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Abstract
§1 analyses extrema constrained by a curve or by a family of curves. §2
introduces and studies the C' and C? curves containing a given sequence of
points. These curves are used to discuss the connection between free extrema
and extrema constrained by a family of curves. §3 defines and examines the
extrema constrained by a Pfaff inequality.
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1 Introduction

Let us consider the C! functions f,¢1,...,9, : D = R on the open set D CR?, ¢ <
p. It is well known that the solution zg of the constrained optimum problem min (maz)
f subject to g1(x) = ... = g4(z) = 0, via the method of Lagrange multipliers, leads
us to the real numbers Ay,..., A; with the property

df (zo) + Adgr (zo) + ... + Agdgq(z0) = 0.

Since the submanifold of R defined by the equations g1 (z) = 0,...,g4(z) = 0 is
an integral manifold of the Pfaff system dg; = 0,...,dg, = 0, we can introduce the
notion of extremum problem constrained by a Pfaff system.

Let

(1) W= wi@ds' =0 j=T4q, q<p

be a Pfaff system, where w! : D — R, are C" functions such that
rank [wf ()] =q, VzeD,
and let f: D — R. What is the meaning of the problem

min(maz)f constrained byw’ =0, j=1,q,
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or
min(maz)f constrained byw’ >0, j=1,q?

Because the solutions of the system (1) are organized in the so called integral man-
ifolds, which in the case of noncompletely integrable system may have the dimension
between 1 and p— g — 1, we start with extrema constrained by a curve or a family of
curves, and after that we study extrema constrained by a Pfaff inequality. We recall
some well known definitions.

1.1. Definition. A function « : I — RP, where I is an open interval and « is a
function of suitable class (at least CY), is called parametrized curve.

1.2. Definition. Two parametrized curves & : I — RP and 8 : J = R? are
equivalent if there exists a one-to-one mapping ¢ : I — J of the same class with «
and 8 such that a = § o . We denote a ~ 3, and we have an equivalence relation.
1.3. Definition. An equivalence class & of a given parametrized C* curve « is called
curve. Then « is called a representative of é.

Because any C° one-to-one mapping ¢ : I — J is monotone we have
1.4. Definition. Two equivalent parametrized curves a and 8 have the same orien-
tation if the mapping ¢ is strictly increasing. If the mapping ¢ is a strictly decreasing
one says that a and 8 have oposite orientation.

1.5. Definition. An equivalence class of C* parametrized curves having the same
orientation is called oriented C* curve.

Every parametrized curve a defines two oriented curves é; = {8 € B | 8 has the
same orientation as a} and &_ = {f € & | § and a have oposite orientation}, which
are called, respectively, positive and negative orientation of the parametrized curve a.

We say that the parametrized curve « is passing through the point o € RP if
there exists o € I such that a(to) = zo. We say that a curve & (oriented curve éy)
is passing through the point zo € RP if the representative a is passing through zg.

Let f: D C R? = R be a function on the open set D, zo € D and a: I - R? a
parametrized curve passing through zo = a(ty), to € I.

1.6. Definitions. a) The point zo is called a minimum (maximum) point for f
constrained by the parametrized curve a, if there exists £ > 0 such that f(a(t)) > f(xo)
(f(a(®)) < f(zo)) for each t € (tg —&,t0 +¢) C I.

b) The point g is called a minimum (maximum) point for f constrained by the
oriented curve G, if there exists € > 0 such that f(a(t)) > f(zo) (f(a(t)) < f(xo))
for each t € [to,t0 +€) C I.

c) The point zg is called a minimum (mazimum) point for f constrained by the
curve &, if 7o is a minimum (maximum) point for the function f resticted to the set
a(l).

Observe that, in the case a), if zop is an extremum point for f constrained by
the parametrized curve a, then zo is an extremum point for f constrained by any
parametrized curve which is in &. Also, in the case b), the definition does not depend
upon the element 8 € a,.

If we denote I'y, a family of parametrized curves (oriented curves, curves) passing
through the point zy, then we accept
1.7. Definition. The point z¢ is called a minimum (mazimum) point for the function
f constrained by the family Ty, if 2o is a minimum (maximum) point for f constrained
by each element of the family I';,.
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1.8. Proposition. Let f : D C R? — R be a function on the open set D, g € D
and « a parametrized curve passing through z.

