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Abstract. In this paper, we introduce the numerical solution for a fuzzy
nonlinear systems by homotopy method. The fuzzy quantities are pre-
sented in parametric form. Some numerical illustrations are given to show
the efficiency of algorithms.

M.S.C. 2000: 34A12, 65L05.
Key words: homotopy and continuation method, Rung-Kutta method, Fuzzy
parametric form, Fuzzy nonlinear equations.

1 Introduction

In recent years, the homotopy method has been used by scientists. Recently, the ap-
plications of homotopy theory among scientists were appeared [13, 14, 15, 18, 19], and
the homotopy theory becomes a powerful mathematical tool, when it is successfully
coupled with perturbation theory, [1, 2, 16, 17].

The numerical solution of a algebraic nonlinear equation like F (x) = 0, arises
quite often in engineering and the natural sciences. Many engineering design problems
that must satisfy specified constraint as a nonlinear equalities or inequalities. One
of the major applications of fuzzy number arithmetic is nonlinear equations whose
parameters are all or partially represented by fuzzy numbers [4, 11, 21]. Standard
analytical techniques like Buckley and Qu method, [5, 6, 7, 8], can not suitable for
solving the equations such as

(i) ax4 + bx3 + cx2 + dx + e = f,
(ii) x + cos(x) = g,

where x, a, b, c, d, e, f and g are fuzzy numbers. We therefore need to develop the
numerical methods to find the roots of these equations, in general as F (x) = 0. The
Newton’s method for solving a fuzzy nonlinear equation is considered in [3]. The
advantage of the Newton’s method is it’s speed of convergence once a sufficiently
accurate approximation is known. A weakness of this method is that an accurate
initial approximation to the solution is needed to ensure convergence.

In section 2, we recall some fundamental results of fuzzy numbers. In section 3,
we propose Homotopy and Continuation Method for solving fuzzy nonlinear systems.
In section 4, we illustrate some examples and conclusions in the last section.
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2 Preliminaries

In this section we first present some definitions.

Definition 1. A fuzzy number is a fuzzy set like u : IR → I = [0, 1] which satisfies,
[12, 22, 23],

1. u is upper semi-continuous,

2. u(x) = 0 outside some interval [c, d],

3. There are real numbers a, b such that c ≤ a ≤ b ≤ d and

3.1. u(x) is monotonic increasing on [c, a],

3.2. u(x) is monotonic decreasing on [b, d],

3.3. u(x) = 1, a ≤ x ≤ b.

The set of all these fuzzy numbers is denoted by E. An equivalent parametric is
also given in [20] as follows.

Definition 2. A fuzzy number u in parametric form is a pair (u, u) of functions
u(r), u(r), 0 ≤ r ≤ 1, which satisfy the following requirements:

1. u(r) is a bounded monotonic increasing left continuous function,

2. u(r) is a bounded monotonic decreasing left continuous function,

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

Remark 1. A crisp number α is simply represented by u(r) = u(r) = α,
0 ≤ r ≤ 1.

A popular fuzzy number is the triangular fuzzy number u = (α, c, β), with the
membership function

u(x) =





x− α

c− α
, α ≤ x ≤ c,

x− β

c− β
, c ≤ x ≤ β,

where c 6= α, c 6= β and hence

u(r) = α + (c− α)r, u(r) = β + (c− β)r.

Let TF (IR) be the set of all triangular fuzzy numbers. The addition and scalar
multiplication of fuzzy numbers are defined by the extension principle and can be
equivalently represented as follows.

For arbitrary u = (u, u), v = (v, v) we define addition (u + v) and multiplication
by real number k > 0 as

(u + v)(r) = u(r) + v(r), (u + v)(r) = u(r) + v(r),

(ku)(r) = ku(r), (ku)(r) = ku(r).
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3 Homotopy or continuation method

Now our aim is to obtain a solution for fuzzy nonlinear equation F (x) = 0. The
parametric form is as follows:





F (x, x, r) = 0,
∀r ∈ [0, 1],

F (x, x, r) = 0.
(3.1)

In homotopy method, (3.1) is embedded in a one-parameter family of problems
using a parameter λ ∈ [0, 1]. The original problem (3.1) corresponds to λ = 1 and a
problem with a known solution corresponds to λ = 0. For example for x0 ∈ E, the
set of problems

G(λ, x) = λF (x) + (1− λ)[F (x)− F (x0)] = 0, 0 ≤ λ ≤ 1,

or in parametric form ∀r ∈ [0, 1]
{

G(λ, x, x, r) = F (x, x, r) + (λ− 1)F (x0, x0, r) = 0,

G(λ, x, x, r) = F (x, x, r) + (λ− 1)F (x0, x0, r) = 0,
(3.2)

where x0 = (x0, x0) is an initial approximation of (3.1). It is obvious that

G(0, x) = F (x)− F (x0) = 0, G(1, x) = F (x) = 0,

the changing process of λ from zero to unity is just that of G(λ, x) from F (x)−F (x0)
to F (x). In topology, this called deformation, F (x) − F (x0) and F (x) are called
homotopic.

