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Résumé

Au cours de la derniere décennie, une importante littérature traite de différents aspects des EDP
dont la partie principale de 1’opérateur a une croissance de type puissance, 1’exemple principal
étant le p-Laplacien. Il existe un large éventail de directions dans lesquelles le cas de la croissance
polynomiale a été développé, notamment les approches a exposant variable, convexe, pondérée et a
double phase.

L’ objectif de cette these est d’appliquer ces approches a plusieurs espaces. Dans le premier
chapitre, nous rappelons les Définitions, propositions, Lemmes et Théoréemes pertinents et néces-
saires (et nous prouvons certains de ces Théoremes) que nous utiliserons dans notre analyse. Dans le
deuxieéme chapitre, nous nous intéressons a la solvabilité des résultats d’existence et d’unicité d’une
classe d’équations elliptiques anisotropes avec le second terme, qui est un terme d’ordre inférieur
et de croissance non polynomiale ; décrit par un N-uplet de N-fonctions satisfaisant la condition A,
dans le cadre d’espaces de Sobolev-Orlicz anisotropes avec un domaine général. Ensuite, dans le
troisieme chapitre, nous nous concentrons dans 1’étude de I’existence et de I’unicité d’une classe de
problemes elliptiques unilatéraux non linéaires (&?) dans un domaine général, gérés par un terme
d’ordre bas et une croissance non polynomiale décrite par un N-uplet de N-fonction satisfaisant la
condition Ay. De plus, le terme source est simplement intégrable. Parmi le large champ dans lequel
le cas de la croissance polynomiale a été développé, nous avons introduit dans le quatri¢me chapitre
une nouvelle classe de problemes d’approximation correspondant a une équation d’obstacle qua-
silinéaire, qui implique un opérateur elliptique général a exposants variables sous forme de diver-
gence, appelé opérateur d’obstacle & double phase a exposants variables, et sur la base du théoréme
du Mountain Pass, des outils de I’analyse non lisse, et de certaines hypotheses appropriées, nous
prouvons 1’existence de solutions faibles. L’étude de ce type de probleémes est a la fois importante
et pertinente. D’une part, nous avons la motivation physique, puisque I’opérateur a double phase a
été utilisé pour modéliser les solutions en régime permanent des problemes de réaction-diffusion,
qui se présentent en biophysique, en physique des plasmas et dans I’étude des réactions chimiques.
D’autre part, ces opérateurs fournissent un paradigme utile pour décrire le comportement des ma-
tériaux fortement anisotropes, dont les propriétés de durcissement sont liées a I’exposant régissant
la croissance du gradient changent radicalement avec le point, ou le coefficient p(-) détermine la
géométrie d’un composite constitué de deux matériaux différents. Dans le dernier chapitre, nous
passons a un autre espace qui connait actuellement un grand développement; les variétés rieman-
niennes de Sobolev-Orlicz a exposant variable. Nous prouvons I’inégalité de Holder, les résultats
d’encastrement continu et compact. De plus, nous étudions I’existence de solutions non négatives
non triviales pour une classe de problemes a double phase ou le terme source est une fonction de

Carathéodory qui satisfait la condition de type Ambrosetti-Rabinowitz comme application.
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Abstract

Over the last decade, a large literature describes various aspects of PDEs whose main part of
the operator has power-type growth with the leading example of the p-Laplacian. There is a wide
range of directions in which the polynomial growth case has been developed, including variable
exponent, convex, weighted and double phase approaches.

The purpose of this thesis is to apply those approaches to a several spaces. In the first chapter,
we recall the relevant and the necessary Definitions, propositions, Lemmas and Theorems ( and
we prove some of these Theorems) that we will use in our analysis. In the second chapter, we are
interested to the solvability of the existence and uniqueness results of a class of anisotropic elliptic
equations with the second term, which is a low-order term and non-polynomial growth; described
by an N-uplet of N-function satisfying the Ay-condition in the framework of anisotropic Sobolev-
Orlicz spaces with a general domain. Next, in the third chapter, we are focused in the study of
the existence and uniqueness of a class of nonlinear unilateral elliptic problem () in a general
domain, managed by a low-order term and non-polynomial growth described by an N-uplet of N-
function satisfying the Aj-condition. As well as, the source term is merely integrable. Among the
wide scope in which the case of polynomial growth has been developed, we have introduced in the
fourth chapter a new class of the approximating problems corresponding to a quasilinear obstacle
equations, which involves a general variable exponents elliptic operator in divergence form, called
double phase obstacle operator with variable exponents, and based on the mountain pass theorem,
tools from non-smooth analysis, and some suitable assumptions, we prove the existence of weak so-
lutions. The study of this type of problems is both significant and relevant. In the one hand, we have
the physical motivation; since the double phase operator has been used to model the steady-state
solutions of reaction-diffusion problems, that arise in biophysic, plasma-physic and in the study of
chemical reactions. In the other hand, these operators provide a useful paradigm for describing the
behaviour of strongly anisotropic materials, whose hardening properties are linked to the exponent
governing the growth of the gradient change radically with the point, where the coefficient p(-) de-
termines the geometry of a composite made of two different materials. In the last chapter, we pass to
another space which is currently undergoing a great development; the Riemannian Sobolev-Orlicz
manifolds with variable exponents. We prove the Holder inequality, the continuous and compact
embedding results. Furthermore, we study the existence of non-negative non- trivial solutions for a
class of double-phase problems where the source term is a Caratheodory function that satisfies the
Ambrosetti-Rabinowitz type condition as an application.

Key words : Anisotropic elliptic equation, Obstacle problem, Entropy solution, Sobolev—Orlicz
anisotropic spaces, General domain, Double phase operator, Variational problems, Variable ex-

ponent Orlicz-Sobolev spaces, Sobolev-Orlicz Riemannian manifold, Nehari manifold.
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Symbol Description
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there exists

equivalent

summation

set of natural numbers

set of real numbers

positive integer greater than or equals to 1
Euclidean space of N-dimensional vectors

open bounded subset of RV

boudary of Q

the spaces of continuous functions on €2

the spaces of infinitely differentiable functions on Q
infinitely differentiable functions with compact support on Q
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Manifolds
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Riemannian metric

gradient of a function u

almost everywhere

strong convergence

weak convergence

continuous embedding

compact embedding

arbitrary Banach space

dual space of the Banach space X

support of function u

scalar product of RV, duality between X and X’
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Introduction

For several years, great efforts have been devoted to the study of nonlinear elliptic equations
with an operator described by polynomial growth, which is motivated, for example, in the classical
Sobolev space, not only by the description of many phenomena appearing in the applied sciences,
due to the study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal
control, financial mathematics, and others. Interested readers may refer to [14, 19, 23, 45] and
the references therein for more background of applications. But also by the mathematical impor-
tance in the theory of this space. In addition, there is a vast literature describing various aspects
of PDEs whose main part of the operator has a power-like growth with the preeminent example
of the p-Laplacian. There is a wide range of directions in which the polynomial growth case has
been developed, including variable exponent, convex, weighted, and double-phase approaches. For
example, the double phase problem. Zhikov was the first who studied this type of problem in order

to describe models of strongly anisotropic materials by studying the functional
w— [ (Vul? 4 (o[ Vul?) d ()
Q

where the integrand switches two different elliptic behaviours. For more results see [105-107].
Then, several interesting works have been carried out on the double phase problem with a Dirichlet
boundary condition. For a deeper comprehension, we refer the reader to [49, 65, 80, 82, 88, 100-
103] and the references therein.

