EXTREMA CONSTRAINED BY A FAMILY OF CURVES

O. Dogaru and I. Tevy

Abstract

 $\S 1$ analyses extrema constrained by a curve or by a family of curves. $\S 2$ introduces and studies the C^1 and C^2 curves containing a given sequence of points. These curves are used to discuss the connection between free extrema and extrema constrained by a family of curves. $\S 3$ defines and examines the extrema constrained by a Pfaff inequality.

Mathematics Subject Classification: 49K99

Key words: extremum point constrained by a family of curves, Pfaff inequalities.

1 Introduction

Let us consider the C^1 functions $f, g_1, \ldots, g_q : D \to \mathbf{R}$ on the open set $D \subseteq \mathbf{R}^p$, q < p. It is well known that the solution x_0 of the constrained optimum problem min (max) f subject to $g_1(x) = \ldots = g_q(x) = 0$, via the method of Lagrange multipliers, leads us to the real numbers $\lambda_1, \ldots, \lambda_q$ with the property

$$df(x_0) + \lambda_1 dg_1(x_0) + \ldots + \lambda_q dg_q(x_0) = 0.$$

Since the submanifold of \mathbf{R}^p defined by the equations $g_1(x)=0,\ldots,g_q(x)=0$ is an integral manifold of the Pfaff system $dg_1=0,\ldots,dg_q=0$, we can introduce the notion of extremum problem constrained by a Pfaff system.

Let

(1)
$$\omega^j = \sum_{i=1}^p \omega_i^j(x) dx^i = 0 \quad j = \overline{1,q}, \quad q < p$$

be a Pfaff system, where $\omega_i^j:D\to\mathbf{R}$ are C^1 functions such that

$$rank \left[\omega_i^j(x)\right] = q, \quad \forall x \in D,$$

and let $f: D \to \mathbf{R}$. What is the meaning of the problem

$$min(max)f$$
 constrained by $\omega^j=0, \quad j=\overline{1,q},$

Applied Sciences, Vol.1, No.1, 1999, pp. 1-11.

© BALKAN SOCIETY OF GEOMETERS, GEOMETRY BALKAN PRESS

or

min(max)f constrained by $\omega^j \geq 0$, $j = \overline{1,q}$?

Because the solutions of the system (1) are organized in the so called integral manifolds, which in the case of noncompletely integrable system may have the dimension between 1 and p-q-1, we start with extrema constrained by a curve or a family of curves, and after that we study extrema constrained by a Pfaff inequality. We recall some well known definitions.

- **1.1. Definition.** A function $\alpha: I \to \mathbb{R}^p$, where I is an open interval and α is a function of suitable class (at least C^0), is called *parametrized curve*.
- **1.2. Definition.** Two parametrized curves $\alpha: I \to \mathbf{R}^p$ and $\beta: J \to \mathbf{R}^p$ are equivalent if there exists a one-to-one mapping $\varphi: I \to J$ of the same class with α and β such that $\alpha = \beta \circ \varphi$. We denote $\alpha \sim \beta$, and we have an equivalence relation.
- **1.3.** Definition. An equivalence class $\tilde{\alpha}$ of a given parametrized C^k curve α is called curve. Then α is called a representative of $\tilde{\alpha}$.

Because any C^0 one-to-one mapping $\varphi: I \to J$ is monotone we have

- **1.4. Definition**. Two equivalent parametrized curves α and β have the *same orientation* if the mapping φ is strictly increasing. If the mapping φ is a strictly decreasing one says that α and β have *oposite orientation*.
- **1.5.** Definition. An equivalence class of C^k parametrized curves having the same orientation is called *oriented* C^k *curve*.

Every parametrized curve α defines two oriented curves $\tilde{\alpha}_{+} = \{\beta \in \tilde{\beta} \mid \beta \text{ has the same orientation as } \alpha \}$ and $\tilde{\alpha}_{-} = \{\beta \in \tilde{\alpha} \mid \beta \text{ and } \alpha \text{ have oposite orientation} \}$, which are called, respectively, *positive* and *negative* orientation of the parametrized curve α .

We say that the parametrized curve α is passing through the point $x_0 \in \mathbf{R}^p$ if there exists $t_0 \in I$ such that $\alpha(t_0) = x_0$. We say that a curve $\tilde{\alpha}$ (oriented curve $\tilde{\alpha}_+$) is passing through the point $x_0 \in \mathbf{R}^p$ if the representative α is passing through x_0 .