The following properties are equivalent:

1) z is a minimum (maximum) point for f constrained by the parametrized curve
a.

2) ¢ is a minimum (maximum) point for f constrained by the oriented curves &
and &_.

The proof is obvious.

2 C' and C? curves passing through a given
sequence of points

The aim of this paragraph is to prove that some conditions, enough less restrictive,
ensure the existence of a parametrized C! or C? curve which is passing through a given
sequence of points. The existence of such a curve is needed to prove the connection
between the extremum points constrained by a family of parametrized curves and the
free extremum points.
In [15] we proved
2.1 Theorem. Let (x,), (yn) be two sequences of non-zero, real numbers such that
limz, =limy, =lim & = 0. Then
n

a) there exist the subsequences (xn, ), (yn,) and a function f : R — R of the class
C* such that

f(-’lf'nk):ynka Vk € N,

£(0) = £(0) =0;

b) if, moreover, z,, > 0, y, > 0, Vn € N, then the above function f can be chosen
a non-decreasing one;

c) there exist the subsequences (%, ), (Yn, ), the C? functions f,g: R — R, and
a sequence (ty) of positive real numbers, with limty = 0, such that

ftr) =2k, g(te) =y,

F(0)=¢'(0) =¢"(0)=0 and f"(0)#0.

Based, on the above theorem, we obtain
2.2. Theorem. Let (z,) be a sequence of distinct points in RP with limz, = a.
Then

a) there exist a subsequence (&,,) and a parametrized C* curve a : I C R — RP
passing through the points z,, and a, Yk € N, which is regular at the point a (i.e.,
if a = a(ty), then there exists the sequence (ty) C I such that limty = to, and
a(ty) = zn, and o (to) #0).

b) there exist a subsequence () and a parametrized C* curve o : I C R — R
passing through the points a and z,,, Yk € N, which has a tangent at the point a
(i.e., &' (to) =0, &' (t0) # 0).
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Proof. a) By a translation, we can suppose ¢ = (0,...,0) € RP. Because the
sequence u, = p/||zy|| is bounded, we can consider u,, - v € R? and by a rotation

we have u = (1,0,...,0). Then, if z, = (z.,...,2E), it results

lim T
2\ 2 P 2
T Z
i (2) o ()
xn xn

and hence z1, > 0, for n sufficient large, and zf, /x;, = 0, @ = 1,p. Applying the
above theorem for the sequences (zl), (%), i = 2,p, we obtain the subsequence

Tn, = (2}, ,...,28, ) and the C! functions ¢; : R — R such that

ITERE

=1,

901("1’&”0) = xilk’ Vk € N7 i=2,p,

The required parametrized curve will be given by

a(t) = (& @2(t),- -, ¢p(t))-

b) As in the first part of this proof we apply the theorem 2.1 b) for the sequences
(zL), (%), i = 2,n, and we shall obtain the C? functions ¢; : R — R, i = 1,p, and

n

the sequence (tx) C R, ty — 0, such that

wi(ty) = 23, ,

P0) =3, @0)=0, i=Zp
Then the parametrized curve a(f) = (¢1(t),. .., ¢p(t)) has the required properties.
2.3. Theorem. Let f : D C R? — R be a function on the open set D and zo € D.
Then the following properties are equivalent:

1) zo is a free local minimum (mazimum) point for f.

2) zo is @ minimum (mazimum) point for [ constrained by the family of all
parametrized C' curves passing through xo and which are regular at this point.

3) zo is a minimum (maximum) point for [ constrained by the family of all
parametrized C? curves, passing through xo, which have tangents at this point.
Proof. 1) = 2) and 2) = 3) are obvious.

2) = 1). We can assume f(z) = 0. If 2o would not be a free local minimum point
for f, then a sequence (x,,) of distinct points in R? would exist for which lim z,, = zo
and f(z,) < 0. Then the parametrized curve @ : R — RP, as in the theorem 2.2 a),
would show us that o = a(0) would not be a minimum point for f constrained by .

3) = 1) follows as the above.