In the anisotropic Sobolev-Orlicz space ; a space almost as old as the classical Sobolev space as
we know it today, constructed by Krasnosel’skii, and Rutickii [76] in 1968 and recently developed
by Cianchi [48] in 2000. The most exhaustive studies on this space were developed in several
interesting works. For example, Kozhevnikova in [74] established the existence of entropy solutions

to the following problem :

where Q be an arbitrary domain in RV, N > 2.

ao(x,s0) = ao(x, ¥) +b(x,s0),

with ag(x, ) € L'(Q), the function b(x,so) satisfies the Carathéodory condition and decreases in
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50 € R, b(x,y) =0 for all x in Q, therefore Vx € Q, 5o € R

b(x,s0) (so—y) > 0.
The author also supposed two other conditions ; the first one

sup |b(x,50) | = Gi(x) € Ly 10c(Q),

|'so | <k

the second one, dy > 0 such as
b(x,y+ &) € L'(Q).

In [75] Kozhevnikova proved again the existence of entropy solution to the following second-order

anisotropic quasilinear elliptic equation :

N
Y (ai(x,u,Vu)), —ao(x,u,Vu) =0 in Q,
() i=1
u=0 on JdQ,
where a;(x,so,s), i =0,---,Nare Carathéodory functions. In [47] Chmara and Maksymiuk, shown

the existence of periodic solution for Euler-Lagrange equation, with the lagrangian consists of ki-
netic part (an anisotropic G-function), potential part K — W and a forcing term, using the Mountain
Pass Theorem. Then, they consider two situations : G satisfying A, NV, in infinity and globally, and
finally, they give conditions on the growth of the potential near zero for both situations. For more
results, we refer the reader to [4, 13, 15, 20, 26, 28, 29, 31, 36, 46, 66] and the references therein.
All these previous relevant contributions in which the exponent p = cste, lead us to study the
theories and applications of Lebesgue-Sobolev spaces with variable exponent, and the Sobolev-
Orlicz with variable exponent in complete compact Riemannian manifolds in which the exponent
p(x) is a function. The first spaces was introduced by Orlicz [86] in 1931, and he was interested in

the study of function spaces that contain all measurable functions u : 2 — R such that
p(u) = | 9(Alu(x)) dx

for some A > 0 and ¢ satisfying some natural assumptions, where Q is an open set in R". Then, in
1999, Fan and Zhao [61], presented some basic results on the generalized Lebesgue spaces LP™Y) (Q)
and generalized Lebesgue-Sobolev spaces W!»() (Q). After that, the same authors in [60, 62] pro-
ved some embedding theorems for space W' (Q) like the compact embedding theorems with
symmetry of Strauss-Lions type, we refer also to [73] for more results. As a wide range of direc-
tions in which the polynomial growth case has been developed, we have the double phase problems
with variable exponent, which were announced by Ragusa and Tachikawa in [91-95], they have
achieved the regularity theory for minimizers of (1) with variable exponent. After that, these types
of problems have been attacked by several researchers, we refer the reader to [27, 30, 44, 97, 98] for
a deeper comprehension. When p = p(x), the previous space is called by the Sobolev spaces with
anisotropic variable exponent, was introduced by Mihdilescu, Pucci, and Rédulescu in [83, 84].

Moreover, one of the first contributions in this direction is due to Fragala, Filippo, and Bernd in
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[58]. The necessity of such theory appears naturally when we want to consider materials with inho-
mogeneities that behave differently in different directions in space. Since this subject is relatively
new, only few papers have been published, see for example [6, 10, 37, 42, 51, 54, 56, 59, 71] and
the references therein. Finally, we move on to Sobolev-Orlicz with variable exponent in complete
compact Riemannian manifolds. This space is currently undergoing great development. Moreover,
analysis proves to be a very powerful tool for solving geometrical problems. Conversely, geome-
try may help us to solve certain problems in analysis, as pointed out in Gaczkowski, Gérka, and
Pons [63, 64], they are presented many results in the theory of Sobolev space for compact and non-

compact manifolds. For more details we quote [1, 2, 7, 8, 16, 30, 68] and the references therein.

Our Goal

Our objective in this thesis is to establish a more involved version of equations (£;) and (£?;)
given by () (see chapter 2 below), which is managed by low-order term and non-polynomial
growth ; described by an N-uplet of N-function satisfying the A, —condition, the source f is merely
integrable. Using an approximation procedure and some priori estimates, we proved the existence
and uniqueness of entropy solution to the problem (£?) in the general domain. Next, we prove the

existence and uniqueness of a class of nonlinear unilateral elliptic problems like

N
A(u) + Y bi(x,u,Vu) = f in Q,
i=1

u>y aein Q,

in a general domain too, managed by a low-order term and non-polynomial growth described by
an N-uplet of N-function satisfying the A;-condition, and the obstacle y is a measurable function
belongs to L= (L) "W} (Q). The source term is merely integrable. Moving on to the Sobolev-Orlicz
space with variable exponent. We introduce a new class of the approximating problems correspon-
ding to a quasilinear obstacle equation, which involves a general variable exponent elliptic operator
in divergence form, called double phase obstacle operator with variable exponents, and based on the
mountain pass theorem, tools from non-smooth analysis, and some suitable assumptions, we prove
the existence of weak solutions. Finally, we go to another novel space ; the Sobolev-Orlicz spaces
with variable exponents in complete compact Riemannian n-manifolds, and we prove the Holder
inequality, the continuous and compact embeddings. Moreover, using the method of Nehari mani-
fold combined with the fibering maps, we prove the existence of non-negative non-trivial solutions
to a class of double-phase problems where the source term is a Caratheodory function that satisfies

the Ambrosetti-Rabinowitz type condition.

Outline

This thesis is composed of six chapters :

— In the first chapter, we give all necessary and relevant Defintions, Properties, Lemmas and

Theorems (and we prove some of these theorems) that help us in our analysis.
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— In the second chapter, we study the existence and the uniqueness solution of an anisotro-
pic elliptic problems with the second term, which is a low-order term and non-polynomial
growth; described by an N-uplet of N-function satisfying the A,-condition in the framework

of anisotropic Sobolev-Orlicz spaces with a general domain.

— In the third chapter, we prove the existence and the uniqueness solution of an unilateral aniso-
tropic elliptic problem, in general domain, managed by a low-order term and non-polynomial
growth; described by an N-uplet of N-function satisfying the A;-condition.

— In the fourth chapter, we introduce a new class of the approximating problems corresponding
to a quasi-linear obstacle equations, which involves a general variable exponents elliptic ope-
rator in divergence form, called double phase obstacle operator with variable exponents, and

we demonstrate the existence of the solutions.

— In the Final chapter, we prove the Holder’s inequality, the continuous and compact embed-
ding of the Sobolev-Orlicz spaces with variable exponents in complete compact Riemannian
n-manifolds and as an application, we establish the existence of non-negative non-trivial so-

lutions to a double phase problems using the Nehari manifold method.
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Preliminaries

This chapter is devoted to recalling some definitions and proving some results that will play a

role in this thesis.

1.1 Anisotropic Sobolev-Orlicz space

In this section, we briefly review some basic facts about Sobolev-Orlicz anisotropic space which
we will need in our analysis in Chapters 2 and 3. A comprehensive presentation of Sobolev-Orlicz

anisotropic space can be found in the work of M.A Krasnoselskii and Ja. B. Rutickii [76] and [48].

