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Abstract. In this paper we establish various characterizations of the
global minimum of the map Fψ : U → IR+ defined by Fψ(X) = ‖ψ(X)‖p,
(1 < p < ∞) where ψ : U → Cp is a map defined by ψ(X) = S+φ(X) and
φ : B(H) → B(H) is a linear map, S ∈ Cp, and U = {X ∈ B(H) : φ(X) ∈ Cp}.
Further, we apply these results to characterize the operators which are or-
thogonal to the range of elementary operators.
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1 Introduction

Let E be a complex Banach space. We recall ([2]) that b ∈ E is orthogonal to a ∈ E
(in short b ⊥ a) if for all complex λ there holds ‖a + λb‖ ≥ ‖a‖ . Note that the order is
important, that is, if b is orthogonal to a, then a need not be orthogonal to b. If E is a
Hilbert space, then b ⊥ a is equivalent to 〈a, b〉 = 0, i.e., the orthogonality in the usual
sense. Let now B(H) denote the algebra of all bounded linear operators on a complex
separable and infinite dimensional Hilbert space H and let T ∈ B(H) be compact,
and let s1(X) ≥ s2(X) ≥ ... ≥ 0 denote the eigenvalues of |T | = (T ∗T )

1
2 arranged in

their decreasing order. The operator T is said to be belong to the Schatten p-classes
Cp if

‖T‖p =

[ ∞∑

i=1

si(T )p

] 1
p

= [tr|T |p] 1
p , 1 ≤ p < ∞,

where tr denotes the trace functional. For the general theory of the Schatten p-classes
the reader is referred to [11]. Recall (see [11]) that the norm ‖·‖ of the B-space V is
said to be Gâteaux differentiable at non-zero elements x ∈ V if there exists a unique
support functional Dx ∈ V ∗ such that ‖Dx‖ = 1 and Dx(x) = ‖x‖ and satisfying

lim
IR3t→0

‖x + ty‖ − ‖x‖
t

= Re Dx(y),
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for all y ∈ V . Here IR denotes the set of all reals and Re denotes the real part. The
Gâteaux differentiability of the norm at x implies that x is a smooth point of the
sphere of radius ‖x‖. It is well known (see [7] and the references therein) that for
1 < p < ∞, Cp is a uniformly convex Banach space. Therefore every non-zero T ∈ Cp

is a smooth point and in this case the support functional of T is given by

DT (X) = tr

[
|T |p−1

UX∗

‖T‖p−1
p

]
,

for all X ∈ Cp, where T = U |T | is the polar decomposition of T. The first result
concerning the orthogonality in a Banach space was given by Anderson[1] showing
that if A is a normal operator on a Hilbert space H, then AS = SA implies that for
any bounded linear operator X there holds

‖S + AX −XA‖ ≥ ‖S‖ .(1.1)

This means that the range of the derivation δA : B(H) → B(H) defined by δA(X) =
AX−XA is orthogonal to its kernel. This result has been generalized in two directions:
by extending the class of elementary mappings

E : B(H) → B(H); E(X) =
n∑

i=1

AiXBi

and
∼
E: B(H) → B(H);

∼
E (X) =

n∑

i=1

AiXBi −X,

where (A1, A2, ...An) and (B1, B2, ...Bn) are n− tuples of bounded operators on H,
and by extending the inequality (1.1) to Cp-classes with 1 < p < ∞ see [4], [8]. The
Gâteaux derivative concept was used in [3, 5, 7, 9, 10], in order to characterize those
operators which are orthogonal to the range of a derivation. In these papers, the
attention was directed to Cp-classes for some p ≥ 1. The main purpose of this note
is to characterize the global minimum of the map

X 7→ ‖S + φ(X)‖Cp
, φ is a linear map in B(H),

in Cp by using the ϕ-directional derivative. These results are then applied to charac-
terize the operators S ∈ Cp which are orthogonal to the range of elementary operators.
It is very interesting to point out that our Theorem 3.3 and its Corollary 3.2 generalize
Theorem 1 in [9] and Lemma 2 in [3].

