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Abstract. The paper determines the magnetic field and its vector and
scalar potentials for spatial piecewise rectilinear configurations. Several
applications for configurations which generate open magnetic lines, plane
angular circuits and properties of the magnetic lines and surfaces, are
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1 Decomposition in elementary circuits of
a piecewise rectilinear spatial configuration

For i = 1, n , let γi be a piecewise rectilinear electric circuit traversed by the current Īi
which is constant on each rectilinear part. Let J̄i be the associated versor, piecewise
defined via J̄i = Īi/Ii, where Ii =‖ Īi ‖.

The circuit γi is expressed in the form

γi =

m⋃
j=1

γij ,

where γij is a straight line, a semi-line or a segment in space, disposed under the
condition of circuit closedness (either at finite distance, or at infinity). Let

Γ =

n⋃
i=1

γi =

n⋃
i=1

m⋃
j=1

γij

be a configuration in space, union of piecewise linear electric circuits. For modelling
real phenomena, we agree that a configuration in space has to satisfy the following
axioms:

(A.1) - Each segment γij has its edges in contact with the extremities of other
segments or semi-lines γkl. Each semi-line γij has its finite edge in contact with the
edge of a segment or of a semi-line γkl.
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(A.2) - At each knot (contact point) the second Kirchhoff law shall be satisfied,
i.e., the algebraic sum of the intensities vanishes. If this won’t happen, the magnetic
field associated to the net doesn’t admit a scalar potential U .

Assuming that these axioms are satisfied, the magnetic field associated to the
configuration Γ will be, according to the Biot-Savart-Laplace (BSL) rule,

H̄Γ =

n∑
i=1

H̄γi , H̄γi(M) = Ii

∫
γi

J̄i × PM
PM3

dτP , ∀M ∈ R3\Γ,

where P ∈ γi is the arbitrary point on the electric circuit γi, and H̄γi is the magnetic
field generated by the electric circuit γi (modulo a multiplicative constant, 1/4π).

Using the additivity of the integral, we can write

H̄Γ =

n∑
i=1

m∑
j=1

H̄γij , H̄γij (M) = Iij

∫
γij

J̄ij × PM
PM3

dτP , ∀M ∈ R3\Γ,

where P ∈ γij is the arbitrary point on the rectilinear segment γij . We notice that
H̄γij is a proper magnetic field iff γij is a straight line.

The configuration Γ which satisfies the axioms (A.1), (A.2) produces the same
magnetic field as the one determined by the configuration

Γ̃ =

n⋃
i=1

m⋃
j=1

γ̃ij ,

where γ̃ij are electric circuits determined as follows:
a) If γij is a finite segment γij = [AB], then γ̃ij is the union

γ̃ij = (A−A]
⋃
γij
⋃

[BB+),

where the semi-lines (A−A] and [BB+) are parallel to the axis Ox and are traversed
by a current of constant magnitude Iij , with the sense given by the order of points
(Fig.1).
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b) If γij is a semi-line which is oriented by the current Ī, then:
b1) for γij = [AB+), we have γ̃ij = (A−A]
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b2) for γij = (A−B], we have γ̃ij = (A−B]
⋃

[BB+),
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Fig. 2.2

where (A−A] and [BB+) are semi-lines parallel to Ox, traversed by a current of
magnitude Iij , with the sense given by the order of points (Fig.2.1, 2.2). c) If γij is
a line (A−B+) oriented by Īij , then γ̃ij = γij .

Remarks. 1) In this framework, we have the equal magnetic fields

H̄Γ(M) = H̄Γ̃(M),∀M ∈ R3\Γ,

because adding the terms,

H̄Γ̃(M) =

n∑
i=1

H̄γ̃i(M),M ∈ R3\Γ̃,

the domain of the function H̄Γ̃ is extended (by continuity) from R3\Γ̃ to R3\Γ.

2) A configuration γ̃ij of type a), γ̃ij = (A−A]
⋃

[AB]
⋃

[BB+), produces a mag-
netic field, which is equivalent to the one produced by a pair of angular configurations,
namely

γ̂ij = γij1 ∪ γij2 ,
{
γij1 = (A−A] ∪ [AB0)
gij2 = (B0B] ∪ [BB+),

as shown in Fig.3.
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3) Hence, it follows that any spatial configuration Γ which satisfies the postu-
lates (A.1), (A.2) decomposes into angular configurations γ (called in the following,
elementary angular configurations) traversed by the current Ī (of intensity I, and
associated versor J̄).
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Here the current Ī |γ represents a vectorfield which is tangent to the curve γ, which
has a discontinuity at the vertex V . The mapping I is piecewise constant.

We remark that the straight line is a particular case, obtained easily as opposed
semi-lines (with the angle of magnitude π).

The magnetic field H̄Γ defined on R3\Γ by the BSL formula is irrotational (rot H̄Γ

= 0̄) and solenoidal (div H̄Γ = 0). Therefore, it admits a local scalar potential UΓ,
i.e., H̄Γ = grad UΓ and a vector potential

Φ̄Γ =

n∑
i=1

Ii

∫
γi

J̄i
PM

dτP ,

i.e., H̄Γ = rot Φ̄Γ.

2 The magnetic field associated to an elementary
angular spatial configuration

In the following, we shall study the magnetic field H̄γ of an elementary angular
spatial configuration γ. Using the additivity of the Biot-Savart-Laplace formula, we
shall obtain in Section 3 the magnetic field associated to an arbitrary configuration
Γ which satisfies the axioms from Section 1.

Notations. For the elementary configuration γ from Fig.4, we shall denote

Fig. 5

γ = γ− ∪ γ+,

γ− = Γ(V, θ−, ϕ−) = (A−V ], γ+ = Γ(V, θ+, ϕ+) = [V A+),
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where {
θ− = ( ̂Ox,WB−), θ+ = ( ̂Ox,WB+) ∈ [0, 2π)

ϕ− = ( ̂WB−, V A−), ϕ+ = ( ̂WB+, V A+) ∈ [−π/2, π/2],

and B+, B−,W are respectively the projections of A+, A−, V , on xOy. We can de-
termine these four angles, considering the following result

Lemma 1. Let be the segment [AB] of extremities

A = (xA, yA, zA), B = (xB , yB , zB), A 6= B ∈ R3

We shall use the notations{
x∆ = xB − xA, y∆ = yB − yA, z∆ = zB − zA,
ρ = (x2

∆ + y2
∆ + z2

∆)1/2.