1.1.1 N-Functions

Definition 1.1.1. We say that B : RT™ — R™ is a N-function if B is continuous, convex, with

B(6) >0 for 6 >0, %m—)Owhen B%Oand%e)%oowhen 0 — oco.
0

This N-function B admit the following representation : B(0) = / b(t) dt, with b : Rt — R™
0

which is an increasing function on the right, with b(0) = 0 in the case 0 > 0 and b(0) —> oo when



2 Chapitre 1. Preliminaries

0 — oo,
_ 1]
Its conjugate is noted by B(0) = / q(t) dt with q also satisfies all the properties already quoted
0
from b, with

B(6) =sup(u|6]—B(u)), ©6>0. (1.1)
p>0

The Young’s inequality is given as follow
Ve, u >0 Ou <B(u)+B(6). (1.2)
Definition 1.1.2. The N-function B(0) satisfies the Ay —condition if 3¢ > 0, 6y > 0 such as
B(260) <c¢B(6) 0 > 6. (1.3)
This definition is equivalent to, Vk > 1, 3 c(k) > 0 such as

B(K6)<c(K)B(O) for 6> 6. (1.4)

Definition 1.1.3. The N-function B(0) satisfies the Ay—condition as long as there exists positive

numbers ¢ > 1 and 8y > 0 such as for 0 > 6y we have
0b(0) <cB(0). (1.5)
Also, each N-function B(0) satisfies the inequality
B(u+0)<cB(0)+cB(u) 0, u>0. (1.6)

Proposition 1.1.1.
OB'(0) = B(B'(0))+B(6), 6>0, 1.7)

with B' is the right derivative of the N-function B(0).

Proof. By (1.2), we take u = B'(6), then we obtain
B'(6)6 <B(0) + B(B'(6)),

and by Ch. I [76], we get the result. 0



1.1. Anisotropic Sobolev-Orlicz space 3

1.1.2 Anisotropic Sobolev-Orlicz space

The Orlicz space Lp(Q) is defined as equivalence classes modulo the equality a.e on Q of real

measurable functions on Q such that
"o u)
/ B(u(x)) dx < 4o (resp./ B ~ dx < oo for some k > 0).
Q Q

The Orlicz space Lg(Q) provided with the norm of Luxemburg given by

||”||B,Q:inf{k>o/ /B< MS:)D dxgl}. (1.8)
Q
According to [76] we obtain the inequalities
/B( u(x) >dx< 1, (1.9)
o \|llulz.0
and
lullaa < [ Blup dr+1. (110

Moreover, the Holder’s inequality holds and we have for all u € Lg(Q) and v € L3(Q)

| [ vt x| <2Jullna-|1vllg.0 (111)

Proposition 1.1.2. [48, 76] If P(0) and B(0) are two N-functions such as P(0) < B(0) and

meas Q < oo, then Lg(Q) C Lp(Q), furthermore
l|u|lpo < Ao (measQ)||ul|pa ueLp(Q). (1.12)
And for all N-functions B(0), if measQ < oo, then Lo.(Q) C Lg(Q) with
l|u|lg.o <Al (measQ) || ullwan u€eLg(Q). (1.13)
Also for all N-functions B(8), if measQ < o, then Lg(Q) C L'(Q) with
lullie < Azl[ullpo u € Lp(Q). (1.14)

We define for all N-functions Bj(8),--- ,By(8) the space of Sobolev-Orlicz anisotropic W, (Q)
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as the adherence space C; (€2) under the norm

N
lulliy @ = L lux 5.0 (1.15)
i=1

Definition 1.1.4. A sequence {u,, } is said to converge modularly to u in Wl; (Q) if for some k > 0

oo

Remark 1. Since B satisfies the Ap—condition, then the modular convergence coincide with the

we have
U —

k

u')dx—>0 as  m—s oo, (1.16)

norm convergence.

Remark 2. If the doubling condition is imposed on the modular function, but not on the conjugate,
then the space for the solutions to exist is non-reflexive in general. For this raison we will assume in
the remainder of this thesis that B satisfies the both conditions; Ay—condition and V,—condition,

so the propositions 1.1.3 and 1.1.4 will remain true.
Proposition 1.1.3. [76] The Sobolev-Orlicz anisotropic space WBI (Q) is complete and reflexive.
Proposition 1.1.4. [76] The Sobolev-Orlicz anisotropic Wé (Q) is separable.

The following lemmas are also true :

Lemma 1.1.1. [67] Forall u € WLIB (Q) with measQ < oo, we have

AB(’Z') dxg/QB(|Vu|)dx,

where A = diam(Q), is the diameter of Q.

B 0 .
Note by h(r) = H - and we assume that / - dt converge, so we consider the
i=1 0

1zl h(t
N-functions B*(z) defined by (B*)~'(z) = / (t) dt.
0

Lemma 1.1.2. [72] Let u € W} (Q). If
h(r)

then, Wh(Q) € Ly (@) and |[ul|a-.0 < 254 |l -
If
< h
[0 4 <o
1 t
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0 = h(t
mnWﬂmcuﬂnmﬂmmpgﬁwmewMﬁ:/pda
0
||
For each N-function B;(z) = / b;(t) dt obeys the further condition
0

fim inf 21(%0)
a—=0>0 bi(cr)

=oo, j=1,---,N. (1.18)
Example 1.

B(z) = |z"(In(j2]) +1), b>1,
satisfy (1.18) and Ay —condition.

Lemma 1.1.3. Suppose that (X, .7 ,meas) is a measurable set such that mes(X) < co. Let 6 : X —
[0, +-o0] be a measurable function such that meas{x € X : 0(x) =0} = 0. Then, for any € > 0, there

exist & > 0 such that the inequality

/9@ﬁug6
Q
implies the following inequality
meas(Q) < €.
With Q is a bounded domain.
Proof. See Lemma 2, in [34]. L]

1.2 Sobolev space on Riemannian manifolds

This section is devoted to the reminder of some basic definitions and properties of Sobolev
spaces on Riemannian manifolds, as well as to the proof of some lemmas, which will help us in our

analysis in chapter 5.

1.2.1 Definitions and Propositions

Definition 1.2.1. [16] A Riemannian metric g on M is a smooth (2,0)—tensor field on M such that

for any x € M, g(x) is a scalar product on T,(M).

Definition 1.2.2. Christoffel symbols :[16]

X,

1 dgm; 0gmi dgii m
) = 5 ( (B2, + (52, - (524), ) o™,
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where the g'’s represents the inverse matrix of g;j, such as gimg™ = &;.

Definition 1.2.3. [16] Given (M,g) a smooth Riemannian manifold, and 7y : [a,b] — M a curve of
class C', the length of 7 is defined by

b d d
i = [ s (D), (1)) a,
and Vx,y € M we define the distance dy(x,y) as
dg(x,y) = inf {1(y) : y: [a,b] — M such that y(a) = xand y(b) =y }.

Definition 1.2.4. [16] Let (M, g) be a smooth Riemannian manifold. For K integer, and u: M — R
smooth, we denote by VKu the K'" covariant derivative of u, and | VEu| the norm of VXu defined in

a local chart by

’VK”‘ = giljl o 'ginK (VKu)ir“iK (VKu)jl“‘jK'

Since (Vu); = du, then

(Vzu)ij = 8,~ju — FS&KM

And For p > 1 a real, K a positive integer, we define the Sobolev space as follow
LP(M) = {u:M — Rmeasurable//M\uV dv(g) < 00}.
And the functions space as
CE(M) = {uEC‘”/Vj =0,--- ,K,/M|Vju|pdv(g) < —i-w},

where M is compact. By default €% (M) = C*(M) VK,Vp > 1.

e Foru € 6% (M), we have

lullose = 3 (17 i)

Definition 1.2.5. [16] The Sobolev space WX-P(M) is the completion of €F (M) with respect to
[| - |lwx.», where

ullwer = 11 Vaellp + [[ullp-
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Proposition 1.2.1. [16] Let || - ||, be the norm of L¥ (M) defined by

ullp = </M|updv(g)>’l’.

So :

1/ Any Cauchy sequence in (6% (M),|| - |lwk»s) is a Cauchy sequence in the Lebesgue space

(L) - 11 ):
2/ Any Cauchy sequence in (€% (M),|| - |lwx. ) that converges to 0 in the Lebesgue space

(LP(M), || - ||,) also converges to 0 in (€E (M), || - |lwx. ).