2 Preliminaries

Definition 2.1 Let (X, ‖·‖) be an arbitrary Banach space and F : X → IR. We
define the ϕ-directional derivative of F at a point x ∈ X in direction y ∈ X by

DϕF (x; y) = lim
t→0+

F (x + teiϕy)− F (x)
t

.
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Note that when ϕ = 0 the ϕ-directional derivative of F at x in direction y coincides
with the usual directional derivative of F at x in a direction y given by

DF (x; y) = lim
t→0+

F (x + ty)− F (x)
t

.(2.1)

According to the notation given in [6] we will denote DϕF (x; y) for F (x) = ‖x‖ by
Dϕ,x(y) and for the same function we write Dx(y) for DF (x; y).

Remark 2.1 In [6] the author used the term ϕ-Gâteaux derivative instead of
the term “ϕ-directional derivative” that we use here. It seems to us that the most
appropriate term is the “ϕ-directional derivative”, because in the classical case when
we don’t have ϕ, as in (2.1) the existence of this limit corresponds to the directional
differentiability of F at x in the direction y, while the Gâteaux differentiability of F at
x corresponds to the existence of the same limit in any direction y ∈ E and moreover
the function y 7→ DF (x; y) is linear and continuous. We note that the existence of
DF (x; y) for any y ∈ E does not imply the Gâteaux differentiability of F at x. Take
for example the function F (x) = ‖x‖. We can easily check that for x = 0 one has
DF (x, y) = ‖y‖ for any y ∈ E but the function y 7→ DF (0, y) is not linear and so the
Gâteaux derivative of F at x = 0 does not exist.

We recall (see [8, Proposition 6 ]) that the function y 7→ Dϕ,x(y) is subadditive
and

|Dϕ,x(y)| ≤ ‖y‖ .(2.2)

We end this section by recalling a necessary optimality condition in terms of ϕ-
directional derivative for a minimization problem.

Theorem 2.1 ([10]) Let (X, ‖·‖) be an arbitrary Banach space and F : X → IR.
If F has a global minimum at v ∈ X, then

inf
ϕ

DϕF (v; y) ≥ 0,

for all y ∈ X.

3 Main Results

Let φ : B(H) → B(H) be a linear map, that is, φ(αX + βY ) = αφ(X) + βφ(Y ), for
all α, β ∈ IC and all X, Y ∈ B(H), and let S ∈ Cp (1 < p < ∞). Put

U = {X ∈ B(H) : φ(X) ∈ Cp} .

Let ψ : U → Cp be defined by

ψ(X) = S + φ(X).

Define the function Fψ : U → IR+ by Fψ(X) = ‖ψ(X)‖Cp
. Now we are ready to

prove our first result in Cp-classes (1 < p < ∞). It gives a necessary and sufficient
optimality condition for minimizing Fψ. The proof of this result follows, with slight
modifications, the same lines of the proof of Theorem 3.1 in [10]. For the convenience
of the reader we state it.



On minimizing the norm of linear maps 43

Theorem 3.1 The map Fψ has a global minimum at V ∈ U if and only if

inf
ϕ

Dϕ,ψ(V )(φ(Y )) ≥ 0, ∀ Y ∈ U.(3.1)

Proof. For the necessity we have just to combine Theorem 2.1 and the following
equality which can be easily checked

DϕFψ(V, Y ) = Dϕ,ψ(V ) (φ(Y )) .

Conversely, assume that (3.1) is satisfied. First, observe that

Dϕ,ψ(V )(ei(π−ϕ)ψ(V )) = lim
t→0+

∥∥ψ(V ) + teiϕei(π−ϕ)ψ(V )
∥∥

Cp
− ‖ψ(V )‖Cp

t

= lim
t→0+

‖ψ(V )− tψ(V )‖Cp
− ‖ψ(V )‖Cp

t

= ‖ψ(V )‖Cp
lim

t→0+

|1− t| − 1
t

= −‖ψ(V )‖Cp
.

