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Abstract. In this paper we studied electronic properties through a semi-
conductor quantum dot which is coupled via tunnel barrier to two su-
perconducting reservoirs. We derive an expression for the conductance
and current density for a mesoscopic device. The tunneling probability is
derived using the Bogoliubov-de Gennes equation (BdG) taking into con-
sideration the effect of Coulomb blockade and the influence of magnetic
field. The barrier height has been determined by Monte-Carlo simulation
technique. The current density (current per unit energy) and conduc-
tance are calculated from the phase-coherent propagation of electron-like
and hole-like excitation emitted by supercurrent reservoirs, together with
electron and hole exciation from the semiconductor. The results show that
an oscillatory behavior of both current density and conductance. These
oscillations appears as random fluctuations in peak heights. This resonant
behavior might be due to the multiple Andreev reflection at the interface
and Coulomb oscillation due to Coulomb charging energy. Our results
agree qualitatively with those in the literature.

M.S.C. 2000: 82D55, 74K30, 74F05, 82D99.
Key words: Electronic stub tuner, Chaotic Dynamics, fluctuations, Andreev
reflections.

Introduction

In recent years our understanding of electron transport in mesoscpic conductors has
greatly improved. It has become clear that at low temperature electrons can maintain
their phase coherence over considerable distances. So it has now become possible
to study devices through which the electron can travel ballistically, with outbeing
scattered by impurities [17, 16, 6, 11]. It was predicted [26, 15] that the supercurrent
in such a device, measured as a function of the width of the channel, should exhibits
steps each time an additional one-dimensional channel is opened. In this paper we
describe the supercurrent flow through S-Sm-S device with the use of transmission and
reflection formalism. This formalism has already been applied for the description of
electron transport in normal metals and semiconductor [7]-[21], the device geometry
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is illustrated in Fig.1. The length of the semiconductors is short compared to the
elastic scattering length. The width may be larger or smaller than scattering length.
At the interface between the semiconductor and superconductor elastic and Andreev
scattering is present.

1 Method of Calculation

All elastic procrsses in the sample are represented by 2Nx2N transfer matrix S whose
transmission Tnm ,T

′
nm and reflection Rnm ,R

′
nm coefficients can mix the left-hand

side(LHS) and right-hand side(RHS) channels.Tnm (,T
′
nm ) is the probability of an

electron traveling to the right (left) in the nth channel on the LHS (RHS) to be
transmitted into the nth channel on the RHS(LHS), and Rnm ,(R

′
nm) the probability

of that electron to be back scattered into the nth channel on the LHS(RHS) [13].
We consider the device geometry is illustrated in Fig.1, mesoscopic semiconductor

between superconducting contacts. The transmission and reflection of the electron
waves at junction formed by lead 1, and 2 can be described by S matrix [24] which
relates the amplitudes of outgoing waves to the amplitudes of the incoming waves at
junction, where S is expressed as

S =



−(a + b) ε1/2 ε1/2

ε1/2 a b
ε1/2 b a


(1.1)

with a= 1
2 [

√
(1− 2ε)−1] and b= 1

2 [
√

(1− 2ε)+1] . The parameter ε describes the
strength of the coupling between the 1D channel and the reservoirs.

We use a well-known model [22, 8] where the pair potential ∆(x) = 0 in semi-
conductor channel, and ∆ = ∆o exp(iφ1,2) with φ1,2 is the Cooper pair phases for the
two leads. The wave functions can be found from the time-independent Bogoliubov
de Gennes equation [10]:

E

(
u(x)
v(x)

)
=

(
H − EF ∆
∆∗ −(H∗ − EF )

) (
u(x)
v(x)

)
(1.2)

In the previous equation, u(x) describrs the electron wave function, and v(x) describes
the hole wave function with an excitation energy E relative to the Fermi energy EF .
Their expressions in the corresponding regions are:

(
u(x)
v(x)

)
=

(
1
0

)
exp(± iq+x), with ~ q+ =

√
2m

√
EF + E(1.3)

with +(−) corresponding to electron excitation which move in positive (negative) x
direction [29] and

(
u(x)
v(x)

)
=

(
0
1

)
exp(± iq−x), with ~ q− =

√
2m

√
EF − E(1.4)
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and in the superconducting regions are [2]:
(

u(x)
v(x)

)
=

(
uo exp(iφ)

vo

)
exp(± ik+

j x)(1.5)

where

k+
j =

[
2m

~2

(
EF + (E2 −∆2

o)
0.5 + Vo + Vb +

UCN2

2
+ e ηVgN + (0.5 ~ωc)