In spherical coordinates, the semi-lines

γ− = Γ(B, θ−, ϕ−) = (A−B], where [AB] ⊂ (A−B];

γ+ = Γ(A, θ+, ϕ+) = [AB+), where [AB] ⊂ [AB+)

are fixed by the angles

ϕ− = ϕ+ = ϕ = arcsin
z∆

ρ

θ− = θ+ = θ =



arccos x∆

ρ cosϕ , y∆ > 0

2π − arccos x∆

ρ cosϕ , y∆ < 0

0, y∆ = 0, x∆ ≥ 0

π, y∆ = 0, x∆ < 0.

Proof. We use the relations x∆ = ρ cos θ cosϕ
y∆ = ρ sin θ cosϕ
z∆ = ρ sinϕ,

(ρ, θ, ϕ) ∈ R∗+ × [0, 2π)×
[
−π

2
,
π

2

]
.

Let c : I → R3 be a parametrized curve, with c(I) closed or unbounded at both edges
(”closed at infinity”), traversed by the current J̄ = I ˙̄c/ ‖ ˙̄c ‖. Let H̄γ be the magnetic
field associated to the electric circuit γ = Im c.

Proposition 1. If T : R3 → R3 is a translation and R : R3 → R3 is a rotation,
then

a) H̄Rγ(RM) = RH̄γ(M);

b) H̄T γ(TM) = H̄γ(M);

c) H̄J γ(JM) = RH̄γ(M),

for all M ∈ R3\γ, where J = T ◦ R.
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Proof. We shall use the following notations{
v = ˙̄c/‖ ˙̄c‖, dτP = ‖ ˙̄c‖dt,
PM = OM − c, P = c(t) ∈ γ, M ∈ R3\γ.

a) Rγ is parametrized by Rc : I → R3 and we have{
Rv = R ˙̄c/‖R ˙̄c‖ = R ˙̄c/‖ ˙̄c‖, dτRp = ‖R ˙̄c‖dt = ‖ ˙̄c‖dt,
RPRM = Rw −Rc = R(w − c),

where we denoted w = OM . Then the magnetic field of the rotated curve will be

H̄Rγ(RM) =

∫
I

Rv ×R(w − c)
‖R(w − c)‖3

‖ ˙̄c‖dt = R ◦
∫
I

v × (w − c)
‖(w − c)‖3

dt = RH̄γ(M),

∀M(x, y, z) ∈ R3\γ.

b) For the translation T , denoting c : I → R3, we have

T (P )T (M) = PM = OM − c(t),

where P = c(t). Using this equality, we get

HT γ(TM) = Hγ(M).

We remark that c) is a consequence of the relations a) and b).

More generally, we can state the following result:

Proposition 2. Let γ be an elementary spatial configuration traversed by an
unitary electric current J̄ and let ϕ be an isometry of the space R3; let H̄γ and H̄γ̃ be
respectively the magnetic fields associated to the configurations γ and γ̃ = ϕγ, then
the magnetic field associated to the elementary configuration γ̃ is given by

H̄γ̃(N) = ε(ϕ)ϕ∗H̄γ(ϕ−1N),∀N ∈ R3\γ̃, (1)

where ϕ∗ is the orthogonal linear mapping associated to the isometry ϕ, and

ε(ϕ) = det(ϕ∗).

Proof. Considering that on γ = Imc, c : I → R3 we have J̄ = c′, α = ϕ ◦ c, and by
using the Biot-Savart-Laplace formula, we get

H̄γ̃(ϕ(M)) =

∫
ϕ(γ)

α′(t)× α(t)ϕ(M)∥∥∥α(t)ϕ(M)
∥∥∥3 dt =

∫
ϕ(γ)

ϕ∗(c′(t))× ϕ(c(t))ϕ(M)∥∥∥ϕ(c(t))ϕ(M)
∥∥∥3 dt =

=

∫
ϕ(γ)

ϕ∗(c′(t))× ϕ∗(c(t)M)∥∥∥ϕ∗(c(t)M)
∥∥∥3 dt = ε(ϕ)

∫
γ

c′(t)× c(t)M∥∥∥c(t)M∥∥∥3 dt =

= ε(ϕ)H̄γ(M),∀M ∈ R3\γ.



18 C. Udrişte, V. Balan, A. Udrişte

By denoting N = ϕ(M), i.e., M = ϕ−1(N), we obtain the relation (1). In the proof
we used the known result, that for any orthogonal mapping A ∈ O(R3) of the vector
space R3, the following relations hold true

A(ū× v̄) = ε(A)A(ū)×A(v̄),∀ū, v̄ ∈ R3,

‖Aū‖ = ‖ū‖,∀ū ∈ R3.

Regarding Uγ̃ and Φ̄γ̃ we can state the following results:

Proposition 3. The scalar potential Uγ̃ associated to the elementary configuration
γ̃ is given by

Uγ̃(N) = Uγ(ϕ−1N), ∀N ∈ R3\γ̃.

Proposition 4. The vector potential Φ̄γ̃ associated to the elementary configura-
tion γ̃ is given by

Φ̄γ̃(N) = ε(ϕ)ϕ∗Φ̄γ(ϕ−1N), ∀N ∈ R3\γ̃.

In the following, we shall consider the case in which ϕ is a congruence, hence the
associated orthogonal mapping ϕ∗ is a rotation and therefore ε(ϕ) = 1.

For deriving the magnetic field and the associated potentials of an arbitrary ele-
mentary configuration, we shall apply the previous result to a pair of elementary plane
semi-lines (located inside the plane xOz, Fig. 6), whose BSL associated integrals are
provided by

O

ī

γ+

t≥0 x O

−ī

γ−

t≤0 x
-q -q-q �q

Fig. 6

Lemma 3. Let be the elementary plane semi-lines from Fig.6, described by{
γ+ = Im c1, c1(t) = (t, 0, 0), t ≥ 0 and z
γ− = Im c2, c2(t) = (−t, 0, 0), t ≤ 0.

Then the BSL integrals have on these semi-lines the form

H̄γ+(M) =
x+ r

u2r
(0,−z, y), H̄γ−(M) = −x+ r

u2r
(0,−z, y),

where
u2 = y2 + z2, r = (x2 + y2 + z2)1/2,M(x, y, z) ∈ R3\γ+,

and the vector potential is, respectively

Φγ+
(M) = − ln | r − x |~i, Φγ−(M) = ln | r − x |~i.

