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Abstract

§1 shows that the electric 1-form, the magnetic 1-form, and the Pointing
1-form defines an almost coquaternion metric structure. §2 analyses the electro-
magnetic dynamics and formulates a Lorenz-Udrigte world-force law. §3 studies
the magnetic dynamics around piecewise rectilinear electrical circuits.
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1 Electromagnetic almost coquaternion metric struc-
ture

The volume element defined on R® by the Riemannian metric h is defined as dv =
Vdet h dz' A dz? A dz®. Let n be a p-form and w be a (3 — p)-form, p = 0,1,2,3.
The equation n A w = dv defines the Hodge duality operator * between p-forms and
(3 — p)-forms. A double transformation of a p-form in a 3-dimensional space restores
the original form.

Let U C R® be a domain of linear homogeneous isotropic media. In terms of
differential forms, Maxwell equations on U x R can be expressed as

dD =p, dH=J+8.D
dB =0, dE=-8,B,

where B, D, J (respectively, the magnetic induction, electric displacement and electric
current density) are all 2-forms; H (the magnetic field) and E (the electric field) are
1-forms; and p (the electric charge density) is a 3-form. The operator d is the exterior
derivative and the operator J; is the time derivative.
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The constitutive relations are
D=¢*E, B=u"H,

where the star operator * is the Hodge operator, € is the permitivity, and g is the
scalar permeability.

Let us introduce the Poynting 2-form S = E A H and its Hodge dual *S which is
an 1-form. The 1-forms i, = E, 5o = H, n3 = *S are linearly independent at every
point of U. Let &, be the dual vector fields, that is,

na(fb) = 6ab7 Zna ® fa =id.

We define
$o =& @M — & D1,
where {a, b, c} is an even permutation of {1,2,3} and g = > 7, ® n,. We can verify
a
without difficulty that
(¢a7£a7naag)7 a=1,2,3

is an almost coquaternion metric structure [18] on R3.

Theorem 1.1 The electric 1-form, the magnetic 1-form and the Poynting 1-form
define an almost coquatermion metric structure on U C R3.

Open problem. Find the physical meaning of the almost coquaternion metric
structure in Theorem 1.1.

2 Electromagnetic dynamics

We start with the Riemannian manifold (U C R3,h). The 1-forms E and H are
transformed into vector fields via the Riemannian metric h. We denote these vector
fields by the same symbols E and H.

Suppose E and H are C™ vector fields and denote by  the distribution generated
by E and H. The generic element in (Q is the vector field

X(z,t) = u(z)E(x,t) + v(z)H(z,t), ze€U, t€R.

A field line of X is called electromagnetic line. More precisely, an electromagnetic
line is a solution of the control (kinematic) system

dy
1) 75 = tO)EM(s),8) +v(v(s)H(v(s), ).
The set of all electromagnetic lines is called the electromagnetic phase portrait.
Let V be the connection induced by the Riemannian metric h. The derivated
dynamical system

d'isz_z _ %(u(v(s))E(’y(s),t) +o(v(8)H(Y(s),1))
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represents the dynamics of the kinematic system (1). Introducing the energy f =
Th(X,X), and the external (1,1)-tensor field F = VX — k™! ® h(VX), and using
an artifice which does not destroy the prolongation, we can replace the derivated
dynamical system by a conservative dynamical system of order 2 fixed by f and F
[20].

Theorem 2.1 The kinematic system (1) can be prolonged to (a potential or nonpo-
tential) dynamical system with n degrees of freedom, namely

Vdfy dz
(2) Is ds rdf+F(dt)

We identify the tangent bundle TU with the cotangent bundle T*U via the Rie-
mannian metric h.

Theorem 2.2 1) The trajectories of the dynamical system (2) are the extremals of

the Lagrangian
dy dy dy
L= h
(2.59)-9(%3)+r@.

2) The dynamical system (2) is conservative accepting the Hamiltonian

dy dy
= h .
"= (ds ds) /()
Theorem 2.3 (Lorentz-Udriste world-force law) Let h;; be the local components of
the metric h and F;k, i,5,k = 1,2,3, be the local components of the connection V.
Every nonconstant trajectory of the dynamical system (2), which corresponds to a

constant value H of the Hamiltonian, is a reparametrized horizontal geodesic of the
Riemann-Jacobi-Lagrange manifold

(U\E, h=H+fh, N =Thy"+F' i,5,k=123),

where . .
=V,; X! — h*hy; v X*

are the local components of the external tensor field F' and £ is the set of zeros of the
vector field X .