- Let $f: D \subseteq \mathbf{R}^p \to \mathbf{R}$ be a function on the open set $D, x_0 \in D$ and $\alpha: I \to \mathbf{R}^p$ a parametrized curve passing through $x_0 = \alpha(t_0), t_0 \in I$.
- **1.6.** Definitions. a) The point x_0 is called a minimum (maximum) point for f constrained by the parametrized curve α , if there exists $\varepsilon > 0$ such that $f(\alpha(t)) \ge f(x_0)$ $(f(\alpha(t)) \le f(x_0))$ for each $t \in (t_0 \varepsilon, t_0 + \varepsilon) \subseteq I$.
- b) The point x_0 is called a minimum (maximum) point for f constrained by the oriented curve $\tilde{\alpha}_+$, if there exists $\varepsilon > 0$ such that $f(\alpha(t)) \geq f(x_0)$ ($f(\alpha(t)) \leq f(x_0)$) for each $t \in [t_0, t_0 + \varepsilon) \subseteq \dot{I}$.
- c) The point x_0 is called a minimum (maximum) point for f constrained by the curve $\tilde{\alpha}$, if x_0 is a minimum (maximum) point for the function f resticted to the set $\alpha(\dot{I})$.

Observe that, in the case a), if x_0 is an extremum point for f constrained by the parametrized curve α , then x_0 is an extremum point for f constrained by any parametrized curve which is in $\tilde{\alpha}$. Also, in the case b), the definition does not depend upon the element $\beta \in \tilde{\alpha}_+$.

If we denote Γ_{x_0} a family of parametrized curves (oriented curves, curves) passing through the point x_0 , then we accept

1.7. **Definition**. The point x_0 is called a minimum (maximum) point for the function f constrained by the family Γ_{x_0} , if x_0 is a minimum (maximum) point for f constrained by each element of the family Γ_{x_0} .

1.8. Proposition. Let $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ be a function on the open set $D, x_0 \in D$ and α a parametrized curve passing through x_0 .

The following properties are equivalent:

- 1) x_0 is a minimum (maximum) point for f constrained by the parametrized curve α .
- 2) x_0 is a minimum (maximum) point for f constrained by the oriented curves $\tilde{\alpha}_+$ and $\tilde{\alpha}_-$.

The proof is obvious.

2 C^1 and C^2 curves passing through a given sequence of points

The aim of this paragraph is to prove that some conditions, enough less restrictive, ensure the existence of a parametrized C^1 or C^2 curve which is passing through a given sequence of points. The existence of such a curve is needed to prove the connection between the extremum points constrained by a family of parametrized curves and the free extremum points.

In [15] we proved

- **2.1 Theorem.** Let (x_n) , (y_n) be two sequences of non-zero, real numbers such that $\lim x_n = \lim y_n = \lim \frac{y_n}{x_n} = 0$. Then
- a) there exist the subsequences (x_{n_k}) , (y_{n_k}) and a function $f: \mathbf{R} \to \mathbf{R}$ of the class C^1 such that

$$f(x_{n_k}) = y_{n_k}, \quad \forall k \in \mathbf{N},$$

$$f(0) = f'(0) = 0;$$

- b) if, moreover, $x_n > 0$, $y_n > 0$, $\forall n \in \mathbb{N}$, then the above function f can be chosen a non-decreasing one;
- c) there exist the subsequences (x_{n_k}) , (y_{n_k}) , the C^2 functions $f, g : \mathbf{R} \to \mathbf{R}$, and a sequence (t_k) of positive real numbers, with $\lim t_k = 0$, such that

$$f(t_k) = x_k, \quad g(t_k) = y_k,$$

$$f'(0) = g'(0) = g''(0) = 0$$
 and $f''(0) \neq 0$.

Based, on the above theorem, we obtain

- **2.2.** Theorem. Let (x_n) be a sequence of distinct points in \mathbb{R}^p with $\lim x_n = a$. Then
- a) there exist a subsequence (x_{n_k}) and a parametrized C^1 curve $\alpha: \dot{I} \subseteq \mathbf{R} \to \mathbf{R}^p$ passing through the points x_{n_k} and a, $\forall k \in \mathbf{N}$, which is regular at the point a (i.e., if $a = \alpha(t_0)$, then there exists the sequence $(t_k) \subseteq \dot{I}$ such that $\lim t_k = t_0$, and $\alpha(t_k) = x_{n_k}$ and $\alpha'(t_0) \neq 0$).
- b) there exist a subsequence (x_{n_k}) and a parametrized C^2 curve $\alpha: \dot{I} \subseteq \mathbf{R} \to \mathbf{R}$ passing through the points a and x_{n_k} , $\forall k \in \mathbf{N}$, which has a tangent at the point a (i.e., $\alpha'(t_0) = 0$, $\alpha''(t_0) \neq 0$).