Proof. a) For the semi-line γ+, denoting c = c1, we notice that Im c ⊂ Ox and the
traversing sense given by the velocity ˙̄c coincides with the positive sense of the axis
Ox. Let M(x, y, z) ∈ R3, w̄ = OM . We have c̄(t) = t̄i ≡ (t, 0, 0), t ≥ 0, and

PM = w̄ − c̄ ≡ (x− t, y, z), ˙̄c(t) = ī ≡ (1, 0, 0), v̄ ≡ ˙̄c/‖ ˙̄c‖.
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Then the BSL integral for the semi-line γ+ is

H̄γ+(M) =

∫
γ+

v̄ × PM∥∥PM∥∥3 dτP =

∫ ∞

0

v̄ × (w̄ − c̄)
‖w̄ − c̄‖3

∥∥ ˙̄c(t)
∥∥dt =

=

∫ ∞

0

∣∣∣∣∣∣
ī j̄ k̄
1 0 0

x− t y z

∣∣∣∣∣∣ · dt

(
√

(x− t)2 + y2 + z2)3
=

= (yk̄ − zj̄) ·
∫ ∞

0

dt

(
√

(t− x)2 + u2)3
= (yk̄ − zj̄) · t− x

u2
√

(t− x)2 + u2

∣∣∣∣∣
t=∞

t=0

=

= (yk̄ − zj̄) ·
[

1
u2 + x

u2
√
x2+y2+z2

]
= x+r

u2r
· (yk̄ − zj̄) =

x+ r

u2r
· (0,−z, y),

where ‖ċ(t)‖ = ‖̄i‖ = 1, c̄ = OP , and we denoted

u2 = y2 + z2, w̄ = OM, r = ‖w̄‖ = (x2 + y2 + z2)1/2,M(x, y, z) ∈ R3\γ+.

b) For the semi-line γ−, by denoting c = c2, we notice that Im c ⊂ Ox, with opposite
traversing sense, vs. the positive sense of the Ox axis, c(t) = −t̄i, t ≥ 0.

Let M(x, y, z) ∈ R3, w̄ = OM . We have

PM = w̄ − c̄ ≡ (x+ t, y, z), ˙̄c = −ī, v̄ = ˙̄c/‖ ˙̄c‖ = −ī ≡ (−1, 0, 0)

and the BSL integral on the semi-line γ− is

H̄γ−(M) =

∫
γ−

v̄ × PM∥∥PM∥∥3 dτP =

∫ 0

−∞

∣∣∣∣∣∣
ī j̄ k̄
−1 0 0
x− t y z

∣∣∣∣∣∣ dt√
(x− t)2 + u2

=

= −(yk̄ − zj̄) · t+x

u2
√

(t+x)2+u2

∣∣∣∣t=0

t=−∞
= −(yk̄ − zj̄) ·

(
x
u2r + 1

u2

)
≡

≡ −x+ r

u2r
(0,−z, y).

We remark that H̄γ−(M) = −H̄γ+
(M) and we can easily check straightforward that

the following functions have as curl the two BSL H̄γ+
and H̄γ− , respectively,{

Φ̄γ+(M) = − ln | r − x | ī

Φ̄γ−(M) = ln | r − x | ī.

In the following we shall determine the isometries which provide from the semi-lines
γ+, γ− from Lemma 3, the angular elementary configurations.

Remarks. Let Rθ the rotation of angle θ around the Oz axis in trigonometric
sense (from Ox to Oy), and Rϕ the rotation around the Oy axis (from Ox to Oz).
Then we have

a) The matrices Rθ, respectively Rϕ associated to the two rotations are

Rθ =

 c′ −s′ 0
s′ c′ 0
0 0 0

 , Rϕ =

 c 0 −s
0 1 0
s 0 c
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and we have

Rθϕ
=

notRθRϕ =

 cc′ −s′ −sc′
cs′ c′ −ss′
s 0 c

 ,

where we denoted {
c′ = cos θ
s′ = sin θ

{
c = cosϕ
s = sinϕ.

b) We have the relations

R−1
θϕ = tRθϕ = tRϕ ·t Rθ = R−1

ϕ ·R−1
θ = R−ϕ ·R−θ

c) For a point M(x, y, z) ∈ R3, the associated position vector r̄ = OM can be written
r̄ ≡ (x, y, z) = (rcc′, rcs′, rs), and the versors of the associated spherical moving frame{

ēr =

∥∥∥∥∂r̄∂r
∥∥∥∥−1

· ∂r̄
∂r
, ēθ =

∥∥∥∥∂r̄∂θ
∥∥∥∥−1

· ∂r̄
∂θ
, ēϕ =

∥∥∥∥ ∂r̄∂ϕ
∥∥∥∥−1

· ∂r̄
∂ϕ

}
,

form an orthonormal basis, whose matrix is

Rθϕ = [ēr, ēθ, ēϕ] .

Hence, the spherical frame can be obtained by rotating the canonic frame {̄i, j̄, k̄} with
the angle ϕ around the Oy axis (with the sense from Ox towards Oz), followed by a
rotation of angle θ around the Oz axis (with the sense from Ox towards Oy)-see Fig.7.

Fig. 7

d) Let Rγ the rotation of angle γ around the Ox axis; Rγ has the associated matrix

Rγ =

 1 0 0
0 c̃ −s̃
0 s̃ c̃

 , where

{
c̃ = cos γ
s̃ = sin γ

, γ ∈ [0, 2π).

Then

Rθϕγ
=

notRθRϕRγ =

 cc′ −s′c̃− sc′s̃ s′s̃− sc′s̃
cs′ c′c̃− ss′s̃ −c′s̃− ss′c̃
s′ cs̃ cc̃

 .
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3 Applications to particular angular configurations

Using the results of the previous section, for the case θ = 0, we get the following
known results regarding plane elementary configurations Γ ⊂ xOz.

Corollary 1. Let be a plane angular configuration Γ = Γp(V, α, β) ⊂ xOz, of
vertex V (a, b, c), b = 0, which is traversed by a unitary current, as in Fig.8,

Fig. 8

The magnetic field and its vector and scalar potentials associated to the configuration
Γ have respectively the form

H̄Γ(M) = 1
r(r−τ) (−vs, us− wc, vc)− 1

r(r−τ̄) (−vs̄, us̄− wc̄, vc̄),∀M ∈ R3\Γ,

Φ̄Γ(M) = Φ̄+ + Φ̄−,

{
Φ̄+ = − ln | r − τ | (c, 0, s),

Φ̄− = ln | r − τ̄ | (c̄, 0, s̄), ∀M ∈ R3\Γ,

UΓ(M) = 2 arctan
−w sin σ

2 − u cos σ2 + r cos ∆
2

v sin ∆
2

,∀M ∈ R3\xOz,

where we denoted

c = cosα, s = sinα, c̄ = cosβ, s̄ = sinβ,

∆ = α− β, σ = α+ β,

u = x− a, v = y − b, w = z − c, b = 0,

r = (u2 + v2 + w2)1/2, τ = uc+ ws, τ̄ = uc̄+ ws̄.