Particularly, a spatial configuration of piecewise rectilinear electrical circuits I’
produces a magnetic field H on U = R? \ T’ by Biot-Savart-Laplace formula. This
field satisfies curl H = 0, div H = 0. The dynamics induced by H is characterized by

dfy 1 Vdy
dS H7 f__ (HaH)a %d__gra’dfa
dvy dvy _ 1 (dy dy
h(ds ds)+f’ H_Qh(ds -5

(U\E, h=0L+h).

For simplification of computations we accept h;; = §;; (the Euclidean metric).
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3 Computer simulation of magnetic phase portrait
and of magnetic geometric dynamics around a
spire of coil

For practical reasons, we consider the magnetic field H of components

z z
Ho-—__ Y v _ _

ri(r—2) ra(ra—2) r3(rs—y) r3(rs—y+b)

z + z
ra(ra —y) 1alra—y+0b)

_ z+a r—a z z
ri(ri—2) ra(ra—2) r3(rs—zxz+a) ralra—z—a)

Yy

__z—a zT—a n y—=> T+a
rs(rs —y) r3(rs—y—+b) ri(rs—z+a) rara—vy)

H,=

_ T+a _ y—b
ra(ra —y+b) relra—z—a)

defined on R?\ T, where the configuration I' is assimilated to a spire of coil (T is a
four times bended electrical circuit as in Fig. 1).
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Fig. 1

Figs. 2a - 2d illustrate the magnetic kinematic around coil spire, Fig. 3 the energy
diagram, and Fig. 4 the magnetic kinematic determined by a local minimum energy
point.
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Fig. 2a (frame 30)

Fig. 2¢ (frame 105)
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Fig. 2b (frame 72)

Fig. 2d (frame 120)
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Fig. 3

Fig. 4
Since curl H = 0, we have

Theorem 3.1 The nonclassical magnetic dynamics around T is described by the po-
tential dynamical system with three degrees of freedom

Lz _0f dy _0f dz_0f
dt2 90z’ di2 Oy’ di2 02’

where f = L(HZ + H2 + HZ2) is the energy of the magnetic field H.
The system in Theorem 3.1 is equivalent to the first order differential system

dz dy _ dz du _90f dv_0f dw _0f

P T T T L oy’ dt 0z
For the computer simulation of solutions of the dynamical system in Theorem 3.1

we need to calculate the partial derivatives of f, and implicitely the derivatives of H.
These are

0H, Y z+a Y T—a
Oz r2(rn—2)2 n (21 =2) r2(re —2)2 1o (2> = 2)
z zT—a z zT—a
— . 2rs —y) + . 2rs —y+b
ra(rs —y)?2 73 (2rs =) ra(rs —y+b)2 73 (2rs =y +b)
z r+a z r+a
: (2ra —y) - : (2rs —y +b);