Let us note (R2)* = {z = (z!,...,2P) € RP/z™*! > 0,...,27 > 0}.

2.4. Theorem. Let (z,) C (R2)" be a sequence of distinct points with limz,, =
0 € RP. Then there exist a subsequence (z,, ), a parametrized C' curve a: R — RP,
and a sequence (tr) C R, tp, > 0, t, — 0, such that a(0) = 0, a(ty) = z,, and
a(t) € (Rt for any t > 0 and « is regular at the point 0.

Proof. We shall prove that if the sequence (z,) has the property 2F > 0, then

the parametrized curve a(t) = (z!'(¢),...,zP(t)), obtained as in theorem 2.2, has
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the property zP(t) > 0, V¢t > 0. Suppose that z& > 0, Vn € N (if (z,) would
contain a subsequence (y,) with 25 = 0, then we put zP(¢) = 0.) Let us consider
Up = Zy/||Zn|| which, being bounded, can be supposed convergent to a versor u =
(ul,...,uP). We have u? > 0.

The case u? = 0. By a rotation in the subspace zP = 0 we can have u =
(1,0,...,0). Then following the proof of the theorem 2.2 we have uf — 0, and
zl /||znl| = 1, hence ), > 0. By the theorem 2.1 b), for the sequences (z) and (%),
we obtain the function ¢, : R = R which is nondecreasing and ¢,(0) = 0. It follows
ep(t) >0, Vt > 0, and hence the parametrized curve a(t) = (¢,¢2(t), ..., ¢p(t)) as in
the theorem 2.2 is the required one.

The case u? > 0. By a rotation we can have v = (1,0,...,0). By this rotation
the halfspace 2P > 0 becomes a halfspace h(z!,...,zP) > 0, where h(z!,...,zP) =
b .
> a;z". We have, in this case, a; = h(u) > 0.
=1

The parametrized curve a(t) = (¢, @2(t),...,¢p(£)) as in the theorem 2.2 has the
property o' (0) = (1,0,...,0) = u. Let be ¥(¢) = h(a(t)). Then ¥'(0) =a; > 0. It
results that in a neighborhood of t = 0 we have #'(t) > 0, too. Because the sequence
(tx) is so t — 0 and &, > 0 we can suppose ¥'(t) > 0 for ¢t € (—¢,t1). If we modify
the curve a such that o' (t) = (1,0,...,0) for t > ¢1, it results ¢'(¢) > 0, V¢t > 0, and
so 1 is an increasing function, and hence h(a(t)) = ¢ (t) > 0, V¢ > 0. So « has the
required properties.

2.6. Corollary. Let D C RP be an open set,a € D, letg; : D - R, i=m+1,p

be C1 functions with mnk[%(a)] =p—m and (z,) C D a sequence of different

points, T, — a, with the property g;(x,) > 0, i = m+1,p, n € N. Then there
exist a subsequence (x,,), a sequence t, — 0 of positive real numbers and o regular
parametrized C* curve o : R — D, such that a(0) = a, a(ty) = z,, and g; : (a(t)) >
0,¥t>0,i=m+Lp.

Proof. If g;(a) > 0, i = m + 1, p, one can apply directly the theorem 2.2. If for a
function g; we have g;(a) = 0, then we make the change of variables y = G(z),

=gt fori <m, ori > m + 1and g;(a) > 0

‘=gi(z), fori>m+1,andgi(a)=0,

which is a C' diffeomorphism. Now we can apply the above theorem for the sequence
yn = G(xy).

3 Extrema constrained by a Pfaff inequality

Let D C RP be an open set and the Pfaff forms
. p . . —_
(S) W =Y wl(z)ds’, j=T,q, ¢<p,

=1

where w/ : D — R are O" functions in D and rank [w!(z)] = ¢.
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3.1. Definition. If f : D — R is a function, we say that the point g € D is a
minimum point for  constrained by the system of “inequalities”

(S1) w! >0, j=1.4,

if for each parametrized C? curve, o : I — D, which is passing through zo (a(to) = o)
the condition

t

+) | <wia@), @@ >drzo, ez,
to

implies f(a(t)) > f(xo), Vt€ [to,to +¢).