Proof. a) By a translation, we can suppose $a = (0, ..., 0) \in \mathbb{R}^p$. Because the sequence $u_n = x_n/\|x_n\|$ is bounded, we can consider $u_n \to u \in \mathbb{R}^p$ and by a rotation we have $u=(1,0,\ldots,0)$. Then, if $x_n=(x_n^1,\ldots,x_n^p)$, it results

$$\lim \frac{x_n^1}{|x_n^1|\sqrt{1+\left(\frac{x_n^2}{x_n^1}\right)^2+\ldots+\left(\frac{x_n^p}{x_n^n}\right)^2}}=1,$$

and hence $x_n^1 > 0$, for n sufficient large, and $x_n^i/x_n^1 \to 0$, $i = \overline{1,p}$. Applying the above theorem for the sequences (x_n^1) , (x_n^i) , $i = \frac{n}{2,p}$, we obtain the subsequence $x_{n_k} = (x_{n_k}^1, \dots, x_{n_k}^p)$ and the C^1 functions $\varphi_i : \mathbf{R} \to \mathbf{R}$ such that

$$arphi_i(x_{n_k}^1) = x_{n_k}^i, \quad \forall k \in \mathbf{N}, \quad i = \overline{2,p},$$

$$arphi_i(0)=arphi_i'(0)=0,\quad i=\overline{2,p}.$$

The required parametrized curve will be given by

$$\alpha(t) = (t, \varphi_2(t), \dots, \varphi_p(t)).$$

b) As in the first part of this proof we apply the theorem 2.1 b) for the sequences $(x_n^1), (x_n^i), i = \overline{2, n},$ and we shall obtain the C^2 functions $\varphi_i : \mathbf{R} \to \mathbf{R}, i = \overline{1, p},$ and the sequence $(t_k) \subseteq \mathbf{R}, t_k \to 0$, such that

$$\varphi_i(t_k) = x_{n_k}^i,$$

$$\begin{split} &\varphi_i(0)=\varphi_i'(0)=0,\quad i=\overline{1,p},\\ &\varphi_1''(0)=\frac{1}{2},\quad \varphi_i''(0)=0,\quad i=\overline{2,p}. \end{split}$$

$$\varphi_1''(0) = \frac{1}{2}, \quad \varphi_i''(0) = 0, \quad i = \overline{2, p}.$$

Then the parametrized curve $\alpha(t) = (\varphi_1(t), \dots, \varphi_p(t))$ has the required properties.

- **2.3.** Theorem. Let $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ be a function on the open set D and $x_0 \in D$. Then the following properties are equivalent:
 - 1) x_0 is a free local minimum (maximum) point for f.
- 2) x_0 is a minimum (maximum) point for f constrained by the family of all parametrized C^1 curves passing through x_0 and which are regular at this point.
- 3) x_0 is a minimum (maximum) point for f constrained by the family of all parametrized C^2 curves, passing through x_0 , which have tangents at this point. **Proof.** 1) \Rightarrow 2) and 2) \Rightarrow 3) are obvious.
- $(2) \Rightarrow 1$). We can assume $f(x_0) = 0$. If x_0 would not be a free local minimum point for f, then a sequence (x_n) of distinct points in \mathbf{R}^p would exist for which $\lim x_n = x_0$ and $f(x_n) < 0$. Then the parametrized curve $\alpha : \mathbf{R} \to \mathbf{R}^p$, as in the theorem 2.2 a), would show us that $x_0 = \alpha(0)$ would not be a minimum point for f constrained by α .
 - $3) \Rightarrow 1)$ follows as the above.

- Let us note $(\mathbf{R}_m^p)^+ = \{x = (x^1, \dots, x^p) \in \mathbf{R}^p / x^{m+1} \ge 0, \dots, x^p \ge 0\}$. **2.4. Theorem.** Let $(x_n) \subseteq (\mathbf{R}_m^p)^+$ be a sequence of distinct points with $\lim x_n = 1$ $0 \in \mathbf{R}^p$. Then there exist a subsequence (x_{n_k}) , a parametrized C^1 curve $\alpha : \mathbf{R} \to \mathbf{R}^p$, and a sequence $(t_k) \subseteq \mathbf{R}, t_k > 0, t_k \to 0, \text{ such that } \alpha(0) = 0, \alpha(t_k) = x_{n_k}$ and $\alpha(t) \in (\mathbf{R}_m^p)^+$ for any t > 0 and α is regular at the point 0.
- **Proof.** We shall prove that if the sequence (x_n) has the property $x_n^p > 0$, then the parametrized curve $\alpha(t) = (x^1(t), \dots, x^p(t))$, obtained as in theorem 2.2, has

the property $x^p(t) \geq 0$, $\forall t \geq 0$. Suppose that $x_n^p > 0$, $\forall n \in \mathbb{N}$ (if (x_n) would contain a subsequence (x_{n_k}) with $x_{n_k}^p = 0$, then we put $x^p(t) = 0$.) Let us consider $u_n = x_n/||x_n||$ which, being bounded, can be supposed convergent to a versor $u = (u^1, \ldots, u^p)$. We have $u^p \geq 0$.