Moreover, Γ decomposes as follows

Γ = Γp(V, ϕ+, ϕ−) = (A−V ] ∪ [V A+) = Γ+(V, 0, ϕ+) ∪ Γ−(V, 0, ϕ−),

where ϕ+ = ( ̂Ox, V A+) = α,ϕ− = ( ̂Ox, V A−) = β.

Proof. For α = ϕ+ and γ+ = [Ox), we remark that the given configuration can be
obtained by a rotation [OA+) = Rαγ+. From Proposition 2 and Lemma 3, we get

H̄[OA+) = H̄Rαγ+
(M) = RαH̄γ+

(R−αM)

=

 c 0 −s
0 1 0
s 0 c

 ·
 0

us− wc
v

 · 1

r − τ
· 1

r
=

=
1

r(r − (uc+ vs))
t(−vs, us− wc, vc), ∀M = (x, y, z) ∈ R3\[OA+),
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where we denoted c = cosα, s = sinα, τ = uc+ ws.

Similarly, for β = ϕ− and γ− = (xO], we have (A−O] = Rβγ−, and hence

H̄(A−O] = H̄Rβγ−(M) = RβH̄γ−(R−βM)

=
−1

r(r − (uc̄+ ws̄))
· (−vs̄, us̄− wc̄, vc̄).

Adding the two fields, and composing with T −1 we get H̄γ . Similarly we obtain also
the vector potential ΦΓ associated to the circuit Γ; by integrating the field H̄Γ, we
get also the scalar potential UΓ. We notice that for α = β we have H̄γ− = −H̄γ+

.

Corollary 2. In particular, for Γ = Γp(V, α,−α), (see Fig.9)

Fig. 9

we have the magnetic field and its associated vector and scalar potentials, respectively

H̄Γ(M) ≡
[−vs
r

(
1

r−τ1 + 1
r−τ2

)
, 1
r

(
us−wc
r−τ1 + us+wc

r−τ2

)
, vcr

(
1

r−τ1 −
1

r−τ2

)]
,

Φ̄Γ(M) ≡
(

ln
∣∣∣ r−uc+wsr−uc−ws

∣∣∣c , 0,− ln | (r − uc+ ws)(r − uc− ws) |s
)
, ∀M ∈ R3\Γ,

UΓ(M) = 2 arctan −u+r cosα
v sinα , ∀M ∈ R3\xOz,

where we denoted{
c = cosα, s = sinα, τ1 = cu+ sw, τ2 = cu− sw,

r = (u2 + v2 + w2)1/2, y 6= b ≡ 0.

Corollary 3. For the configuration given by a straight line Γ = Γp(V, α, α + π),
see Fig.10, we find

H̄Γ(M) =
[−vs
r

(
1

r−τ + 1
r+τ

)
, us−wcr

(
1

r−τ + 1
r+τ

)
, vcr

(
1

r−τ + 1
r+τ

)]
=

= 2
ρ (vs, us− wc, vc),∀M ∈ R3\Γ,

Φ̄Γ(M) = (− ln | (r − uc− ws)(r + uc+ ws) |c, 0,− ln
∣∣∣ (r−uc−ws)(r+uc+ws)

∣∣∣s) =

= − ln ρ · (c, 0, s), ∀M ∈ R3\Γ,

UΓ(M) = 2 arctan wc−us
v , ∀M ∈ R3\xOz,

where {
ρ = r2 − (uc+ ws)2 = (wc− us)2 + v2,

τ = uc+ ws, c = cosα, s = sinα.
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Fig. 10

Using the results obtained above, we can derive the magnetic field of an elementary
spatial configuration. Let Γ = γ+

⋃
γ−, where γ+, γ− are the semi-lines

γ+ = γ(0, θ+, ϕ+), γ− = γ(0, θ−, ϕ−),

as in the following figure:

Fig. 11

Theorem 1. The magnetic field of the configuration G and its vector potential
are respectively H̄Γ = H̄γ+

+ H̄γ− , with

H̄γ+
= 1

r(r−τ) (−ys+ zcs′, xs− zcc′,−xcs′ + ycc′),

H̄γ− = − 1
r(r−τ̄) (−ys̄+ zc̄s̄′, xs̄− zc̄c̄′,−xc̄s̄′ + yc̄c̄′)

and

Φ̄Γ =

(
ln
| r − τ̄ |c̄c̄′

| r − τ |cc′
, ln
| r − τ̄ |c̄s̄′

| r − τ |cs′
, ln
| r − τ̄ |s̄

| r − τ |s

)
,

where we denoted

τ = (xc′ + ys′)c+ zs, τ̄ = (xc̄′ + ys̄′)c̄+ zs̄, r = (x2 + y2 + z2)1/2,

and {
c = cosϕ+, c

′ = cos θ+

s = sinϕ+, s
′ = sin θ+

,

{
c̄ = cosϕ−, c̄

′ = cos θ−
s̄ = sinϕ−, s̄

′ = sin θ−
.
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Proof. We use the relation H̄Γ = H̄γ+ + H̄γ− , where

H̄γ+
= Rθ+ϕ+

Ht
γ0

+
◦ R−1

θ+ϕ+
, H̄γ− = Rθ−ϕ−Ht

γ0
−
◦ R−1

θ−ϕ−
,

with γ0
+ and γ0

− are respectively the elementary semi-lines traversed by current, from
Lemma 1. The same result can be obtained by using the BSL integrals H̄[OA+) and
H̄(A−O] from the proof of Corollary 1, obtaining, e.g.,

H̄γ+
= Rθ+Ht

[OA+) ◦ R
−1
θ+
,

Moreover, we notice that we have the relation

r = ((xc′ + ys′)2 + (−xs′ + yc′)2 + z2)1/2 = (x2 + y2 + z2)1/2.