¿From this, we have

‖ψ(V )‖Cp
= −Dϕ,ψ(V )(ei(π−ϕ)ψ(V )).

Let Y ∈ U be arbitrary and put
∼
Y = −ei(π−ϕ)Y + ei(π−ϕ)V. It is easy to see that

∼
Y ∈ U. Then by (3.1) we have Dϕ,ψ(V )(φ(

∼
Y )) ≥ 0 and hence by the subadditivity of

Dϕ,ψ(V )(.) and the linearity of φ we get

‖ψ(V )‖Cp
≤ −Dϕ,ψ(V )(ei(π−ϕ)ψ(V )) + Dϕ,ψ(V )(φ(

∼
Y ))

≤ Dϕ,ψ(V )(φ(
∼
Y )− ei(π−ϕ)ψ(V ))

= Dϕ,ψ(V )(−ei(π−ϕ)φ(Y ) + ei(π−ϕ)φ(V )− ei(π−ϕ)S − ei(π−ϕ)φ(V ))

= Dϕ,ψ(V )(−ei(π−ϕ)ψ(Y )).

By using (2.2) and since Y is arbitrary in U, we obtain

Fψ(V ) = ‖ψ(V )‖Cp
≤ Dϕ,ψ(V )(−ei(π−ϕ)ψ(Y )) ≤ ‖ψ(Y )‖Cp

= Fψ(Y ), for all Y ∈ U.

Then Fψ has a global minimum at V on U. 2

Let us recall the following result proved in [9] for Cp-classes (1 < p < ∞).

Theorem 3.2 ([9]) Let X, Y ∈ Cp. Then, there holds

DX(Y ) = pRe
{
tr(|X|p−1U∗Y )

}
,
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where X = U |X| is the polar decomposition of X.

The following corollary establishes a characterization of the ϕ-directional derivative
of the norm in Cp-classes (1 < p < ∞).

Corollary 3.1 Let X, Y ∈ Cp. Then, one has

Dϕ,X(Y ) = pRe
{
eiϕtr(|X|p−1U∗Y )

}
,

for all ϕ, where X = U |X| is the polar decomposition of X.

Proof. Let X, Y ∈ Cp. Put
∼
Y = eiϕY. Applying Theorem 3.2 with ϕ,X and

∼
Y we

get

Dϕ,X(Y ) = lim
t→0+

∥∥X + teiϕY
∥∥

Cp
− ‖X‖Cp

t
= lim

t→0+

∥∥∥X + t
∼
Y

∥∥∥
Cp

− ‖X‖Cp

t
= DX(

∼
Y )

= pRe
{

tr(|X|p−1U∗ ∼
Y )

}
= pRe

{
eiϕtr(|X|p−1U∗Y )

}
.

This completes the proof. 2

Now we are going to characterize the global minimum of Fψ on Cp (1 < p < ∞),
when φ is a linear map satisfying the following useful condition:

tr(Xφ(Y )) = tr(φ∗(X)Y ), ∀X, Y ∈ Cp,(3.2)

where φ∗ is an appropriate conjugate of the linear map φ. We state some examples
of φ and φ∗ which satisfy the above condition (3.2).

1. The elementary operator E : I → I defined by

E(X) =
n∑

i=1

AiXBi,

where Ai, Bi ∈ B(H) (1 ≤ i ≤ n) and I is a separable ideal of compact operators
in B(H) associated with some unitarily invariant norm. In [8, Proposition 8]
the author showed that the conjugate operator E∗ : I∗ → I∗ of E has the form

E∗(X) =
n∑

i=1

BiXAi,

and that the operators E and E∗ satisfy the condition (3.2).