The case $u^p=0$. By a rotation in the subspace $x^p=0$ we can have $u=(1,0,\ldots,0)$. Then following the proof of the theorem 2.2 we have $u^p_n\to 0$, and $x^1_n/\|x_n\|\to 1$, hence $x^1_n>0$. By the theorem 2.1 b), for the sequences (x^1_n) and (x^p_n) , we obtain the function $\varphi_p:\mathbf{R}\to\mathbf{R}$ which is nondecreasing and $\varphi_p(0)=0$. It follows $\varphi_p(t)\geq 0$, $\forall t\geq 0$, and hence the parametrized curve $\alpha(t)=(t,\varphi_2(t),\ldots,\varphi_p(t))$ as in the theorem 2.2 is the required one.

The case $u^p > 0$. By a rotation we can have u = (1, 0, ..., 0). By this rotation the halfspace $x^p > 0$ becomes a halfspace $h(x^1, ..., x^p) > 0$, where $h(x^1, ..., x^p) = \sum_{i=1}^p a_i x^i$. We have, in this case, $a_1 = h(u) > 0$.

The parametrized curve $\alpha(t)=(t,\varphi_2(t),\ldots,\varphi_p(t))$ as in the theorem 2.2 has the property $\alpha'(0)=(1,0,\ldots,0)=u$. Let be $\psi(t)=h(\alpha(t))$. Then $\psi'(0)=a_1>0$. It results that in a neighborhood of t=0 we have $\psi'(t)>0$, too. Because the sequence (t_k) is so $t_k\to 0$ and $t_k>0$ we can suppose $\psi'(t)>0$ for $t\in (-\varepsilon,t_1)$. If we modify the curve α such that $\alpha'(t)=(1,0,\ldots,0)$ for $t\geq t_1$, it results $\psi'(t)>0$, $\forall t\geq 0$, and so ψ is an increasing function, and hence $h(\alpha(t))=\psi(t)>0$, $\forall t>0$. So α has the required properties.

2.6. Corollary. Let $D \subseteq \mathbb{R}^p$ be an open set, $a \in D$, let $g_i : D \to \mathbb{R}$, $i = \overline{m+1,p}$ be C^1 functions with $rank \left[\frac{\partial g_i}{\partial x^j}(a) \right] = p-m$ and $(x_n) \subseteq D$ a sequence of different points, $x_n \to a$, with the property $g_i(x_n) \geq 0$, $i = \overline{m+1,p}$, $n \in \mathbb{N}$. Then there exist a subsequence (x_{n_k}) , a sequence $t_k \to 0$ of positive real numbers and a regular parametrized C^1 curve $\alpha : \mathbb{R} \to D$, such that $\alpha(0) = a$, $\alpha(t_k) = x_{n_k}$ and $g_i : (\alpha(t)) \geq 0$, $\forall t \geq 0$, $i = \overline{m+1,p}$.

Proof. If $g_i(a) > 0$, $i = \overline{m+1,p}$, one can apply directly the theorem 2.2. If for a function g_i we have $g_i(a) = 0$, then we make the change of variables y = G(x),

$$y^i = x^i,$$
 for $i \le m$, or $i \ge m+1$ and $g_i(a) > 0$
 $y^i = g_i(x),$ for $i \ge m+1$, and $g_i(a) = 0$,

which is a C^1 diffeomorphism. Now we can apply the above theorem for the sequence $y_n = G(x_n)$.

3 Extrema constrained by a Pfaff inequality

Let $D \subset \mathbf{R}^p$ be an open set and the Pfaff forms

$$\omega^j = \sum_{i=1}^p \omega_i^j(x) dx^i, \quad j = \overline{1,q}, \; q < p,$$

where $\omega_i^j: D \to \mathbf{R}$ are C^1 functions in D and rank $[\omega_i^j(x)] = q$.