Corollary 4. For the angular configuration

Γ = γ+

⋃
γ−,

of arbitrary vertex V (a, b, c) and semi-lines

γ+ = γ(V, θ+, ϕ+), γ− = γ(V, θ−, ϕ−),

the associated magnetic field has the expression H̄γ = H̄γ+
+ H̄γ− , with{

H̄γ+ = 1
r(r−τ) (−vs+ wcs′, us− wcc′,−ucs′ + vcc′)

H̄γ− = − 1
r(r−τ̄) (−vs̄+ wc̄s̄′, us̄− wc̄c̄′,−uc̄s̄′ + vc̄c̄′)

and its potential vector is

Φ̄Γ =

(
ln
| r − τ̄ |c̄c̄′

| r − τ |cc′
, ln
| r − τ̄ |c̄s̄′

| r − τ |cs′
, ln
| r − τ̄ |s̄

| r − τ |s

)
,

where we denoted

(u, v, w) = (x− a, y − b, z − c), r = (u2 + v2 + w2)1/2

τ = (uc′ + vs′)c+ ws, τ̄ = (uc̄′ + vs̄′)c̄+ ws̄,

and c, s, c′, s′, c̄, s̄, c̄′, s̄′ have the same meanings as in Theorem 1.

We shall prove in the following, that applying Proposition 1 we can provide also
the scalar potential of the elementary configuration Γ from Theorem 1.

Proposition 5. The scalar potential of the elementary configuration (see Fig.12)

Γ = γ(O, θ+ = θ, ϕ+ = ϕ)
⋃
γ(O, θ− = θ̄, ϕ− = ϕ̄)

has the form

UΓ = 2 arctan
−xc̄c̃+ ys̄c̃+ zs̃+ r cos θ̂ cos ϕ̂

x(c̄s̃ sin θ̂ cos ϕ̂+ s̄ sin ϕ̂) + y(c̄ sin ϕ̂− s̄s̃ sin θ̂ cos ϕ̂)− zc̃ sin θ̂ cos ϕ̂
,
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where we denoted {
s̃ = sin ϕ̃
c̃ = cos ϕ̃

{
s̄ = sin θ̃,

c̄ = cos θ̃

{
s = sinψ,
c = cosψ,

θ̂ =
θ − θ̄

2
, ϕ̂ =

ϕ− ϕ̄
2

, θ̃ =
θ + θ̄

2
, ϕ̃ =

ϕ+ ϕ̄

2
.

Fig. 12

Proof. We notice that by rotating the configuration Γ,

R−ϕ̃R−θ̃Γ = Γ̃,

we produce the configuration

Γ̃ = Γ(0, θ̂, ϕ̂)
⋃

Γ(0,−θ̂,−ϕ̂)

which is symmetric relative to the Ox axis. As well, we fulfill the conditions for
having:

• the (equal) angles η of the semi-lines of the configuration Γ̃ with the Ox axis,

• the angle ψ of the necessary rotation for including the configuration Γ̃ in the
xOz plane (see Fig. 13)

Fig. 13
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(U1)

 cos η = cos θ̂ cos ϕ̂, η ∈ [0, π]

sin ψ̂ = sin ϕ̂
sin η , cos ψ̂ = tgθ̂/tgη,

(U2)

 cosψ = sin ϕ̂
sin η ,

sinψ = tgθ̂
tgη = sin θ̂ cos ϕ̂

sin η ,

where ψ̂ = π
2 − ψ, and  sin η = sin ϕ̂

cosψ

cos η = cos θ̂ cos ϕ̂.

Then applying the rotation RψΓ̃ = Γ0, we get the configuration (which is symmetric
w.r.t. the Ox axis)

Γ0 = Γp(0, α = η, β = −η) ⊂ xOz

which is a configuration of the type studied in corollary 2; also, we have

RψΓ = Rψ · R−ϕ̃ · R−θ̃ · Γ;

whence
Γ = Rθ̃ · Rϕ̃ · R−ψ · Γ0.

Therefore, we have UΓ = UΓ0
· J−1, where J is an orthogonal mapping, namely a

rotation of matrix
M = Rθ̃ ·Rϕ̃ ·R−ψ.

The matrix of the inverse transform J−1 will be

M−1 = Rψ ·t Rϕ̃ ·t Rθ̃ =

=

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 ·
 cos ϕ̃ 0 sin ϕ̃

0 1 0
− sin ϕ̃ 0 cos ϕ̃

 ·
 cos θ̃ sin θ̃ 0

− sin θ̃ cos θ̃ 0
0 0 1

 =

=

 1 0 0
0 c −s
0 s c

 ·
 c̃ 0 s̃

0 1 0
−s̃ 0 c̃

 ·
 c̄ s̄ 0
−s̄ c̄ 0

0 0 1

 =

=

 c̃ 0 s̃
ss̃ c −sc̃
−cs̃ s cc̃

 ·
 c̄ s̄ 0
−s̄ c̄ 0

0 0 1

 =

=

 c̄c̃ s̄c̃ s̃
sc̄s̃− cs̄ ss̄s̃+ cc̄ −sc̃
−cc̄s̃− ss̄ cs̄s̃+ sc̄ cc̃

 ,

where we denoted s̃ = sin ϕ̃, c̃ = cos ϕ̃; s̄ = sin θ̃, c̄ = cos θ̃; s = sinψ, c = cosψ.
Since

UΓ0 = 2 arctan
−x+ r cos η

y sin η
, r = (x2 + y2 + z2)1/2,
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we obtain finally the scalar potential associated to the configuration Γ,

UΓ = 2 arctan{−xc̄c̃+ ys̄c̃+ zs̃+ r cos θ̂ cos ϕ̂)·
·[(x(sc̄s̃− cs̄) + y(cc̄+ ss̄s̃)− zsc̃)s]−1} =

= 2 arctan[(−xc̄c̃+ ys̄c̃+ zs̃+ r cos θ̂ cos ϕ̂) ·Θ−1],

where

Θ =

[
x

(
c̄s̃

sin θ̂ cos ϕ̂

s
− s̄ sin ϕ̂

s

)
+ y

(
c̄
sin ϕ̂

s
+ s̄s̃

sin θ̂ cos ϕ̂

s

)
− zc̃ sin θ̂ cos ϕ̂

s

]
s,

which proves the theorem. �

We can also state the following result, regarding the scalar potential of an angular
spatial configuration of arbitrary vertex.