Proposition 1.2.2. [16, 70] For any K integer, W>X (M) is a Hilbert space when equipped with the

equivalent norm

K
lull = | X [ 1V3ulav(e)
=0"M
the scalar product (-,-) associated to || - || is defined by
K . .
W) = Y [ (Vi 90) av(g),
j=0"M

where, (-,-) is the scalar product on covariant tensor fields associated to g.

Proposition 1.2.3. [16] If p > 1, WXP(M) is reflexive.

1.2.2 Some Embeddings results

Proposition 1.2.4. [16, 70] Let (M,g) be a complete compact Riemannian n-manifold. Then, if the

embedding L} (M) < L#T (M) holds, then whenever the real numbers q and p satisfy
1 <g<n,

and

the embedding L1(M) < LP (M) also holds.

Lemma 1.2.1. [16, 70] Let (M,g) be a smooth compact Riemannian n-manifold. Given p,q two

real numbers with 1 < g < p and given K,m two integers with 0 <m < K. If% = é — lkm)

n



8 Chapitre 1. Preliminaries

then, WX4(M) C WP (M).
So, 3¢ >0, Yu € WK4(M)

[lullwnr < c|fullyxs.

In particular, for any q € [1,n) real, W4(M) C LP (M) where % = é

lully < ellullyra. — with

Lemma 1.2.2. If (M, g) is complete, then Vp > 1 WO1 (M) = WP (M).

Proof. Let h: R — R be defined by

1 when § <0,

hC)=491-¢ when0<(<T1,

0 when § > 1,

and let u € CY' (M) where p is a real number greater than or equal to 1. Let x, y € M and set

ui(y) = u(y) h(dg(x,y) = i),

where d, is the Riemannian distance associated to g, i € N ( just note that, if (M, g) be a Rieman-
nian manifold and u : M — R a Lipschitzian function on M which equals zero outside a compact
subset of M, then u € WHP(M) Vp > 1). Thus, u; € W'?(M) Vi and u; = 0, hence, for all i we

have u; € WO1 ”(M). Independently, we have Vi

1

(fpu-erao) =( [, o),

and

1 1

([ v rpdv<g>)’l’ (. vraw) ([ o)
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Where B, (i) is the geodesic ball of centre x and radius i. Hence,

limu; =u in W'P(M).
[—o0

O]

Lemma 1.2.3. [16] Given (M, g) a smooth, complete Riemannian manifold, the set (M) of smooth

functions with compact support in M is dense in W'P(M) Vp > 1.

Remark 3. By Proposition 2.11 in [16], we have

If we suppose that W' (M) C L= (M), then 3¢ > 0 such as Yu € W' (M),

(/ |77 dv(g ) ' <c/ (|Vu| + |ul) dv(g).

Lemma 1.2.4. Let (M,g) be a smooth complete Riemannian n-manifold. Suppose that

whi(M) c LT (M), then for any numbers real 1 < q < p and any integers 0 < m < K such that

1 1 K K—m
4= — , we have
p q

w4 (M) c wmr(m).

Proof. By Remark 3, if W' (M) C L#1(M), then there exists ¢ > 0 such that Yu € W' (M), we

have
n—1
([ ae)) " < [ (19l + 1)) i)
M M
Let g € (1,n), % = é — Landu e 2(M), and let ¢ = |u|P~ . By Holder’s inequality we obtain
that

1

([urae) ™ = ( [iorave)”
¢ [ (1vol+10l) dv(e)

:”’(’2_1)/ |u|l”|vu|dv(g)+c/ |ul?~ " dv(g)
cp(n—1) (/|M|M dv(g > </|Vu‘fdv >

—H(Aywquﬁf(ﬁwwwwﬁf

. Moreover, p'q’ = p since % =

IN

141 L 2
where,qqL =land 1 = »

o . Hence, we deduce

1
n

Q=

1
p
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that

(/M\M|Pdv(g));§6p<';_l)(</M|w|qdv(g)>;+</M|u\‘1dv(g));), (1.19)

And by Lemma 1.2.3, we get the result. O

Remark 4. The fact that W' (M) C L#1 (M) implies that there is a lower bound for the volume of

balls with respect to their center.

Proposition 1.2.5. [16, 70] e Since M is compact, M can be covered by finite numbers of charts

(s O )m=1.... N, such that Vm the components gliofgin (Qu, O ) satisfy
1 m
551']' < g <26,

as bilinear forms.
e Since M is assumed to be compact, (M,g) has finite volume. Hence, for 1 < q < ¢', we have

L9 (M) C L1(M).

Lemma 1.2.5. [16] Let (M,g) be a smooth compact Riemannian manifold of n-dimension. Given
P,q two real numbers with 1 < g < n and p > 1 such that % > é — % The inclusion W"4(M) C

LP(M) is compact.

Lemma 1.2.6. [16] Let g > 1 be real and let m < K be two integers.

° If%—(Kn;m)>O.Then,

Wh4(RY) c WP (RY),

1 1 (K—m)
re -« = o — o,
Whe e P g n

° Ifé—(Knim)<0.Then,

WhI(RY) C g5 (RY),

where €}'(RN) denotes the space of functions u: RN — R of class €™ for which the norm,

m
lullgn = Y sup |Dou(x)] is finite.

|a|:0x€RN
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Lemma 1.2.7. [16] Let (M, g) be a smooth compact Riemannian n-manifold, g > 1 real and m < K

- 1 _ k- k,
two integers. If . < =2 then, W*(M) C ¢ (M). Where

m
[u|lgn = J;)gg; | V/u(x)|.

1.3 Variable exponents Lebesgue spaces

In this section, we recall some properties of spaces L¢™)(Q) and WO1 4 (Q) where Q is an open
subset of R which are called the Lebesgue spaces with variable exponents and the Sobolev spaces
with variable exponents setting, which can be found in [9, 18, 61, 62] and references therein.

1.3.1 Definitions and Propositions

Let Q be a bounded open subset of RN (N > 2), we define the Lebesgue space with variable

exponent L0) (Q) as the set of all measurable function u :  — R for which the convex modular

puty ) = [ |u(o) 1 dx,

is finite. If the exponent is bounded, i.e if g = esssup{ g(x)/x € Q} < +oo, then the expression

. u
ullq) :mf{l >0: pq(_)<k> g]}7

defines a norm in L¢)(Q), called the Luxemburg norm.
Proposition 1.3.1. The space (L1°)(Q), || .|| 4() is a separable Banach space.

Remark 5. If1 < g~ < g" < oo, then L1)(Q) is uniformly convex, where g~ = essinf{q(x)/x €

Q}, hence reflexive, and its dual space is isomorphic to Lq/(')(Q) where ﬁ + ﬁ =1

Proposition 1.3.2. ( Hilder type inequality ) For all u € L1)(Q) and v € 240 (Q), we have

1 1
uvdx| < | —+——= | llullg)|| VIl
| fwvas] < (2 ) lulhaollv g

Definition 1.3.1. We define the variable exponent Sobolev space by

WHO(Q) = {u € 19(Q) and |Vu| € LI)(Q) ).
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which is a Banach space equipped with the following norm
eel1,g0) = Haellgy + [Vl Iy Ve whi(Q).

Proposition 1.3.3. The space (W'40)(Q),||- |1.4(.)) is separable and reflexive Banach space.
We denote by WOI’Q(') (Q) the closure C3(Q) in Wh0)(Q).

Proposition 1.3.4. [60] ( Poincaré inequality ) If g € C,(Q), then there is a constant ¢ > 0 such
that

1,q(x
Nullyw < elllValllyw, VueWy (@)

Where, C1.(Q) = {q/q € C(Q), q(x) > 1 forx € Q}.

ull = ||| Vulllyw) and ||u|l1, 4(x) are equivalent norms on Wol’q(x)(Q).

Consequently,

1.3.2 Theory of Sobolev-Orlicz spaces with variable exponents

In this part, we recall some relevant definitions and properties that will help us in our analysis in
chapter 4. For the convenience of the readers and for the sake of completeness, we recall the proofs

of some results.