3.1. Definition. If $f: D \to \mathbf{R}$ is a function, we say that the point $x_0 \in D$ is a minimum point for f constrained by the system of "inequalities"

$$(S^+) \qquad \qquad \omega^j \ge 0, \quad j = \overline{1, q},$$

if for each parametrized C^2 curve, $\alpha: \dot{I} \to D$, which is passing through x_0 ($\alpha(t_0) = x_0$) the condition

$$(+) \qquad \qquad \int_{t_0}^t <\omega^j(\alpha(\tau)), \quad \alpha'(\tau)>d\tau\geq 0, \quad \forall t\geq t_0,$$

implies $f(\alpha(t)) \ge f(x_0)$, $\forall t \in [t_0, t_0 + \varepsilon)$.

If the inequality (+) is replaced by the oposite one, we obtain the notion of the minimum point constrained by

$$(S^{-}) \qquad \qquad \omega^{j} < 0.$$

- **3.2.** Remark. a) Suppose that the system (S) is a completly integrable one, i.e., there exist $g^j: D \to \mathbf{R}$ of the class C^1 , with $\omega^j = dg^j$. If $x_0 \in D$ is a minimum point for f constrained by $g^j(x) g^j(x_0) \ge 0$, $j = \overline{1,q}$, then x_0 is a minimum point for f constrained by $\omega^j \ge 0$ and, conversely, in the case when we consider all the C^1 curves by theorem 2.3.
- b) Clearly, if a parametrized curve $\tilde{\alpha}$ fullfils the condition (+), then the oriented curve $\tilde{\alpha}_+$ is so, but $\tilde{\alpha}_-$ is not. Hence the condition (+) defines a family of oriented curves passing through x_0 .
- **3.3.** Definition. The point $x_0 \in D$ is called an extremum point for the function $f: D \to \mathbf{R}$ constrained by the system (S), if x_0 is an extremum point for f constrained by the family of all C^2 integral curves of the system (S) which are passing through x_0 .
- **3.4.** Proposition. If x_0 is an extremum point for f constrained by (S^+) , then x_0 is an extremum point for f constrained by (S).
- **Proof.** Indeed, suppose that x_0 is a minimum point for f constrained by (S^+) . Let $\alpha: I \to \mathbf{R}$ be C^2 integral curve of the system (S) passing through x_0 ($\alpha(0) = x_0$), which is regular at x_0 . The curve α fullfils the condition (+), so that it follows $f(\alpha(t)) \geq f(x_0)$, $\forall t \in [0, \varepsilon_1)$. On the other hand the parametrized curve $\beta(t) = \alpha(-t)$ is an integral curve and it fullfils also the condition (+). Hence $f(\beta(t)) \geq f(x_0)$, $\forall t \in [0, \varepsilon_2)$, so is $f(\alpha(-t)) \geq f(x_0)$, $\forall t \in [0, \varepsilon_2)$ and finally $f(\alpha(t)) \geq f(x_0)$, $\forall t \in (-\varepsilon_2, \varepsilon_1)$. **3.5. Theorem.** Let $f: D \to \mathbf{R}$ be a C^1 function and $x_0 \in D$ an extremum point for f constrained by (S^+) . Then it exist $\lambda_1 \geq 0, \ldots, \lambda_q \geq 0$ such that

$$df(x_0) = \sum_{j=1}^q \lambda_j \omega^j(x_0).$$

Proof. Suppose x_0 a minimum point. Let $v \in \mathbb{R}^p$ be such that

$$<\omega^j(x_0), v>\geq 0, \quad j=\overline{1,q},$$

and $J_0 = \{j = \overline{1,q} \mid <\omega^j(x_0), v>=0\}.$

Let $\alpha: I \to D$ be a C^2 integral curve of the Pfaff system $\omega^j(x) = 0$, $j \in J_0$, with $\alpha(0) = x_0$, $\alpha'(0) = v$ (if $J_0 = \emptyset$, then α is an arbitrary curve of the class C^2 with

 $\alpha(0) = x_0$ and $\alpha'(0) = v$). For any $j \notin J_0$ it follows $< \omega^j(x_0), \ \alpha'(0) >> 0$ and hence there exists $\eta > 0$ such that $< \omega^j(\alpha(t)), \ \alpha'(t) >> 0, \ \forall t \in (-\eta, \eta)$ and $\forall j \notin J_0$. Then we have

$$\int_0^t <\omega^j(\alpha(\tau)), \ \alpha'(\tau)>d\tau>0,$$

for $j = \overline{1, q}$ and $t \in [0, \eta)$.