Corollary 6. The scalar potential of the elementary configuration of the vertex
V = (a, b, c) ∈ R3,

Γ = γ(V, θ+ = θ, ϕ+ = ϕ)
⋃
γ(V, θ− = θ̄, ϕ− = ϕ̄)

has the form

UΓ = 2 arctan
−uc̄c̃+ vs̄c̃+ ws̃+ r cos θ̂ cos ϕ̂

u(c̄s̃ sin θ̂ cos ϕ̂+ s̄ sin ϕ̂) + v(c̄ sin ϕ̂− s̄s̃ sin θ̂ cos ϕ̂)− wc̃ sin θ̂ cos ϕ̂
,

where we used the notations u = x− a, v = y − b, w = z − c.

4 Applications to skew polygonal nets and to
polyhedral circuits

Based on the Corollaries 4 and 5, we can determine the magnetic field of a skew
polygonal net, and of a polyhedral circuit, which satisfy the axioms (A1), (A2).

A particular case of such a spatial configuration is presented in

Proposition 6. a) For the configuration (see Fig.14a)

Γ = γ+(O, θ+ = 0, ϕ+ = 0)
⋃
γ−(O, θ− = θ̄, ϕ = ϕ̄)

Fig. 14
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we have,

H̄Γa(w) = 1
r(r−x) (0,−z, y) + −1

r(r−τ̄) (−ys̄+ zc̄s̄′, xs̄− zc̄c̄′,−xc̄s̄′ + yc̄c̄′),

Φ̄Γa(w) =

(
ln
| r − τ̄ |c̄c̄′

| r − x |
, ln | r − τ̄ |c̄s̄

′
, ln | r − τ̄ |s̄

)
,∀w ∈ R3\Γ,

where we denoted{
c = cosϕ+, s = sinϕ+, c̄ = cosϕ−, s̄ = sinϕ−

c′ = cos θ+, s
′ = sin θ+, c̄

′ = cos θ̄−, s̄
′ = sin θ̄−,

and τ̄ = (xc̄′ + ys̄′)c̄+ zs̄.

b) For the configuration (see Fig.14b)

Γ = γ+(0, θ+ = θ, ϕ+ = ϕ)
⋃
γ−(0, θ− = 0, ϕ− = 0)

we have, for all w ∈ R3\Γ,

H̄Γb(w) = 1
r(r−τ) (−ys+ zcs′, xs− zcc′,−xcs′ + ycc′)− 1

r(r−x) (0,−z, y)

Φ̄Γb(w) =
(

ln(| r − x | | r − τ |−cc′),− ln | r − τ |cs′ ,− ln | r − τ |s
)
.

Proposition 7. a) For the configuration in Fig.15

Fig. 15

given by Γ = Γ1

⋃
Γ2, with{

Γ1 = γ+(A, θ, ϕ)
⋃
γ−(A, 0, 0),

Γ2 = γ+(B, 0, 0)
⋃
γ−(B, θ, ϕ),

where A(a, b, c), B(ā, b̄, c̄) ∈ R3, we get the magnetic field and the vector potential

H̄Γ(M) = H̄ABσ + H̄AB∞,

H̄ABσ = − 1
r̄(r̄−τ̄) (−v̄s+ w̄cs′, ūs− w̄cc′,−ūcs′ + v̄cc′)+

+ 1
r(r−τ) (−vs+ wcs′, us− wcc′,−ucs′ + vcc′),

H̄AB∞ = 1
r(r−u) (0,−w, v) + 1

r̄(r̄−ū) (0,−w, v),
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Φ̄Γ(M) = Φ̄ABσ + Φ̄AB∞,

Φ̄ABσ =

(
ln |r̄−τ̄ |

cc′

|r−τ |cc′ , ln
|r̄−τ̄ |cs

′

|r−τ |cs′ , ln
|r̄−τ̄ |s
|r−τ |s

)
,

Φ̄AB∞ =
(

ln
∣∣∣ r−ur̄−ū

∣∣∣ , 0, 0) ,
and the scalar potential has the form

UΓ(M) = 2

(
arctan

−(uc̄− vs̄)c̃+ ws̃+ rc̄c̃

u(s̄c̄s̃c̃+ s̄s̃) + v(c̄s̃− s̄2s̃c̃)− ws̄c̃2
−

− arctan
−(ūc̄− v̄s̄)c̃+ w̄s̃+ r̄c̄c̃

ū(s̄c̄s̃c̃+ s̄s̃) + v̄(c̄s̃− s̄2s̃c̃)− w̄s̄c̃2

)
= UAB ,

where we denoted{
r = ‖ν‖, ν = (u, v, w) ≡ (x− a, y − b, z − c)

r̄ = ‖ν̄‖, ν̄ = (ū, v̄, w̄) ≡ (x− ā, y − b̄, z − c̄)
,

{
τ = uc+ ws
τ̄ = ūc+ w̄s

.

Theorem 2.a) For a skew polygon Π = A1 . . . An, we have

H̄Π =

n∑
i=1

H̄AiAi+1σ, Ψ̄π =

n∑
i=1

Ψ̄AiAi+1σ, Uπ =

n∑
i=1

UAiAi+1
,

where we used the notation An+1 = A1, and the terms in the right sums are determined
based on Proposition 7.

b) For a closed polyhedral circuit P of edges li which are oriented by the currents J̄i
of intensities Ii, i = 1,m, we have

H̄p =

m∑
i=1

Ii · H̄liσ, Φ̄p =

m∑
i=1

Ii · Φ̄liσ, Up =

n∑
i=1

Ii · Uli ,

where the terms in the right sums are determined based on Proposition 7.

Remark. At each knot of the configurations in the theorem, we have the II-nd
Kirchoff law (the algebraic sum of the intensities vanishes; in the opposite case, the
net does not admit a scalar potential U).

Proposition 8. For the circuit from Fig.16 given by the union of elementary
configurations {

Γ1 = γ+(A = O, θ = π/2, ϕ = 0) ∪ γ−(A = O, 0, 0)

Γ2 = γ+(B, θ, ϕ) ∪ γ−(B, π/2, 0),

where A = (0, 0, 0), B = (0, b, 0) ∈ R3, the magnetic field and the potentials have the
form
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Fig. 16

H̄Γ(M) = 1
r(r−y) (z, 0,−x)− 1

r(r−x) (0,−z, y)+

+ 1
r̄(r̄−τ̄) (−vs+ zcs′, xs− zcc′,−xcs′ + vcc′)− 1

r̄(r̄−v) (z, 0,−x),

Φ̄Γ(M) = ln | r − x |,− ln | r − y |,− ln | r − y |)+

+(− ln | r̄ − τ̄ |cc′ , ln |r̄−v|
|r̄−τ̄ |cs′ ,− ln | r̄ − τ̄ |cs),

UΓ(M) = 2
[
− arctan (x−y)+r

z + arctan −c̃(xc̄−ys̄)+zs̃+rs̄c̃
x(−c̄2s̃2+s̄s̃)+y(c̄s̃+s̄c̄s̃c̃)+zc̄c̃2

]
,

where 
τ̄ = (xc′ + vs′)c+ zs, v = y − b,

r = (x2 + y2 + z2)1/2, r̄ = (x2 + v2 + z2)1/2,

c = cosϕ, c′ = cos θ; c̄ = cos ϕ̄, c̄′ = cos θ̄.