If the inequality (+) is replaced by the oposite one, we obtain the notion of the

minimum point constrained by
(S7) w! <0.
3.2. Remark. a) Suppose that the system (S) is a completly integrable one, i.e.,
there exist g/ : D — R of the class C!, with w/ = dg7. If 2y € D is a minimum point
for f constrained by g’ (z) — g7(z¢) > 0, j = 1,q, then z; is a minimum point for f
constrained by w/ > 0 and, conversely, in the case when we consider all the C! curves
by theorem 2.3.

b) Clearly, if a parametrized curve & fullfils the condition (+), then the oriented
curve &4 is so, but &—_ is not. Hence the condition (+) defines a family of oriented
curves passing through zg.

3.3. Definition. The point zg € D is called an extremum point for the function
f : D = R constrained by the system (S), if 2o is an extremum point for f constrained
by the family of all C? integral curves of the system (S) which are passing through
Zo-

3.4. Proposition. If zg is an extremum point for f constrained by (ST ), then 3o is
an extremum point for f constrained by (S).

Proof. Indeed, suppose that zg is a minimum point for f constrained by (ST). Let
a : I = R be C? integral curve of the system (S) passing through zo (a(0) = o),
which is regular at xzo. The curve « fullfils the condition (+4), so that it follows
fla(t)) > f(zo), Vt € [0,1). On the other hand the parametrized curve 8(t) = a(—t)
is an integral curve and it fullfils also the condition (+). Hence f(8(¢)) > f(=zo), Vt €
[0752)7 so is f(a(_t)) > f(xO)a Vi e [0752) and ﬁna’uy f(a(t)) > f(xo)a Vi € (_62751)‘
3.5. Theorem. Let f : D — R be a C' function and zo € D an extremum point for
[ constrained by (S+). Then it exist \y > 0,...,Ay > 0 such that

df (zo) = Z Ajw (o).

Proof. Suppose 2o a minimum point. Let v € R? be such that

<w(zo),v>>0, j=1,

and Jo = {j = 1,¢ |< w/(x0),v >= 0}. .
Let a: I — D be a C? integral curve of the Pfaff system wi(z) =0, j € Jy, with
a(0) = zg, o’'(0) = v (if Jo = 0, then o is an arbitrary curve of the class C? with
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a(0) = zp and o/ (0) = v). For any j ¢ Jp it follows < w’(x9), o’(0) >> 0 and hence
there exists n > 0 such that < w/(a(t)), o/(t) >> 0, Vt € (-n,n) and Vj ¢ Jo. Then
we have

/t <wi(a(r)), &(r) > dr >0,
0

for j =1,q and t € [0, 7).

It follows ¢(t) = fla(t)) > f(zo) = ¢(0), Vt € [0,e), where € < 1. Hence we
have ¢'(0) > 0 and finally < df (zo),v >> 0. The conclusion results now by Farkas’
lemma.

3.6. Lemma. Let aq,...,a,, ¢ points in the vector space RP and m < g such that for
any z € R?, < aj,z >> 0 implies < ¢,z >=0, j =1,m, and < a;j,z >= 0 implies
<ec,z>=0,j5=m+1,q. Then there exist the real numbers Ai,...,Aq, with A\; >0

— g
for j =1,m, such that c = 21 Aja;.
]:

Proof. Let us consider the points in R?

b Qj, J=14q
i = S
—Omtj—q, J=¢q+1,2¢—m.

Then, for any z € RP, the inequalities < b;,z >> 0, j = 1,2¢ — m, imply < ¢,z >> 0.
By Farkas’ lemma it follows that there exist p; > 0, j = 1,29 — m, such that

2qg—m

c= Z 145b; —Z:“Jb + Z — Hgt+j—m)ay-

j=m+1

3.7. Proposition. Let f : D C R? — R be a C' function andw’ : D = R, j =T1,q,
be Pfaff forms with coefficients of the class C* and rank [w!(z)] = ¢ < p, Vz € D. If
Zo is an extremum point for f constrained by

w >0, forj=1,m
w =0, forj=m+1,q,

m < g, then there exist the real numbers A1, ..., Ay, with A; > 0 for j = 1,m, such

that .
Zg) = Z)\jwj(xo).
j=1

The proof is as in the theorem 3.5, using the above lemma.
3.8. Proposition. The point zg € D is a minimum point for the function f : D — R
constrained by the system (S) iff xo is @ minimum point for f constrained by the system
of inequalities (ST) and (S™).
Proof. Let zy be a minimum point for f constrained by the system w/(z) = 0,
j=1,q. fa: I — D is a C? regular curve passing through zo for which we have
simultaneously