Definition 1.3.2. We define the following real valued linear space as follows
LPO(Q) +L19(Q) = {ufu=v+w,v e L’V (Q),w e L1V(Q) },
which is endowed with the norm
Jul 0 (@) 20 (@) = 10 { V] o) + Wy /v € LP(Q), w e LV(Q), u =v+w}.  (1.20)
Definition 1.3.3. We defined the linear space as follows
PO NLIY(Q) = {u/ue L’V(Q)anduc L1(Q) },
which is endowed with the norm

|| L) (@)La0) (@) = Max { |l 10 (@) [l a0 () }-
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We denote
Dy={x€Q/|ulx)|>1} and 7, ={x € Q/|u(x)| < 1}.

Proposition 1.3.5. Ler Q C RN and u € LP1) (Q) 4 L) (Q). Assume that (7)) - (iv) are true. Then,
the following properties hold :

(a) IfQ C Qis such that |Q'| < +oo, then u € LPU)(Q').

(b) If Q' C Qis such that u € L*(Q'), then u € L1)(Q).

(€) |Du| < ee.

(d) ueLPV)(2,)NLIO(ZF).

(e) The infimum in (1.20) is attained.

(f) If BC Q, then,

ul 0 @) 290) (@) < 1Lt By 100y (8) 1] o) (@\B) 4190 (01 B)

(g) We have

1 q(¢)
max |u] 1) (7> € IOIN  |1t] o) (e \u]‘”(?) . }
{1+2I.@uyp<lf:>q<'c> w0 © min Il ) 174 )

< lulppo@)+1a0(@) < Ul (g, T 1l a0 (e,

where, { € Q and c is a small positive constant.

Proof. Letv € LPU)(Q) and w € L40)(Q) such that u = v+ w, then v € LI’/(')(Q’) andwe L4 0) Q).
(a) To show that u € LP1)(Q'), it is enough to show that w € LP() (Q’). And by Young’s inequality,

we get the results.

(b) To prove u € L10)(Q'), it is sufficient to prove that v € L9() (). For that, we have

/ |V(_x)‘q(x) d_x:/ ’v(_x)|q(x)7p(x)‘v(x)’p(x) dx
Q Q/

< (1+|supv))? 7 / V()7 dx < oo,
Q/

Thus, v € L40)(Q'). Hence, u € LI0)(Q).

(c) We use the fact that 1 < |u| < |v|+ |w| implies that |v| > § or |w| > § and for all x € Q, we

get
pt+at

1
+°°>/ [P w40 dx > ‘ | D]
Q

2

Hence, the result.
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(d) From the assumptions (a) — (¢) we get the result.

(e) Letu € LPV)(Q) + L) (Q), we consider a minimizing sequence for u, namely v, € LP*)(Q)

and w, € L10) (Q) such that u = v, +w, and

ngrfm (|Vn|L1’<‘)(Q) + ‘WH|L‘1(‘>(Q)) = ’u|LP(‘)(Q)+L‘7<‘)(Q)‘

Then, by the reflexibility of LP()(Q) and L") (Q), there exist vy € LP()(Q) and wy € LI0)(Q)

such that v, — vg in L()(Q) and w,, — wy in L4)(Q). By lower continuity, we have

|M‘LP(‘)(Q)+L‘1(')(Q) = ngrfw (’Vn|u’<’) @t |Wﬂ|L‘1<')(Q))

2 ngffw inf |va|p0 ) + ngffm inf [wn| 40 (@)

= [volzr01 @) + IWolpa @) -

According to the Definition 1.3.2, we get

] 10 (@)+290 () = Vol o0y (@) + [Wol a0 ()

(f) See Proposition 2.2 in [18].

(g) From (d) and the Definition 1.3.2, we notice that

‘”|LP(')(Q)+L‘1('>(Q) < |M|LP('>(@,§) + ’”|L‘1(')(@§)‘

By (e), we obtain that

[l o @) 4290 (@) 2 |4l 200 (21190 (2
and

’”|U(-)(Q)+Lq(~)(g) = |”|Lp<~>(@5)+Lq<~)(@5)-

By (1.20), we deduce that

0 R
|l 0 (2,) < 21Dl PO 1O Wl 0,y VE € Q.
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It follows that

S
’”|U( D) <|V|U +|W|LP @ = (1+2’-@| Pe) g)’”|U< Du)+LAO (D)

L
< (1+2’@ | P04 )’”|Lp Q)+L10(Q)>
without loss of generality, we may assume that u is nonnegative, such that
|l 1) (@) +140 () = V0 (@) + WlLa0 @) -

Evidently, 0 <w < 1 on 7. We denote 6, = [W[;,()(g) and Oy = [W| 40 (). According to

the fact that |[w| < 1 on 7, we get

(4 ¢
1:/ w | s ot )/ w | et Ve eQ
75| Op o) J7; | o o)
(6)
Thus, 6, > o, . Similarly,
a(f)

‘u’LP('>(9§)+L‘1(‘)(@,§) = ‘V|LP(')(@5) + ’W’sz(-)(@;) 2 |v]£éf,))(_@;) + |W|Lq<'>(9,;'

é

q(
> cmin { |u]40) (76 |u\

D))

According to the previous results, we obtain the result.

Proposition 1.3.6. [103] Assume that assumptions (< )-(iv) are true. Then

(LP’(-)(Q) +ra0) Q) |70 (QHM(A)(Q)) is a reflexive Banach space.

Now, we consider
X(Q) = {ue L0(Q)/Vu e (L70(@) + L7 (@)},

with the norm

linlle = 1l iy + IVl @y 200 -

Proposition 1.3.7. [103] Under assumptions (<1 )-(iv). (X (Q), ||u||q) is a reflexive and a Banach

space.
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Theorem 1.3.1. [103] Suppose that hypotheses (<))-(iv), 1 < p*(-) Z:E)) hold, a satisfies 1 <

o) < p*(+) NT_l and 1 < a(-) < p* Z;E% Then, the space X(Q) is continuously embedded into

L7 O(Q).

Proposition 1.3.8. Assume that hypotheses (< )-(iv), 1 < p*(+) Z//E; hold, a satisfies 1 < o(-) <

(") NTfl and 1 < o) < p* 2;8 The following properties are true :
(i) Foranyu € X(Q), you — uin X (Q).

(ii) Forany u € X(Q), we have ug = ux jo — u in X (Q) ( where jg(x) = SNj(;‘) and j: Q —

R is in CZ(Q), a function inducing a probability measure.
(iii) For any u € X(Q), there exists a sequence {u,} C C(Q) such that u, — uin X(Q).

Proof. (1) See Theorem 3.12 in [103].

(i) Using the mollifiers method, we get that ue — uin L*") (Q) as € — 0. Moreover, if Vi = a+b,
with a € (LPO)(Q))N and b € (L1)(Q))N, we have Vue = Vu* je = a* je + b+ je with

ax je € (LPO(Q))N and b+ je € (L1°)(Q))N. Then
|Vitg = Vul 0@y 1190 (@) < lax je —alppoq) + 0% je — blrac ) — 0.

Hence, ug — uin X (Q).

(iii) We can easily conclude the proof of this step, by using the above results (i) and (ii).

1.4 Sobolev-Orlicz Riemannian manifold with variable exponents

In this section, we begin with a brief description of the Lebesgue Riemannian manifolds and
Sobolev Riemannian manifolds spaces with variable exponents. A detailed insight into the these

spaces and a review of the bibliography can be found in [1, 2, 16, 63, 68, 70]

1.4.1 Definitions and Propositions

In the following, all the manifolds we consider are smooth, and we will use the following

conditions on (M, g), depending on the context :

Definition 1.4.1. Let (M,g) be a smooth Riemannain n-manifolds and let V be the Levi-Civita

connection. If u is a smooth function on M, then V¥u denotes the k—th covariant derivative of u,
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and | V¥u| the norm of V¥u defined in local coordinates by

|Vku ‘2 _ gi1j1 ...gikjk (Vku)il...ik (Vku)jr"jk’

where Einstein’s convention is used.