)
− j2π2

W 2

]0.5

with +(−) corresponding to electronlike excitations which travel in positive or (neg-
ative) x direction. where Vo is the potential well depth of the semiconductor hetero-
junction quantum dot, EF is the Fermi-energy,UC is the charging energy and equals
e2/2C in which C is the quantum dot capacitance and e is electron charge, ωc is the
cyclotron frequency and equals ,eB(m)−1, B is the magnetic field, N is the number
of electrons in the quantum dot,η is the lever arm associated with the capacitance
coupled to the gate, Vb is the Schottky barrier height, Vg is the gate voltage and m is
the effective mass.

and
(

u(x)
v(x)

)
=

(
uo exp(iφ)

vo

)
exp(± ik−j x)(1.6)

k−j =
[
2m

~2

(
EF − (E2 −∆2

o)
0.5 + Vo + Vb +

UCN2

2
+ e ηVgN + (0.5 ~ωc)

)
− j2π2

W 2

]0.5

with +(−) corresponding to electronlike excitations which travel in negative or
(positive) x direction.

The coherence factors are given by

uo =
1√
2

√
1 + [1− (∆o/E)2]0.5(1.7)

vo =
1√
2

√
1− [1− (∆o/E)2]0.5(1.8)

The formalism we use is based on Buttiker description of phase-coherent of electron
transport in multiprobe normal conductor [5]. The reflection probability Rnm(φ,E)
is defined as current (in units of e ) which flow back into the nth reservoir as a
result of the current which is emitted by the nth channel at energy E. Similarly the
transmission probability Tnm(φ,E)is defined as the ratio of the current which flow
into the nthchannel as a result of particle at energy E. Because the reservoirs can emit
two types of particle, we add a superscript p, with p = 1 for electron (or electro-like)
excitations andp = 2 for hole (or hole-like) excitations. The current density (current
per unit energy) Jex

n (φ,E) can be expressed as [19]:

Jex
n (φ,E) =

2e

h

∑
p=1.2

Cp
n(E)−Rp

nn(φ,E)−
∑

m6=n

T p
nm(φ,E)(1.9)
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In equation (1.9), Cp
n(E) indicates the ratio between the current and particle cur-

rent carried by the excitations which are emitted by thenth channel, and Rp
nn(φ, E),

T p
nm(φ,E) are the transmission and reflection probapilities from different channels.

The conductance for considered device could be expressed in terms of the transmission
and reflection probabilitis of the various voltage probes [7, 4] :

G =
e2

h
(
∑
nm

Tnm(φ,E))
2

∑
i v−1

i∑
i(1 +

∑
nn Rnn(φ,E)−∑

nm Tnm(φ,E))v−1
i

(1.10)

Where vi is the Fermi velocity in current direction in the ith channel, defined by
(~Ki/m) ( Ki is the longitudinal Fermi wave vector of the ith channel),φ is phase
angle and Tnm, Rnm are the transmission and reflection probabilitis [12].

2 Results and Discussions

We investigate the dependence of the conductance and current density on the magnetic
field, gate voltage and phase angle (see Figs 2,3 and 4 and also Fig.s 5,6 and 7). So,
numerical calculations have been pereformed as follow:

Fig. 1. Schematic represention of the model.

Fig. 2. The conductance-magnetic field dependence for different values of temperature T .
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Fig. 3. The conductance-gate voltage dependence for different values of phase angle φ.

Fig. 4. The conductance-phase angle dependence for different values of temperature T .

The semiconducor heterostructure material was taken as GaAs/AlGaAs and su-
perconducting leads are niobium (Nb). In our calculations we consider the values of
both mean free path and coherence length of quasiparticles are larger than the di-
mensions of the present mesoscopic device, so the transport will be treated as ballistic
one. The electron transport through the device is treated as stochastic process, so
that the tunneled electron energy has been taken as random number relative to the
superconducting energy gap,∆o. Also, the Schottky barrier height Vb, is determined
by using the Monte-Carlo-simulation technique and equals 0.47eV . This value is in
agreement with those found previously [2]-[4], [14]-[27].
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Fig. 5. The current density-magnetic field dependence for different values of temperature T .

Fig. 6. The current density-gate voltage dependence for different values of phase angle φ.

Fig. 7. The current density-phase angle dependence for different values of temperature T .

Our results show the following features:
1. As shown from (Figs 2,3 and 4), that the conductance G, oscillates as a functions

of magnetic field B, gate voltage V g, and phase angleφ, and the oscillation peak,
increases with increasing the above parameters(B, V g,φ ). These oscillations are due
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to the Coulomb blockade effect [9] and the quantum interference of quasiparticles due
to Andreev reflections processes at the semiconductor-superconductors interface [30].

2. Also from the Figs 5,6 and 7, the current densityJ , oscillates as functions of
B, V g, φ, but the oscilations in this case is random oscillation. The behavior may
be explained according to resonant tunneling through the bound state formed within
the quantum dot belonging to different Landau levels [31]-[3].
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