5 Magnetic lines and surfaces

Let H̄ = Hxī + Hy j̄ + Hz k̄ a magnetic field on a domain D in R3. The magnetic
lines (the field lines of H̄) are oriented curves which satisfy the (kinematic) system of
differential equations

dx

dt
= Hx,

dy

dt
= Hy,

dz

dt
= Hz,

and the magnetic surfaces (the field surfaces of H̄) are constant level sets attached to
the solutions h of the PDE of first order

Hx
∂h

∂x
+Hy

∂h

∂y
+Hz

∂h

∂z
= 0.

A Cauchy problem for the differential system (1) consists of finding a solution

α : I → D,α(t) = (x(t), y(t), z(t)), t ∈ I = (−ε, ε),

which emerges form the point x(0) = x0, y(0) = y0, z(0) = z0 at the moment t = 0.
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The field surfaces are generated by field lines. A Cauchy problem for the PDE (2)
consists of finding a field surface

Σc : h(x, y, z) = c,

which contains a curve β : J → D, which is normal to the field lines. Since H̄ is of
class C∞, the previous Cauchy problems have unique solutions.

The zeroes of the field H̄ are constant field lines, the equilibrium points of the
kinematic system (2).

Let M(x, y, z) ∈ D. A maximal magnetic line

αM : I(M)→ D, αM (0) = M

is defined on an open interval I(M) = (ω−(M), ω+(M)) which contains the origin
0 ∈ R. The local flow

Tt : D(H̄)→ D,Tt(M) = αM (t),

where
D(H̄) = {(t, x, y, z) ∈ R×D | ω−(M) < t < ω+(M)},

is a mapping of class C∞, defined on the open set D(H̄). This flow preserves the
volume, since H̄ is a solenoidal vector field.

In the following we are interested in those configurations which have open magnetic
lines. As examples, we can enumerate the following

1) Configurations which consist of at least two electric coplanar circuits, which are
piecewise rectilinear, and which have open magnetic lines.

We consider the configuration in Fig. 17, which has the magnetic field

Hx =
−y

r1(r1 − z − b)
+

y

r2(r2 + z − b)

Hy =
x+ a

r1(r1 − z − b)
− z + b

r1(r1 + x+ a)
− x− a
r2(r2 + z − b)

+
z − b

r2(r2 − x+ a)

Hz =
y

r1(r1 + x+ a)
− y

r2(r2 − x+ a)
,

(−a,0,−b)

y

O

z

(a,0,b)

x-
�
�

�
��	

?

- 6r
6

�

?

r
?

Fig. 17
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where r1 =
√

(x+ a)2 + y2 + (z + b)2, r2 =
√

(x− a)2 + y2 + (z − b)2.

Theorem 3. a) If b > a, then the axis Oy is a non-constant field line.

b) If b > a, ab > 0 then the axis Oy consists of two equilibrium points and three
non-constant field lines.

c) If b > a, ab < 0 (i.e., a < 0, b > 0), then the negative semiaxis Oy′ of the axis Oy
is a non-constant field line.

Proof. At the points of the axis Oy :

{
x = 0
z = 0

, we have

r1 = r2 =
√
y2 + a2 + b2

and

dx

dt

∣∣∣∣
Oy

= Hx|Oy = 0,
dz

dt

∣∣∣∣
Oy

= Hz|Oy = 0.

Also we have,

Hy|Oy =
2a

r1(r1 − b)
− 2b

r1(r1 + a)
,

and the following subcases occur:

a) If b < a, then Hy|Oy > 0.

b) If b > a, then Hy|Oy = 0 implies r1 = a2+b2

a−b , and hence

y1,2 = ±
√

2ab(a2 + b2)

b− a
, pentru ab > 0.

The points Ei(0, yi, 0), i = 1, 2 are stationary points. The open segment E1E2) is a
field line and Hy|E1E2

> 0. The semi-lines

{0} × (−∞, y1)× {0}, {0} × (y2,∞)× {0}

are field lines and Hy is negative on them.

c) If a < b, ab < 0, then Hy|Oy < 0.

2) There exist sets of at least two non-coplanar configurations, which are piecewise
rectilinear, and which have open field lines For example, the configuration in Fig.18,
consisting of two pairs of rectilinear wires which are located in parallel planes z = a
and z = −a traversed by opposed electric currents, have the magnetic field

H̄ =
(
−z̃

x2+z̃2 + z̄
x2+z̄2 ,

z̃
y2+z̃2 − z̄

y2+z̄2 ,
−y

y2+z̃2 − y
y2+z̄2 + x

x2+z̃2 − x
x2+z̄2

)
.
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Fig. 18

This configuration admits as open field line the straight line

D : x+ y = 0, z = 0

indeed, we have
H̄
∣∣
D

=
(

2a
x+a2 , − 2a

x+a2 , 0
)
,

and hence, the components of the field satisfy the relations

Hx|D + Hy|D = 0, Hz|D = 0.

Let H̄ be an irrotational magnetic field on D ⊂ R3; let

f =
1

2
(H2

x +H2
y +H2

z ),

be the energy of the field H̄ and the Hamiltonian

H(x, y, z,
dx

dt
,
dy

dt
,
dz

dt
) =

1

2

((
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
)
− f(x, y, z).

Then any magnetic line is the trajectory of a conservative dynamical system with
three degrees of freedom

(5.1)
d2x

dt2
=
∂f

∂x
,
d2y

dt2
=
∂f

∂y
,
d2z

dt2
=
∂f

∂z

and the following Theorems 3 and 4 hold true.