It follows $\varphi(t) = f(\alpha(t)) \ge f(x_0) = \varphi(0)$, $\forall t \in [0, \varepsilon)$, where $\varepsilon < \eta$. Hence we have $\varphi'(0) \ge 0$ and finally $\langle df(x_0), v \rangle \ge 0$. The conclusion results now by Farkas' lemma.

3.6. Lemma. Let a_1, \ldots, a_q , c points in the vector space \mathbf{R}^p and $m \leq q$ such that for any $x \in \mathbf{R}^p$, $\langle a_j, x \rangle \geq 0$ implies $\langle c, x \rangle = 0$, $j = \overline{1, m}$, and $\langle a_j, x \rangle = 0$ implies $\langle c, x \rangle = 0$, $j = \overline{m+1, q}$. Then there exist the real numbers $\lambda_1, \ldots, \lambda_q$, with $\lambda_j \geq 0$ for $j = \overline{1, m}$, such that $c = \sum_{i=1}^q \lambda_i a_i$.

Proof. Let us consider the points in \mathbb{R}^p

$$b_j = \left\{egin{array}{ll} a_j, & j = \overline{1,q} \ -a_{m+j-q}, & j = \overline{q+1,2q-m}. \end{array}
ight.$$

Then, for any $x \in \mathbf{R}^p$, the inequalities $\langle b_j, x \rangle \geq 0$, $j = \overline{1, 2q - m}$, imply $\langle c, x \rangle \geq 0$. By Farkas' lemma it follows that there exist $\mu_j \geq 0$, $j = \overline{1, 2q - m}$, such that

$$c = \sum_{j=1}^{2q-m} \mu_j b_j = \sum_{j=1}^m \mu_j b_j + \sum_{j=m+1}^q (\mu_j - \mu_{q+j-m}) a_j.$$

3.7. Proposition. Let $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ be a C^1 function and $\omega^j: D \to \mathbb{R}$, $j = \overline{1,q}$, be Pfaff forms with coefficients of the class C^1 and rank $[\omega_i^j(x)] = q < p$, $\forall x \in D$. If x_0 is an extremum point for f constrained by

$$\left\{ \begin{array}{ll} \omega^j \geq 0, & \text{for } j = \overline{1,m} \\ \omega^j = 0, & \text{for } j = \overline{m+1,q}, \end{array} \right.$$

 $m \leq q$, then there exist the real numbers $\lambda_1, \ldots, \lambda_q$, with $\lambda_j \geq 0$ for $j = \overline{1, m}$, such that

$$df(x_0) = \sum_{j=1}^q \lambda_j \omega^j(x_0).$$

The proof is as in the theorem 3.5, using the above lemma.

3.8. Proposition. The point $x_0 \in D$ is a minimum point for the function $f: D \to R$ constrained by the system (S) iff x_0 is a minimum point for f constrained by the system of inequalities (S^+) and (S^-) .

Proof. Let x_0 be a minimum point for f constrained by the system $\omega^j(x) = 0$, $j = \overline{1,q}$. If $\alpha: I \to D$ is a C^2 regular curve passing through x_0 for which we have simultaneously

$$\int_{t_0}^t <\omega^j(lpha(au),\,\,lpha'(au))d au\geq 0,\quad j=\overline{1,q}$$

and

$$\int_{t_0}^t <\omega^j(\alpha(\tau)), \ \alpha'(\tau)>d\tau\leq 0, \quad j=\overline{1,q},$$

for $t \ge t_0$, there results $< \omega^j(\alpha(t)), \ \alpha'(t) >= 0, \ \forall t \ge t_0$.

Let $\beta: I \to D$ be an integral curve for the system (S), with $\alpha(t_0) = x_0$ and $\beta'(t_0) = \alpha'(t_0)$. Then the curve

$$\gamma(t) = \left\{ egin{array}{ll} eta(t), & t < t_0 \ lpha(t), & t \geq t_0 \end{array}
ight.$$

is an integral curve for the system (S), with $\gamma(t_0) = x_0$. By the hypothesis, there results $f(\gamma(t)) \ge f(x_0)$ for $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$, so is $f(\alpha(t)) \ge f(x_0)$, $\forall t \in [t_0, t_0 + \varepsilon)$. This means x_0 is a minimum point for f constrained by the system (S^+) and (S^-) .