rira—y)* 1 rira—y+0)?>
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0H, z+a y z -
= - NG - Uy —
Oy r2(ry — 2)? rl(rl z)+r§(r3—x+a)2 r3 (2rs =z +a)
z—a y z y—=>
Y (2ry —2) - Iy — T —a);
TR T T Bria—ap w O
O0H, T—a z z—a
- -2 (2r — 2 (2rs—y+b
Oz T2 (rs —y)? r3(r3 v) T2 (rs —y +b)? 3(7'3 y+b)
y—2> z T+a z
_ Z (e — _ 2 (2 —
r2(rs — = + a)? (2rs =z +a) r2(ry — y)2 r4(r4 v)
T+a z y—>b z
2 2ra—y+b Z(2rs — 2 — a);
r2(ry —y +b)? 4(7'4 y+ )+ri(r4—x—a)2 r4(r4 z-a)
(z + a)?
OH, rin -2 - ™ @ -2 z x_a(Qr —z+a)
dx r2(ry — z)2 r3(rs —z+a)? 13 8
(z —a)?
ro(re —2z) — r2 (2re — 2) . tta
- 3 - = 5 (2ry —z — a);
r3(re — z) ri(ra —z —a) T4
52
oH, z+a r3(r3—x+a)——3(2r3—x+a)
9z 3 r3(rs — z + a)?
52
r—a T4(T4—$—a)—a(274—$—a)
- r3 + r2(ry — z — a)? ;
52
OH, y 7"3(7"3—y+b)—g(27"3—y+b)
Oz __E_ r3(rs —y +b)?
2
z
y r4(r4—y+b)—r—(27"4—y+b)
+ 5+ 2 . 2
rs ri(ra —y+0b)
2 22
rs(rs —y)— —@2rs—y) rma(ra—y)— —2ra-y)
+ - 9
r3(rs — y)? 3 (rs — y)?
and consequently
of O0H, OH OH,
o _ HZY 4 H
Bs  tor T g TG
of OH, OH OH,
— = H, H Y+ H
of O0H, OH OH,
— = H, H Y+ H
Oz ¥ 9z Ty Oz + Oz
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The computer simulation for the dynamics around coil is now in preparation. To
simulate the geometric dynamics we are advanced in establishing a new laboratory
endowed with special powerful computer network. For the moment being and to
check our ideas, we have used the field generated around a linear wire. The procedure
requires the following functions

Xi(z,y,2,u,v,w) =u;  Xo(z,y,2,u,v,w) =v; Xs(z,v,2,u,v,w) = w;
2 3

Ty z x

X =2 -2 :

4(xay7z7uavaw) (xQ 4 y2)3 + (.’IJ2 + y2)2 (.’IJ2 + y2)3’
y y® z’y

X5(x,y,z,u,v,w) = (xg +y2)2 - (.’112 +y2)3 - (.’112 +y2)3;

Xﬁ(xayazauavaw) =0.

To carry out our experiments, we have used the iteration as a natural process for
computers. To display the images found in this text, we developed software based
on adaptive Runge-Kutta type methods. Of course, these programs are by no means
optimal in terms of both runtime and usability. Rather, they should serve mainly as
guidelines for the reader who wishes to develop software for experimentation purposes.

Breefly, our algorithm performs the following main steps:

STEP 1. Given the second order system in Theorem 3.1 and the matrix
of initial conditions which corresponds to the number of particles whose
dynamics is studied. Find the matrix of solutions and their projections
in three dimensional space.

STEP 2. Set the interval and the integration step.

STEP 3. Apply Runge-Kutta adaptive method and plot.

The dynamics illustrated in Fig. 5 is obtained by using the following three initial

conditions:
0 0.5 0 2 0.1 0.1

0 0.5 1 2 0.1 -01
—-0.544 -0.839 05 —-0.839 0544 0

Fig. 5



48 C. Udrigte, M. Postolache and A. Soeanu

References

[1] A. Back and al., DSTOOL—-Computer Assisted Exploration of Dynamical Sys-
tems, Notices of the A.M.S.,, 39, 4 (1992), 303-309.

[2] J. Guckenheimer and P. Worfolk: Dynamical systems: some computational prob-
lems, in Bifurcations and Periodic Orbits of Vector Fields (D. Schlomiuk (Ed.)),
Kluwer, 1993, pp. 241-277.

[3] N.A. Krall and A.W.Trivelpiece, Principles of Plasma Physics, McGraw-Hill,
1973, pp. 265-285.

[4] E. K. Maschke: Dynamical systems in plasma theory, in Stochastics, Algebra and
Analysis (S. Albeveiro et al. (Eds.)), Kluwer, 1990, pp. 173-187.

[5] C. Meunier, M. N. Bussac and G. Laval: Physica, 4D (1982), 236.
[6] C. Mercier, Lectures in Plasma Physics, Luxemburg, Sept. 1974.

[7] L. Milea, On the Magnetic Field Lines of D.G. Polygonal Circuits, Rev. Roum.
Sc. Tech. Electrotech. et Energ., 31, 4 (1986), 355-364.

[8] C. Mocanu, Teoria Cimpului Electromagnetic, Editura Didactica gi Pedagogici,
Bucuregti, 1981, pp. 136-141.