2. Using the previous example we can check that the conjugate operator
∼
E
∗
: I∗ →

I∗ of the elementary operator
∼
E: I → I defined by

∼
E (X) =

n∑

i=1

AiXBi −X,
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has the form
∼
E
∗

(X) =
n∑

i=1

BiXAi −X,

and that the operators
∼
E and

∼
E
∗

satisfy the condition (3.2).

Now, we are in position to prove the following theorem.

Theorem 3.3 Let V ∈ Cp, and let ψ(V ) have the polar decomposition ψ(V ) =
U |ψ(V )|. Then Fψ has a global minimum on Cp at V if and only if U∗|ψ(V )| ∈ kerφ∗.

Proof. Assume that Fψ has a global minimum on Cp at V . Then

inf
ϕ

Dϕ,ψ(V )(φ(Y )) ≥ 0,(3.3)

for all Y ∈ Cp. That is,

inf
ϕ

pRe
{
eiϕtr(|ψ(V )|p−1U∗φ(Y ))

} ≥ 0, ∀Y ∈ Cp.

This implies that
tr(|ψ(V )|p−1U∗φ(Y )) = 0, ∀Y ∈ Cp.(3.4)

Let f ⊗ g, be the rank one operator defined by x 7→ 〈x, f〉 g where f, g are arbitrary
vectors in the Hilbert space H. Take Y = f ⊗ g, since the map φ satisfies (3.2) one
has

tr(|ψ(V )|p−1U∗φ(Y )) = tr(φ∗(U∗|ψ(V )|p−1)Y ).

Then (3.4) is equivalent to tr(φ∗(U∗|ψ(V )|p−1)Y ) = 0, for all Y ∈ Cp, or equivalently
〈
φ∗(U∗|ψ(V )|p−1)g, f

〉
= 0, ∀f, g ∈ H.

Thus φ∗(U∗|ψ(V )|p−1) = 0, i.e., U∗|ψ(V )|p−1 ∈ kerφ∗.

Conversely, let ϕ be arbitrary. If U∗|ψ(V )|p−1 ∈ kerφ∗, then eiϕU∗|ψ(V )|p−1 ∈
kerφ∗. It is easily seen(using the same arguments above) that

Re
{
eiϕtr(U∗|ψ(V )|p−1φ(Y ))

} ≥ 0,∀Y ∈ Cp.

Now as ϕ is taken arbitrary, we get (3.3).

We state our first corollary of Theorem 3.3. Let φ = δA,B , where δA,B : B(H) →
B(H) is the generalized derivation defined by δA,B(X) = AX −XB.

Corollary 3.2 Let V ∈ Cp, and let ψ(V ) have the polar decomposition ψ(V ) =
U |ψ(V )|. Then Fψ has a global minimum on Cp at V , if and only if U∗|ψ(V )|p−1 ∈
ker δB,A.

Proof. It is a direct consequence of Theorem 3.4. 2

This result may be reformulated in the following form where the global minimum
V does not appear. It characterizes the operators S in Cp which are orthogonal to
the range of the derivation δA,B .
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Theorem 3.4 Let S ∈ Cp, and let ψ(S) have the polar decomposition ψ(S) =
U |ψ(S)|. Then

‖ψ(X)‖Cp
≥ ‖ψ(S)‖Cp

,

for all X ∈ Cp if and only if U∗|ψ(S)|p−1 ∈ ker δB,A.

As a corollary of this theorem we have

Corollary 3.3 Let S ∈ Cp ∩ ker δA,B, and let ψ(S) have the polar decomposition
ψ(S) = U |ψ(S)|. Then the two following assertions are equivalent:

1.
‖S + (AX −XB)‖Cp

≥ ‖S‖Cp
, for all X ∈ Cp.

2. U∗|S|p−1 ∈ ker δB,A.

Remark 3.1 We point out that, thanks to our general results given previously
with more general linear maps φ, Theorem 3.4 and its Corollary 3.3 are true for more
general classes of operators than δA,B like the elementary operators E(X) and

∼
E (X).
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