Remark 6. A smooth manifold M of dimension n is a connected topological manifold M of dimen-

sion n together with a C*”—complete atlas.

Example 2. The following examples are classical examples of smooth manifolds :
e  The Euclidean space R" itself.

o The torus T".

o The unit sphere S" of R"*1.

e The real projective space P"(R).

Definition 1.4.2. To define variable Sobolev spaces, given a variable exponent q in & (M) ( the set

of all measurable functions p(-) : M — (1,%0) ) and a natural number k, introduce
CIO(M) = {u € C(M) such that ¥j 0 < j <k |V/u| € 190 (M) }.

On CZ(') (M) define the norm
k .
il = X ¥l
Jj=

Definition 1.4.3. The Sobolev spaces LZ(')(M ) is the completion of CZ(')(M ) with respect to the
norm |[ul| 4. If Q is a subset of M, then LZ((')) (Q) is the completion of CZ(')(M) NCo(Q) with
k 3
respect to ||.|| 4., where Co(Q2) denotes the vector space of continuous functions whose support is
k

a compact subset of Q.

Definition 1.4.4. Given (M,g) a smooth Riemannian manifold, and y: [a,b] — M is a curve of

b dy dy
l(?’>:/a g(dt’dt>dt’

and for a pair of points x, y € M, we define the distance dy(x,y) between x and y by

class C'. The length of v is

dg(x,y) =inf {I(y): v: [a, b] = M such that Y(a) = x and y(b) =y }.
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Definition 1.4.5. A function s : M — R is log-Hdlder continuous if there exists a constant ¢ such

that for every pair of points {x, y} in M we have

c

[s(x) =s(y)| < -
log <e + dg(lﬁy) )

We note by 2'°8(M) the set of log-Hélder continuous variable exponents. The relation between

298 (M) and "% (RV) is the following :

Proposition 1.4.1. [16, 63, 70] Let g € 2'°¢(M), and let (Bg(q),®) be a chart such that
1
551']' <8ij <2

as bilinear forms, where §;; is the delta Kronecker symbol. Then qo9~' € 2'%¢(¢(B

(9)))-

Proposition 1.4.2. ( Holder’s inequality ) For all u € L) (M) and v € LY ) (M) we have

Wz

1) ) i) < gl a9 sy

Where ry be a positive constant depend to g~ and g™ .

Proof. Obyviously, we can suppose that |[ul[ 4w ) # 0 and |[v]] s ) 7 O, we have
1 < q(x) < oo, Ju(x)| <oo, [v(x)] <ccaexeM.

By young inequality, we have

u(x).v(x) o1 (Hu(\u(x)\ ))q@f)

[ eeC) Lot ) - VO v agy — @) \ e oo aa

1 pel -\
+ﬂﬂ(W®MmW)

Integrating over M, we obtain

)v()| < L @l N
/Hu|mx Hwnmmwdg“§q<@<wmmMW) ()

1 vl Y
*‘1tﬁf@<mumMWM> ()

11
<14 ———

T g g7
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then, using the same technique as in the proof of Theorem 1.15 in [61], we get that

1 1
/M |u(x) . v(x) [ dvg(x) < (1+ ph qj) [ oo oy - IV o )

< gl )0ty - IV o

Which complete the proof. O

Remark 7. If a and b are two positive functions on M, then by Holder’s inequality and [60, 63 ] we

have
q_ Zq*ftfz q_ Zq’fq*Z
/ aT b <2y d™ || 21 b T (1.21)
q7<2 L4 L2-q
where 1 is the indicator function of M, moreover, since
2 q_
11y<2at || 2 <max{pi(a), pr(a)>}
and
24~ —g~> 2-q9"
12t ] 2 < max{pg(b) =", 1},
we get,
q_ 2(1’*!1’2 q_ 2-q—
/ b <2max{pi(a)pi(a) Ty max{py () F 1), (1.22)
<

Definition 1.4.6. We say that the Riemannian n-manifold (M, g) has property B, (A,v) where A is
a constant, if its geometry is bounded in the following sense :

e The Ricci tensor of g noted by Rc ( g ) verifies, Rc(g) > A(n— 1) g for some A, where n is
the dimension of M.

e There exists some v > 0 such that | B1(x) |; > v Vx € M, where B} (x) are the balls of radius

1 centered at some point x in terms of the volume of smaller concentric balls.

Remark 8. The first condition in the definition 1.4.6, is very necessary for the Sobolev estimates to

be true.

1.4.2 Embdeddings results

Remark 9. If M = Q C RY is a bounded open set, then the following inequality is related to the
two exponents p, q ( isotropic case )

=<1+
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This condition is essential, among others, for the embeddings of spaces to be satisfied.

Proposition 1.4.3. [16, 70] Assume that the complete compact Riemannian n-manifold (M, g) has
property By, (A,v) for some (A,v). Then there exist positive constants & = &(n, A,v) and A =

A(n, A,v), we have, if R < &, if xe M if 1 <q<n, and ifu € L?ﬁO(BR(x)) the estimate

|ullr <Apl| V|,

where 1 =1 _ 1
P g4 n

We can extend the above proposition from the case when exponents p and g are constant, to the

case when p(-) and ¢(+) are functions.

Proposition 1.4.4. Assume that for some (A,v) the complete compact Riemannian n-manifold
(M, g) has property B,,;(A,v). Then there exist positive constants & = dy(n, A, v) and A=A(n, A, v),

we have, if R < &, ifxe M if 1 < q(-) <n, and ifu € L‘l](('))(BR(x)) the estimate
ullppr AP~ [ Vuel| g0,

p() 1
where a0 < 1+ .
Proof. To demonstrate this Proposition, we use the same technique as proposition 1.4.3, for more

detail see [16, 70]. ]

In the following, we denote for all u € W, 49 (M) that

P (@) = [ 1u)|" dvy () and pyy(1) = | Jul) ) dvy ).

With dv, = \/det(g;;) dx is the Riemannian volume element on (M, g), where the g;; are the com-

ponents of the Riemannian metric g in the chart and dx is the Lebesgue volume element of RY.

Proposition 1.4.5. [16, 63, 70] Assume that for some (A,v) the complete compact Riemannian n-
manifold (M, g) has property B, (A,v). Let p € (M) be uniformly continuous with g* < n. Then

L?(')(M) — LPO(M),Yq € P (M) such that ¢ < p < qx = *L.. In fact, for ||u||

g’ y sufficiently

q(-
Ly

small we have the estimate

Pp(y (1) < G (pg(y () + pg(y (I Vul)),
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where the positive constant G depend on n, A, v, q and p.

Proposition 1.4.6. [68] Let u € LYY (M), {u; } C L1 (M), k € N, then we have
(D) ||ullg) < 1(resp.=1,>1) <= pyy(u) <1(resp.=1,>1),
(i) Nullyy < 1= a2, < pycoy(u) < [Jull .
(iii) [[u]| gy > 1= ([l < Py (a0) < [[ul[2,
(iv) kgr}rlmﬂuk — |y =0 = kETmpq(x)(uk —u)=0.

To compare the functionals || - ||, and p,(.(-), one has the relation

1

1 1 1 1
min{p, ) (u) 7, Py ()"} < ||ufl ) < max{py)(u) e, Py (u) e }.