The converse is obvious because for any integral curve, $\alpha:I\to D,$ of the system S we have

$$<\omega^{j}(\alpha(t)), \ \alpha'(t)>=0, \quad \forall t\in I, \quad j=\overline{1,q}.$$

3.9. Theorem. Let $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ be a C^2 function $x_0 \in D$ and (S) a C^1 Pfaff system in D. If:

1) there exist the real numbers $\lambda_j \geq 0$, $j = \overline{1,q}$ such that

$$df(x_0) = \sum_{j=1}^q \lambda_j \omega^j(x_0),$$

2) the restriction of the quadratic from

$$d^2f(x_0) - rac{1}{2}\sum_{i=1}^q \lambda_j \sum_{r,s=1}^p \left(rac{\partial \omega_r^j}{\partial x^s} + rac{\partial \omega_s^j}{\partial x^r}
ight)(x_0) dx^r dx^s$$

to the subspace

$$\sum_{i=1}^p \omega_i^j(x_0) dx^i = 0, \quad j \in J' = \{j = \overline{1,q} \mid \lambda_j > 0\}$$

is positive definite, then x_0 is a minimum point for f constrained by the inequalities $\omega^j \geq 0, \ j = \overline{1,q}.$

Proof. Let $\alpha: I \to D$ be a C^2 curve, with $\alpha(t_0) = x_0$, which is regular at x_0 , and satisfying

$$\int_{t_0}^t <\omega^j(\alpha(\tau),\ \alpha'(\tau)>d\tau\geq 0,\quad \forall t\geq t_0,\ j=\overline{1,q}.$$

Case 1. If there exists $j_0 \in J'$ such that

$$<\omega^{j_0}(x_0), \ \alpha'(t_0)>>0,$$

then

$$df(x_0)(\alpha'(t_0)) = \sum_{j=1}^q \lambda_j < \omega^{j_0}(x_0), \ \alpha'(t_0) >> 0,$$

Using Taylor expansion

$$f(x) - f(x_0) = df(x_0)(x - x_0) + \mathcal{O}(||x - x_0||)$$

and

$$\alpha(t) - \alpha(t_0) = \alpha'(t_0)(t - t_0) + g(t) \cdot (t - t_0),$$

with $\lim_{t\to t_0} g(t) = 0$, there results

$$f(\alpha(t)) - f(\alpha(t_0)) = (t - t_0)df(x_0)(\alpha'(t_0)) + (t - t_0)df(x_0)(g(t)) +$$

$$+ \mathcal{O}(\|\alpha(t) - \alpha(t_0)\|) = (t - t_0)df(x_0)(\alpha'(t_0)) + \mathcal{O}(t - t_0) \ge 0, \quad \forall t \in [t_0, t_0 + \varepsilon).$$

Case 2. Suppose

$$<\omega^j(x_0), \ \alpha'(t_0)>=0, \quad \forall j\in J'.$$

Let us consider the function

$$arphi(t) = f(lpha(t)) - \sum_{j=1}^q \lambda_j \int_{t_0}^t <\omega^j(lpha(au)), \; lpha'(au) > d au.$$

Then

$$arphi'(t) = \sum_{i=1}^p rac{\partial f}{\partial x^i}(lpha(t)) rac{dx^i}{dt} - \sum_{i=1}^q \lambda_j \sum_{i=1}^p \omega_i^j(lpha(t)) rac{dx^i}{dt},$$

whence

$$egin{aligned} arphi'(t_0) &= \sum_{i=1}^p \left(rac{\partial f}{\partial x^i}(x_0) - \sum_{j=1}^q \lambda_j \omega_i^j(x_0)
ight) rac{dx^i}{dt} = \ &= (d\!f(x_0) - \sum_{i=1}^q \lambda_j \omega^j(x_0))(lpha'(t_0)) = 0. \end{aligned}$$

Also

$$\varphi''(t) = \sum_{r,s=1}^{p} \frac{\partial^{2} f}{\partial x^{r} \partial x^{s}} (\alpha(t)) \frac{dx^{r}}{dt} \frac{dx^{s}}{dt} + \sum_{i=1}^{p} \frac{\partial f}{\partial x^{i}} (\alpha(t)) \frac{d^{2} x^{i}}{dt^{2}} - \frac{1}{2} \sum_{i=1}^{q} \lambda_{j} \sum_{r,s=1}^{p} \left(\frac{\partial \omega_{r}^{j}}{\partial x^{s}} + \frac{\partial \omega_{s}^{j}}{\partial x^{r}} \right) (\alpha(t)) \frac{dx^{r}}{dt} \frac{dx^{s}}{dt} + \sum_{i=1}^{q} \lambda_{j} \sum_{i=1}^{p} \omega_{i}^{j} (\alpha(t)) \frac{d^{2} x^{i}}{dt^{2}}.$$