Homotopy or continuation method attempts to determine x∗ = (x1, x1) (for λ = 1)
by solving the sequence of problems according to 0 = λ0 < λ1 < · · · < λm = 1. The
initial approximation to the solution of

{
G(λi, x, x, r) = F (x, x, r) + (λi − 1)F (x0, x0, r) = 0,

G(λi, x, x, r) = F (x, x, r) + (λi − 1)F (x0, x0, r) = 0,
(3.3)

would be the solution xλi−1 = (xλi−1 , xλi−1) to the problem

{
G(λi−1, x, x, r) = F (x, x, r) + (λi−1 − 1)F (x0, x0, r) = 0,

G(λi−1, x, x, r) = F (x, x, r) + (λi−1 − 1)F (x0, x0, r) = 0.
(3.4)

In this paper ∀r ∈ [0, 1] and a fixed λ ∈ [0, 1], we use Newton’s method for solving
(3.3) and (3.4). Newton’s method to (3.3) generates a sequence

x
(k)
λi

= x
(k−1)
λi

− J(x(k−1)
λi

)−1G(λi, x
(k−1)
λi

),(3.5)

which converges rapidly to a solution xλi if x
(0)
λi

(= xλi−1) is sufficiently close to xλi ,
where

J(xλ) =




Gx(λ, xλ, xλ, r) Gx(λ, xλ, xλ, r)

Gx(λ, xλ, xλ, r) Gx(λ, xλ, xλ, r)


 ,



4 S. Abbasbandy and R. Ezzati

and ‖J(xλ)−1‖ ≤ M for a constant M , [10].
In this paper, computing (3.5) is performed in a two step manner. First, a vector

y is found that will satisfy

J(x(k−1)
λi

)y = −G(λi, x
(k−1)
λi

),

second, the new approximation is obtained by adding y to x
(k)
λi

.

4 Numerical application

Here we consider two examples to illustrating the homotopy method for fuzzy non-
linear equations from Buckley and Qu [5].

Example 1. Consider the fuzzy nonlinear equation

(3, 4, 5)x2 + (1, 2, 3)x = (1, 2, 3).

Without any loss of generality, assume that x is positive, then the parametric form
of this equation is as follows

{
(3 + r)x2(r) + (1 + r)x(r) = (1 + r),
(5− r)x2(r) + (3− r)x(r) = (3− r).

To obtain initial guess we use above system for r = 0 and r = 1, therefore

{
4x2(1) + 2x(1) = 2,
4x2(1) + 2x(1) = 2,

{
3x2(0) + x(0) = 1,
5x2(0) + 3x(0) = 3.

Consequently x(0) = 0.4343, x(0) = 0.5307 and x(1) = x(1) = 1
2 . Therefore initial

guess is x0 = (0.4343, 0.5, 0.5307) and hence x0 = (x0, x0) = (0.435 + 0.065r, 0.531−
0.031r). The Jacobian matrix is

[
2(3 + r)xλ(r) + (1 + r) 0

0 2(5− r)xλ(r) + (3− r)

]
.

By λi = λi−1 +0.25 for i = 1, 2, 3, 4, we obtain the solution which the maximum error
would be less than 10−3, Figures 1 and 2. Now suppose x is negative, we have

{
(3 + r)x2(r) + (3− r)x(r) = (1 + r),
(5− r)x2(r) + (1 + r)x(r) = (3− r).

For r = 0, we have, x(0) ' −0.629 and x(0) ' −0.98, hence x(0) > x(0), therefore
negative root does not exist.
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Figure 1 : Standard Analytical Solution Figure 2 : Solution of Homotopy’s Method

Example 2. Consider fuzzy nonlinear equation

(1, 2, 3)x3 + (2, 3, 4)x2 + (3, 4, 5) = (5, 8, 13).

Without any loss of generality, assume that x is positive, then parametric form of this
equation is as follows

{
(1 + r)x3(r) + (2 + r)x2(r) + (3 + r) = (5 + 3r),
(3− r)x3(r) + (4− r)x2(r) + (5− r) = (13− 5r).

By solving the above system for r = 0 and r = 1, we obtain the initial guess
x0 = (0.76, 0.91, 1.06) and hence x0 = (x0, x0) = (0.76 + 0.15r, 1.06 − 0.15r). The
Jacobian matrix is

[
3(1 + r)xλ

2(r) + 2(2 + r)xλ(r) 0
0 3(3− r)xλ

2(r) + 2(4− r)xλ(r)

]
.

By λi = λi−1 +0.25 for i = 1, 2, 3, 4, we obtain the solution which the maximum error
would be less than 10−3, Figures 3 and 4.

5 Conclusions

In this paper, we have suggested numerical solving method for fuzzy nonlinear equa-
tions instead of standard analytical techniques which are not suitable everywhere.
Initially we wrote fuzzy nonlinear equation in parametric form and then solve it by
homotopy method. Finally, examples were presented to illustrate proposed method.
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Figure 3 : Standard Analytical Solution Figure 4 : Solution of Homotopy’s Method
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