Theorem 4 [10]. Each trajectory of the dynamical system (3) which has the total
energy H is a re-parametrized geodesic of the Riemann-Jacobi manifold

(D\ZH̄ , gij = (H+ f)δij , i, j = 1, 2, 3),

where ZH̄ = {M ∈ D | H̄(M) = 0̄}.
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A ruled surface in a Riemannian manifold (M, g) is a surface generated by a
geodesic which moves along a curve β. Different positions of the generating geodesic
α are called generators of the surface. A ruled surface admits always a parametrization
of the form

r : I × [0, 1]→M,

where r(u, vo) = β(u) is the director curve and r(uo, v) = γ(v) is a geodesic.

Theorem 5 [18] 1) The magnetic surfaces are ruled surfaces in the Riemann-
Jacobi manifold (D\ZH̄ , gij).

2) The Gauss curvature K of a magnetic surface cannot be strictly positive.

In D we shall use a cylindric system of coordinates {ρ, θ, z}. Let H̄ be a magnetic
field on D. The field H̄ admits the following symmetries

1) translational, iff H̄ = H̄(ρ, θ);

2) axial, iff H̄ = H̄(ρ, z);

3) helicoidal, iff H̄ = H̄(ρ, θ − αz),

where α = 2π
L , and L is the step of the helix.

Let {ēρ, ēθ, ēz} the cylindric orthonormal frame and

H̄ = Hρēρ +Hθ ēθ +Hz ēz.

The symmetric differential system which describes the field lines of H̄ rewrites

dρ

Hρ
=
ρdθ

Hθ
=
dz

H z
.

The components of H̄ are related to the components of the vector potential

Ā = Aρēρ +Aθ ēθ +Az ēz

by the relations

Hρ =
1

ρ

∂Az
∂θ
− ∂Aθ

∂z
,Hθ =

∂Ar
∂z
− ∂Az

∂r
,Hz =

1

ρ

∂

∂ρ
(ρAθ)−

1

ρ

∂Aρ
∂θ

.

Therefore, considering the existing symmetries we can find first integrals of the system
(4).

Theorem 6 [1]. 1) If H̄ admits translational symmetry, then Az(ρ, θ) is a first
integral, i.e., the surfaces given by

Az(ρ, θ) = c

are field surfaces.

2) If H̄ admits axial symmetry, then ρAθ(ρ, z) is a first integral, i.e., the surfaces
given by

ρAθ(ρ, z) = c

are field surfaces.
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3) If H̄ admits helicoidal symmetry, then

Az(ρ, θ − αz) + αρAθ(ρ, θ − αz)

is a first integral, i.e., the surfaces given by

Az(ρ, θ − αz) + αρAθ(ρ, θ − αz) = c

are field surfaces.

The field surfaces (magnetic surfaces) of the previous theorem have the same
symmetries as the field H̄. Amon these, only the field surfaces which have axial
symmetry can be bounded. Also, if known a first integral of the system (4), the
second first integral can be determined also.

6 Phase portraits

Let β : I → R3 be a simple curve, which is regular and transversal to the mag-
netic lines, and α : I → R3 the magnetic line which passes through P ∈ R3. A
magnetic surface Σ = Im r which is lining on the curve β, can be described by the
parametrization r : D ⊂ R2 → R3,

r(u, v) = αβ(u)(v),∀(u, v) ∈ D ≡ {(u, v) ∈ R2 | u ∈ I, v ∈ Jβ(u)}.

In the following, we shall represent certain magnetic lines and surfaces associated
to the magnetic field H̄. The field surfaces appear as a mesh

Σ ≡ ΣF,H = {Pij | i = 0,m, j = 1, n},

where F = {P0j | j = 1, n} are equidistant points which belong to a segment Im α,
where

P0j = α(tj), tj = j · l/(n− 1), j = 0, n− 1, I = [0, l],

and the grid points of the surface Σ,

{Pij | i = 0,m}, j = 1, n

are located on n field lines Im αP0j
, j = 1, n, which appear as a result of the numerical

integration of the Cauchy problems{
α′P0j

(t) = H̄(αP0
(t))

αP0j
(0) = P0j , j = 1, n.

The numerical integration is done using the method Runge-Kutta of order four; the
initial time is t0 = 0 and the number of steps is m ≥ 1.

The software package SURFIELD which describes locally a magnetic line or sur-
face is designed in the C programming language, and is optimized for speed and
allocated memory.
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The 3D-objects can be translated, rotated and scaled. The magnetic curves α and
surfaces Σ are represented by central (perspective) projection.

The study of the shape of different magnetic surfaces Σ associated to the piecewise
rectilinear nets, provides valuable experimental hints for the study of:

- the space displacement of the magnetic lines and surfaces,

- the localization of the fractal indecision zone, for close trajectories which enter
different magnetic traps.

Fig. 19

In this context, of considerable interest is the evolution of magnetic field lines for
a special configuration (”deformed U”, [3], [4], see Fig. 19), whose magnetic lines
appear to be open, and which is given by Γ = Γ1

⋃
Γ2, where

Γ1 = γ(A, θ+ = π
2 , ϕ+ = 0)

⋃
γ(A, θ− = 0, ϕ− = 0)

Γ2 = γ(B, θ̄ = θ, ϕ̄ = ϕ)
⋃
γ(B, θ̄′ = π

2 , ϕ
′ = 0)

with the vertices A(0,−1, 0), B(0, 1, 0) ∈ Oy, ϕ 6= 0.

An example of such a magnetic line is plotted below (see Fig. 20).

Fig. 20
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Conclusions. The magnetic field and its vector and scalar potentials were de-
termined for spatial piecewise rectilinear configurations. Classical planar and spatial
particular cases were pointed out, and examples of configurations which generate
open magnetic lines were provided. In this context, computer-drawn magnetic lines
associated to the classical ”deformed U” configuration ([3], [4]) were included.
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[2] E.Petrişor, Heteroclinic connections in the dynamics of a reversible magnetic-
type vector-field, Physica D, 112(1998), 319-327.

[3] M.Postolache, Al.Dragomir, Graphic Kernel for PC Computers, Proc. Nat. Conf.
B.E.B. & F.E.M., Vol.4, pp.59-65, Sibiu, 1993.
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[15] C.Udrişte, M.Postolache, A.Udrişte, Numerical Simulation of Dynamic Magnet-
ical System, Third Int.Symposium ”Chaotic Dynamical Systems”, Utrecht, The
Netherlands, June 14-17, 1992, Scientific Bulletin, Applied Mathematics and
Physics, Series A, 55(1993), 51-64, Politehnica University of Bucharest.
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