Then

$$\varphi''(t_0) = d^2 f(x_0) - \frac{1}{2} \sum_{j=1}^q \lambda_j \sum_{r,s=1}^p \left(\frac{\partial \omega_r^j}{\partial x^s} + \frac{\partial \omega_s^j}{\partial x^r} \right) (x_0) \frac{dx^r}{dt} (t_0) \cdot \frac{dx^s}{dt} (t_0) +$$

$$+ \sum_{i=1}^p \left(\frac{\partial f}{\partial x^i} (x_0) - \sum_{j=1}^q \lambda_j \omega_i^j (x_0) \right) \frac{d^2 x^i}{dt^2} (t_0) =$$

$$= d^2 f(x_0) - \frac{1}{2} \sum_{i=1}^q \lambda_j \sum_{r,s=1}^p \left(\frac{\partial \omega_r^j}{\partial x^s} + \frac{\partial \omega_s^j}{\partial x^r} \right) (x_0) \frac{dx^r}{dt} (t_0) \cdot \frac{dx^s}{dt} (t_0)$$

Finally,

$$\varphi(t) - \varphi(t_0) = \frac{1}{2}\varphi''(t_0)(t - t_0)^2 + \mathcal{O}((t - t_0)^2),$$

from where $\varphi(t) \geq \varphi(t_0)$, $\forall t \in (t_0 - \varepsilon, t_0 + \varepsilon)$. But $\varphi(t_0) = f(x_0)$ and, for $t \geq t_0$, $f(\alpha(t)) \geq \varphi(t)$ so that there results $f(\alpha(t)) \geq f(x_0)$ for $t \in [t_0, t_0 + \varepsilon)$.

References

- [1] D. Gabay, Minimizing a Differentiable Function over a Differentiable Manifold, Journal of Optimization Theory and Applications, Vol.37, pp.177-219, 1982.
- [2] N.I. Hicks, Notes of Differential Geometry, Van Nostrand Publishing Company, Princeton, New Jersey, 1965.
- [3] D.G. Luenberger, *Introduction to Linear and Nonlinear Programming*, Addison-Wesley Publishing Company, Reading, Messachusetts, 1973.
- [4] B. Malgrange, Ideals of differentiable functions, Oxford University Press, 1964.
- [5] J.N. Milnor, Morse Theory, Princeton University Press, Princeton, New Jersey, 1969.
- [6] T. Rapcsak, Minimum Problems on Differentiable Manifolds, Optimization Vol.20, pp. 3-13, 1989.
- [7] M. Spivak, A Comprehensive Introduction to Differential Geometry I-V, Vols.
 1-5, Publish or Perish, Berkeley, California, 1979.
- [8] C. Udrişte, Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Holland, Vol.297, 1994.
- [9] C. Udriste, O. Dogaru, Extrema with Nonholonomic Constraints, Buletinul Institutului Politehnic Bucuresti, Seria Energetica, Vol. 50, pp.3-8, 1988.
- [10] C. Udrişte, O. Dogaru, Mathematical Programming Problems with Nonholononic Constraints, Seminarul de Mecanică, Universitatea din Timişoara, Vol. 14, 1988.
- [11] C. Udrişte, O. Dogaru, Extreme Condiționate pe Orbite, Buletinul Institutului Politehnic București, Seria Mecanică, Vol.51, pp. 3-9, 1989.
- [12] C. Udrişte, O. Dogaru, Convex Nonholonomic Hypersurfaces, The Mathematical Heritage of C.F.Gauss, Edited by G.M.Rassias, World Scientific Publishers, Singapore, pp. 769-784. 1990.
- [13] C. Udrişte, O. Dogaru, I. Ţevy, Sufficient Conditions for Extremum on Differentiable Manifolds, Proceedings of the 22nd Conference on Differential Geometry and Topology Applications in Physics and Technics, Bucharest, Romania, 1991.
- [14] C. Udrişte, O. Dogaru, I. Ţevy, Extrema Points Associated to a Pfaff Form, Proceedings of the International Conference on Differential Geometry and Its Applications, Bucharest, Romania, 1992, Tensor N.S., 54 (1993), 115-121.

- [15] O. Dogaru, I. Ţevy, C.Udrişte, Extrema Constrained by a Family of Curves and Local Extrema, Journal of Optimization Theory and Applications, vol. 97, nr.3 (1998), 605-621.
- [16] T.Rapcsak, Smooth nonlinear optimization in \mathbb{R}^n , Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, Dordrecht, Holland, Vol.19, 1997.

Authors' address:

O. Dogaru and I. Tevy
Politehnica University of Bucharest
Department of Mathematics I
Splaiul Independenței 313,
77206 Bucharest, Romania
E-mail: udriste@mathem.pub.ro