/t <w(a(r), o'(1))dr 20, j=Tjq

to
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and ,
| <), @) > dr <0, i=Tg,

to
for ¢ > to, there results < w’ (a(t)), o/(t) >= 0, Vt > to.
Let 8 : I — D be an integral curve for the system (S), with a(ty) = zo and
B'(to) = o/ (to). Then the curve

_ | B®), t<t
) ‘{ all) 31

is an integral curve for the system (S), with v(fp) = zo. By the hypothesis, there
results f(y(t)) > f(zo) for £ € (tg — €,t0 + €), so is f(a(t)) > f(zo), Vt € [to,t0 + €).
This means Zg is a minimum point for f constrained by the system ($T) and (S7).

The converse is obvious because for any integral curve, a : I — D, of the system
S we have

<wi(at), /) >=0, Vtel, j=1,q.

3.9. Theorem. Let f : D C R? — R be a C? function x9 € D and (S) a C* Pfaff
system in D. If:

1) there exist the real numbers A\; >0, j = 1,q such that

q
T) = Z )\jwj(xo),
Jj=1

2) the restriction of the quadratic from

1< P Owl  Ouw!
~5 Z Aj Z (axs T) (zo)dz"dz®

j=1 r,8=1

to the subspace

14
D wi(mo)ds' =0, jeJ ={j=Tq|) >0}
i=1

is positive definite, then zq is a minimum point for  constrained by the inequalities
w >0,j=T4

Proof. Let a: I — D be a C? curve, with a(ty) = zo, which is regular at zo, and
satisfying

t
/ <wi(alr), o (r) >dr >0, Vt>ty, j=1,q
to

Case 1. If there exists jo € J' such that
< wP (o), o (o) >> 0,

then
df (z0) (@ (t0)) = Y Aj < w®(a0), o (t0) >> 0,
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Using Taylor expansion

f(@) = f (o) = df (x0)(x — 20) + O(||z — 2ol[)

and
a(t) — a(te) = o' (fo) (t — o) + g(t) - (t — to),
with lim g(¢) = 0, there results
t—to

fla®) = fla(to)) = (t — to)df (zo) (e (to)) + (¢ — to)df (w0)(g(2))+

+0(|la(t) — alto)ll) = (t — to)df (x0) (' (to)) + O(t — o) > 0, Vi € [to,to +€)-

Case 2. Suppose .
< w (z9), o' (to) >=0, VjeJ.

Let us consider the function

Then

of A P dz?
Pt =Y 22 () T~ SN D) T
i=1 j=1 =
whence
) =~ [ of o z
Plto) =D | 553 (@0) = D Nwl(@o) | = =
=1 j=1
= (df (zo) Z)\]w’ zo)) (' (t0)) = 0.
Also »
o*f dz” dz® of
= 2 fprow D g T dx’( ol0) G &
_lzq:)\.zp: 8w£+8w§ (a dx dz® zq:)\ Zw ¢
247 4= \Oz® " D7 V@ i < ﬁf
Then

1< L. (0wl Bwi dz” dz*
2 - s hatadl Rhatadll
¢" (to) = d f (o) 3 E Aj r§s=:1 ((%s 3xr) (o) pr (to) pr (to)+

+3 ( LATN —;Ajwz'(w) T ko) =

1< P (0wl Owl dz” dz*
= d*f(zo) - ) Z)‘j Z ((%s + (%T) (o) —(to) - ﬁ(to)
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Finally, .
() = plto) = 5" (t)(t — t0)” + O((t — 0)*),

from where p(t) > @(to), Vt € (to — €,%0 + €). But p(to) = f(zo) and, for ¢ > to,
f(a(t)) > ¢(t) so that there results f(a(t)) > f(zo) for t € [to,to + €).
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