \tilde{T} \to T$ defined by $p(\tilde{t}) = p_t(\tilde{t})$ is a homomorphism of top spaces.

The pair (T, p) is called the upper top space of T.

3 A generalization of fundamental groups

We begin this section with the following theorem.

Theorem 3.1 If (T, p) and (S, q) be two upper top spaces of a top space T, then *Kerp* is isomorphic to *Kerq*

Proof. We know that \tilde{T} , and \tilde{S} are disjoint unions of $\tilde{T_{e(t)}}$ and $\tilde{S_{e(t)}}$ respectively, where $(\tilde{T}_{e(t)}, p_t, \tilde{e(t)})$ and $(\tilde{S}_{e(t)}, q_t, \tilde{e(t)})$ are universal covering spaces of $(T_{e(t)}, e(t))$ for all $t \in T$. So for all $t \in T$ there exists a diffeomorphism $g_t : \tilde{T}_{e(t)} \to \tilde{S}_{e(t)}$ such that $q_t o g_t = p_t$. Now we define $g: Kerp \to Kerq$ by $g(\tilde{x}) = g_x(\tilde{x})$, we show that g is an isomorphism. If $\tilde{x} \in Kerp$ then $p_x(\tilde{x}) = e(x)$. Thus $q_x og_x(\tilde{x}) = e(x)$. Hence $g_x(\tilde{x}) \in Kerq$. If $\tilde{y} \in Kerq$ then $q_y(\tilde{y}) = e(y)$. So $p_y(g_y^{-1}(\tilde{y}) = q_y og_y(g_y^{-1}(\tilde{y}) = e(y))$. Thus $g_y^{-1}(\tilde{y} \in \tilde{T}_y \cap Kerp$. Since Kerp and Kerq are disjoint unions of $kerp_t$ and $kerq_t$ respectively, and $g_t : kerp_t \to kerq_t$ is an isomorphism, then g is an isomorphism. q.e.d.

We now define the main notion of this section.

Definition 3.1 If (T, p) is an upper top space of T then the Kerp is called the MF-semigroup of T.

The next theorem shows that MF-semigroups are generalization of fundamental groups.

Theorem 3.2 If T is a top space and D is the MF-semigroup of it then D is isomorphic to $\bigcup_{t \in e(T)}^{o} \pi_1(T_{e(t)}, e(t))$ where $\pi_1(T_{e(t)}, e(t))$ is the fundamental group of $T_{e(t)}$ with the base point e(t), and $\bigcup_{t \in e(T)}^{o}$ denotes the disjoint union.

Proof. The definition of D implies that D = Kerp, where (\tilde{T}, p) is an upper top space of T. So $D = \bigcup_{t \in e(T)} kerp_t$. Since for all $t \in T$, $T_{e(t)}$ is a Lie group then

 $kerp_t \cong \pi_1(T_{e(t)}, e(t))$ [2]. Thus $D \cong \bigcup_{t \in T}^o \pi_1(T_{e(t)}, e(t))$. q.e.d.

Definition 3.2 If T and U are two top spaces, then a mapping $f: T \to U$ is called an isomorphism if it is an algebraic isomorphism and a C^{∞} diffeomorphism. Two top spaces are called isomorphic if there is an isomorphism between them.

Theorem 3.3 Let D and E be MF-semigroups of top spaces T and U respectively. Moreover let T and U be isomorphic top spaces. Then D and E are isomorphic semigroups.

Proof. Suppose $f: T \to U$ be an isomorphism, then f(e(t)) = e(f(t)) for all $t \in T$. Thus $f(T_{e(t)}) = U_{e(f(t))}$. Since f is a diffeomorphism then $\pi_1(T_{e(t)}, e(t)) \cong$ $\pi_1(U_{e(f(t))}, e(f(t)))$. Thus theorem 3.2 implies that $D \cong E$. q.e.d.

Conclusion. If for all $t \in T$, $T_{e(t)}$ is connected and open set then the notion of an upper top space of T is close to the notion of universal space. More precisely if T is a Lie group then the upper top space of T is the universal covering of (T, 1). Moreover theorem 3.2 implies that $Kerp \cong \pi_1(T, 1)$.

References

- J. Araujo, J. Konieczny, Molaei's Generalized Groups are Completely Simple Semigroups, Buletinul Institului Polithnic Din Iasi, 48 (52) (2002), 1-5.
- [2] D. Miličić, Lectures on Lie Groups, http://www.math.utah.edu:8080/milicic/, 2004.
- [3] M.R. Molaei, *Top Spaces*, Journal of Interdisciplinary Mathematics, Volume 7, Number 2 (2004), 173-181.
- [4] M.R. Molaei, *Generalized Structures Based on Completely Simple Semigroups*, http://www.jdsgt.com/molaei/book.pdf, in press by Hadronic press, 2005.
- [5] M.R. Molaei, A. Tahmoresi, Connected Topological Generalized Groups, General Mathematics 12, 1 (2004), 13-22.

Authors' address:

M.R. Molaei and M.R. Farhangdoost Department of Mathematics, Shahid Bahonar University of Kerman, 76169-14111, Kerman, Iran email: mrmolaei@mail.uk.ac.ir