So, if gt < n, we have the embedding

L9 (Br(x)) = L7V (M),

where, p(x) = ng ()

a0 In fact, there exists a positive constant D = D(n,A,v,q",q~) such as for every

uin L‘f(') (Bg(x)), we have by Poincaré inequality and Proposition 1.4.6 that

lull 2 aay < DJual] g0 gy = DNl st agy + 1Vl oo a)

< D(c+ 1) ||Vl

where c is the Poincaré constant. Hence,

+ +
pp()(”) < HMHIZP(J(M) < Dp+ (C—l— 1)17* Hquiq(-)(M)
s Ja
< D7 (e 1) max{py)([Val) -, pyey (V) }

+

+ + L
< D? (C—|—1)p pq(,)(|Vu|)ff . (1.23)
Definition 1.4.7. The Sobolev space W) (M) consists of such functions u € L1 () (M) for which
Vky e L4W) (M) k=1,2,--- ,n. The norm is defined by

n

k
|‘”HW1»£I(X)(M) = ||”||Lq(x>(M) + Z 1A% ”HLq(x)(M)-
k=1

The space WOl ) (M) is defined as the closure of C*(M) in W) (M), with C(M) be the vector
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space of smooth functions with compact support on M.

Theorem 1.4.1. Let M be a compact Riemannian manifold with a smooth boundary or without

boundary and q(x), p(x) € C(M)NL*(M). Assume that

o) <N, ple) < A0

e forxe M.

Then,

whax) (M) = 1P (M)
is a continuous and compact embedding.

Proof. This proof is based to an idea introduced in [61, 68]. Let f : U(C M) — RY be an arbitrary
local chart on M, and V be any open set in M, whose closure is compact and is contained in U.
Choosing a finite subcovering { Vg }g=1.... x of M such that V;, is homeomorphic to the open unit
ball By(1) of RN and for any o the components gfi of gin (Va, fo) satisfy

1 o
7851_. Sgij<85ij

as bilinear forms, where the constant € > 1 is given. Let {7y }—1 ... x be a smooth partition of
unity subordinate to the finite covering { Vg }q—1... x. It is obvious that if u € W9 (M), then
o u € WHW (V) and (f;1)* (mqu) € WhaUa' () (By(1)). According to proposition 1.2.4 and the

Sobolev embeddings Theorem in [61, 63], we obtain the continuous and compact embedding

W@ (v,) s 1P (V)  foreachor=1,--- k.

k
Since u = Z Tau, we can conclude that
a=1
Wi (p) ¢ LPY (M),
and the embedding is continuous and compact. 0

Proposition 1.4.7. [16] If (M,g) is complete, then W4 (M) = W, 4 ().
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1.4.3 The weighted variable exponent Lebesgue space

The weighted variable exponent Lebesgue space LZ((?) (M) is defined as follows :

L% (M) = {u : M — R is measurable such that,/ 1.(x) | ue(x) |9 dvg(x) < +oo }7
M

with the norm
q(x)

u(x)

HMHq(x),p(x)Zin{?’>01/MM(X) dVg(X)Sl}-

Moreover, the weighted modular on LZ((XX)) (M) is the mapping py(.) (. : LZ((XX)) (M) — R defined like

Putra) (@) = [ @)Iu@) ) dv, ().

Example 3. As a simple example of 11(x), we can take p(x) = (14 |x|)¢™) with £(-) € C; (M).

Proposition 1.4.8. Let u and {u,} C LZ((XX)) (M), then we have the following results :

(1) [lullgeyuey < (resp. =1,> 1) <= Py () () < 1 (resp. = 1,> 1).
. _

(2) H”Hq(~),u(~) <l= H’/‘HZ(.),#(.) < pq(‘),u(‘)(u) < HMHZ(.)#(.)-
- +

(3) Neellgy ey > 1= M1l ) ey < Patruey (@) < Ml -

(4) Him funlly)pe = 0= Hm pye) () (n) =0.

(5) m [[unlly() pw) = 0 == Hm Py (un) = oo

Note that, the non-negative weighted function p € C(M) satisfy the following hypothesis :

u(-) : M — R} such that u(-) € LW (M) with

Np(x)

) orall xe M
Np(x) —q(x)(N = p(x)) forall x € M. (1.24)

Indeed, since u(-) : M — R, then, there exists fy > 0, and for all x € M, we have that p(x) > .

Theorem 1.4.2. Let M be a compact Riemannian manifold with a smooth boundary or without
boundary and p(x), q(x) € C(M) NL*(M). Assume that the assumption (1.24) is true. Then, the
embedding

1,q(x (x)
W (a1) < L1 (1),

is compact
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Proof. Let 6(x)= S(Sx())i)l q(x) =&(x)g(x), where fx) é(lx) = 1. From (1.24), we deduce that 8 (x) <

p*(x) for all x € M, which implies by Theorem 1.4.1, that W'4®) (M) < L8 (M). Hence, we have

that 1|70 € L9®) (M) for any u € W'4%) (M). Now, using the Holder inequality, we get

P (1) < g 1) g 17 [y < oo, (1.25)

Na

It follows that u € LZ((’; (M), that is

W (M) = L1 (M),

Next, we prove that this embedding is compact. For that, we consider {u,} C W™ (M) such that

u, — 0 weakly in W40 (M) and since W4 (M) << LO™) (M), we obtain that
1y — 0 in LIO (M),
Then, it follows that || |u[7%) [|z(,) — 0 as n — +eo. By Hélder inequality and (1.25), we have

Py(),u() (Un) — 0.

From proposition 1.4.8, result ( 4 ), we deduce that

[lnl () — 0 as = oo (1.26)
Hence, the embedding W4 (M) — LZ((XX)) (M) is compact. O



On some nonlinear elliptic equations in anisotropic

Sobolev-Orlicz space

Our objective in this chapter, is to study a certain class of anisotropic elliptic equations with
the second term, which is a low-order term and non-polynomial growth; described by an N-uplet
of N-function satisfying the A, —condition in the framework of anisotropic Orlicz spaces. We prove
the existence and uniqueness of entropic solution for a source in the dual or in L!. In the former we
study our problem when the domain is bounded, and in the latter, when the domain is unbounded
namely ; without assuming any condition on the behaviour of the solutions when |x| tends towards
infinity. Moreover, we are giving some examples of an anisotropic elliptic equation that verifies all

our demonstrated results.

25
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2.1 Existence of entropy solutions in a bounded domain

2.1.1 Introduction :

Let Q be a bounded domain of RN (N > 2). This section is concerned with the study of the
existence of entropy solutions to an anisotropic elliptic non-linear equation, driven by low-order
term and non-polynomial growth, described by n-uplet of N-functions satisfying the A, —condition,

Wa(Q)

in Orlicz anisotropic space Wj (Q) = C=(Q) i , given by

o (x,u,Vu) + 7 (x,u,Vu) = g(x) in Q,
()
u=20 on 0Q,
N o
where, <7 (x,u,Vu) = Z( a;(x,u,Vu) )y, is a Leray-Lions operator defined on Wj} (Q) into its dual,
i=1
N
B=(By,---,By) are N-uplet Orlicz functions that satisfy A, —condition, .7 (x,u, Vu) = Z H;(x,u,Vu)
i=1
and fori=1,--- ,N, Hy(x,u,Vu) : @ x R x R¥ — R are Carathéodory functions do not satisfy any
sign condition, and the growth described by the vector N-function B. As well as g € L' (Q).

Problem () and its versions have been intensively studied in several recent works. For the

classical Orlics space, Benkirane and Elmahi in [24] have studied the following problem

A(u)+g(x,u,Vu) = f(x) in Q,
u=20 on dQ,

where A is a Leray—Lions operator, g(x,s,&) is a Carathéodory function, that satisfy the following

coercivity condition

|8(x,5,6)[ = V|E [P for|s| >,

where v and y are two positive constants, and the data f is assumed to be in the dual W~ (Q). The
same problem was demonstrated by Elmahi and Meskine without assuming the above condition in
[53]. After that, Porretta and Segura de Leon in [89] investigated the existence results of the same
problem using the rearrangement techniques, and they suppose only some growth condition on
8(x,5,8).