[9] E. Petrigor: Heteroclinic connections in the dynamics of a reversible magnetic-
type vector field, Physica, D122 (1998), 319-327.

[10] M. Postolache and S. Udrigte: Computer expriments for conformal dynamical
systems, in Global Analysis, Differential Geometry, Lie Algebras (Gr. Tsagas
(Ed.)), Geometry Balkan Press, 1997, pp. 75-82.

[11] M. Puta: Hamiltonian Mechanical Systems and Geometric Quantization, Kluwer,
1993.

[12] G. Schmidt, Period Doubling and Chaos in Magnetic Field Line Structures, Com-
ments Plasma Phys. Controlled Fusion, 14, 3 (1991), 165-169.

[13] A. Udrigte and C. Udrigte: Dynamics induced by a magnetic field, Conference
on Differential Geometry, Budapest, July 27-30, 1996, in Ed. J. Szenthe, "New
Developments in Differential Geometry”, Kluwer Academic Publishers (1996),
pp. 429-442.

[14] Sabba Stefinescu, Etudes theoriques sur la prospection electrique du sous-sol,
Lucrdri de geofizica aplicatd ale serviciului de prospectiuni, 24 (1929).

[15] Sabba Stefanescu, Lignes du champ magnetique autour d’une ramification de
courants, Bull. Math. Phys. Pures et Appl., (1929), 1-9.

[16] Sabba Stefinescu, Lignes H, Circuits rectilignes coudes, Manuscript Notices,
1944-1992, unpublished.

[17] Sabba Stefanescu, Addenda 1987-Open Magnetic Field Lines (IIT), Rev. Roum.
Geol., Geoph. et Geogr., 31 (1987), 113-119.



Computer simulation of magnetic phase portraits 49

18]

[26]

[27]

[28]

C. Udrigte: Almost coquaternion metric structures on 3-dimensional manifolds,
Kodai Math. Sem. Rep., 26 (1975), 318-326.

C. Udrigte: Field Lines, Technical Editorial House, Bucharest, 1988 (Romanian).

C. Udrigte: Geometric dynamics, Second Conf. of Balkan Society of Geometers,
Aristotle University of Thessaloniki, June 23-26, 1998.

C. Udrigte, M. Postolache and A. Udrigte: Numerical simulation of dynamic
magnetical system, Sci. Bull. P.U.B. Series A: Appl. Math. Phys., 55 1-2 (1993),
51-64.

C. Udrigte and A. Udrigte: Electromagnetic dynamical systems, BJGA, 2 No. 1
(1997), 129-140.

C. Udrigte, V. Iftode, M. Postolache, Metode numerice de calcul cu programe
Turbo Pascal, Editura Tehnica, Bucuregti, 1996.

C. Udrigte, M. Postolache, A. Udrigte, Numerical Simulation of Dynamic Mag-
netical System, Third Int. Symp. ”Chaotic Dynamical Systems”, Utrecht, The
Netherlands, June 14-17 (1992), Sci. Bull. P.U.B. Series A, Appl. Math. Phys.,
55 1-2 (1993), 51-64.

C. Udrigte, M. Postolache, A. Udrigte, Energy of Magnetic Field Generated
by Currents Through Filiform Electrical Circuits of Right Angle Type, Proc.
Int. Conf. Diff. Geom. Appl., Bucharest, August 24-29 (1992), Tensor, N.S., 54
(1993), 185-196.

C. Udrigte, M. Postolache, A. Udrigte, Acad. Sabba Stefianescu Conjecture; Lines
of Magnetic Field Generated by Filiform Electrical Circuits, Rev. Roum. Geoph.,
36 (1992), 17-25.

A. Udrigte, C. Udrigte, Dynamics Induced by a Magnetic Field, in New Devel-
opments in Differential Geometry, Budapest, 1996, pp. 429-442, Ed. J. Szenthe.

C. Udrigte, A. Udrigte, Electromagnetic Dynamical Systems, in Balkan Journal
of Geometry and Its Applications, 2, 1 (1997), 129-140.

Authors’ address:

C. Udrigte, M. Postolache and A. Soeanu
Politehnica University of Bucharest

Department of Mathematics 1

Splaiul Independentei 313,

77206 Bucharest, Romania

E-mail: udriste@mathem.pub.ro