It is noteworthy here to mention the relevant work of Benilan [21] who presented the idea

of entropy solutions adjusted to Boltzmann conditions. For more results, we refer the reader to
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[4,5, 12, 34, 35, 55, 66, 69, 77, 91].
For the anisotropic Orlicz space, there are very few results dealing with this topic. For instance, in
[48, 72] Korolev and Cianchy proved the embeddings of this space. Kozhevnikova in [74] establi-

shed the existence of entropy solutions to the following problem :

N
Z a;(x,Vu))y, = ap(x,u) in Q,
(24"

u(x) = y(x) on JdQ,

—_

where Q be an arbitrary domain in R¥, N > 2. and the functions a, b are Carathéodory functions
satisfying some suitable assumptions.
In [75] Kozhevnikova proved again the existence of entropy solution to the following second-order

anisotropic quasilinear elliptic equation :

N
Z(ai(xaua VM) )x,- - Cl()(x, M,Vu) =0 in Q,
(22){
u=0 on 0Q,
where a;(x,s0,s), i = 0,---,Nare Carathéodory functions. For a deeper comprehension, we refer

the reader to [38—41] and the references therein.

The input of this section is the very general framework, we therefore establish a more involved
version of equations () and (£%,), given by (<), which is managed by low-order term and non-
polynomial growth ; described by an N-uplet of N-function satisfying the A, —condition, the source
f is merely integrable and Q C RV, (N > 2) is a bounded domain with smooth boundary. Using An
approximation procedure and some priori estimates, we proved the existence of entropy solutions

to the problem (&?).

2.1.2 Assumptions on data and definition of solution
2.1.2.1 Assumptions on data

In this part, we assume they have non-negative measurable functions ¢, ¢ € L'(Q) and a, & are

two positive constants such that

N
Z\azxsé ééZB Bi(|&])+ o(x), 2.1)
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N
Y (aites.é) —ailxs,8)) . (& —&) >0, (22)
i=1
N N
Y 2ixs,6).&>a ) BillE]) - o), (2.3)
i=1 i=1
and there exists 7 € L!'(Q) and [ : R — R™ a positive continuous function such that [ € L'(R) N
L*(R).
N N
Y | Hi(x,5,8)[ <1(s). } Bi(|§]) +h(x). 2.4)

i=1 =1

2.1.2.2 Definition of entropy solutions

Definition 2.1.1. A measurable function u : Q — R is called an entropy solution of the problem
() if it satisfies the following conditions :

1/ue %I’B(Q) = {u: Q — Rmeasurable, Ty(u) € W) (Q) for any® > 0}.

2/ H(x,u,Vu) € L'(Q).

3/ Forany 6 >0,

/a(x,u,Vu).VTg(u—f)dx+/H(x,u,Vu).T9(u—§)dx
Q Q

S/Qg(x).Tg(u—?j)dx VE e WHQ)NLE(Q).

2.1.3 Main result

In this subsection, we will prove the existence of our problem (). For that, we suppose that g”
be a sequence of regular functions which strongly converge to g in L' (Q) and such that || g" || < ¢

for some constant ¢ and for each m € N*.
am(x,s,é) = (aT(x’S7§)v"' ’a%(xas’é))v
where a!(x,s,§) = a;(x, Tu(s),&) fori=1,--- |N.

H"(x,5,6) = Tu(H (x,5,5));

and for any v € VCVBI (Q), we consider the following approximate equations

(g@m):/a(x,Tm(um),Vum)Vvdx—{—/Hm(x,um,Vum)vdx:/gmvdx.
Q Q Q
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Lemma 2.1.1. Suppose that conditions (2.1) - (2.4) are satisfied, and let (u™),,en be sequence in
Wi(Q) such as

(a) u" —uinWi(Q).

(b) d™(x,u™,Vu™) is bounded in Lg(Q).

(c) Z/[ (e, ™, Vu™) —a (x,u™ , Vuys) | . (Vu™ —Vuys) dx — 0 asm — +oo, s — oo,
i=1

Where Y is the characteristic function of Q°* = {x € Q: |Vu| <s}. Then,
Vu"™ — Vua.ein Q, 2.5)

and

B(|Vu™|) — B(|Vu|) in L'(Q). (2.6)

Proof. Let ¥ > 0 fixed and s > 9, then from (2.2) we have

0<Z/ { (x,u™, Vu™) — af”(x,um,Vu)} (VU™ —Vu) dx
= Z/ [a;-"(x,um,Vum) —a?"(x,u'",Vuxs)] (VU™ —Vuys) dx
=17

<Z/ [ (x,u™,Vu™) — a;”(x,um,Vu)(s)] (VU™ —Vuy) dx

According to (¢ ), we get

lim Z/ [ (o, u”™ Vu’")—a}"(x,um,Vu)] (Vu"™ —Vu) dx =0.

m—yoo

Proceeding as in [11], we obtain

Vu™ — Vua.ein Q.

On the other hand, we have

Z/ (e, u™, Vu™) . Vu" dx—Z/

Poou™, Vu™) —al' (x,u" , Vuys) | . (Vu" —Vuys) dx

e}

D\*‘

+
Mz

al(e,u™, Vuy) . (Vu™ —Vu ) .dx

al' (xe,u™, Vu™) . Vuy; dx,

+
.MZ
s

—
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using (b ) and (2.5), we obtain

N N
Za;"(x, u™ Vu™) — Za,-(x,u,Vu) weakly in (Lz(Q))".
= i=1

Therefore

N
Z/ (x,u™, V" )VuxsdxHZ/a,xuVu)V
Q

i=1

as m —» oo, § — o0, So,

Z/[ (x,u™,Vu™) — a;"(x,um,Vu)(s)].(Vum—Vuxs)dx—>O,
i=1

and

M=

/am(x W™ Vuys). (Vu" —Vuy).dx — 0.
“ Jo

Thus,

hmZ/ (x,u™, V™). Vu" dx—Z/a,xuVu ). Vudx,

m—roo

from (2.3) and vitali’s Theorem, we get

aZ/B Vi |) dx — /¢> Zd;/QB[(WuDdx—/Qq)(x)dx.
Consequently, by Lemma 2.6 in [67], we get
B(|Vu™|) — B(| Vu|) in W3 (Q).
Thanks to Lemma 1 in [72], we have

B(|Vu"|) —> B(|Vu|) in L'(€).

O

Lemma 2.1.2. Let an N-functions B(0) satisfy the Ay—condition and u™, u are two functions of

Lp(Q) withm=1,--- o0, such as

|u"|lg<c m>1.
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u™ — u almost everywhere in Q, m — oo,

Then,

m

u™ — uweakly in Lg(Q) as m — oo.
Proof. The proof of Lemma 2.1.2 is similar to the proof of Lemma 1.3, Ch. I in [79]. O

Remark 10. we can extend the previous Lemmas 2.1.1 and 2.1.2 to an unbounded domain, using

the same technique.

Theorem 2.1.1. Assume that conditions (2.1) - (2.4) hold true, then there exists at least one weak

solution of the approximate problem ().

Proof. Let

" Wi (Q) — (W3 ()
N
v (S"(u), V) :/ Z <a§”(x,u,Vu).Vv—i—Hi'”(x,u,Vu).v) dx

Q2

—/ng(x).vdx

e S is bounded
N

We denote Lz(Q) = [ [ Lz, (Q) with the norm
i=1

N
IVlls) = X villg.a  v=_(v1, vn) € Lp(Q).
i=1

Where B;(t) are N-functions satisfying the A, —conditions.

Sobolev-space Wy (Q) is the completions of the space Cy(Q).

a"(x,5,&) = (&} (x,5,), -+, ah(x,5,€))

and

Hm(x7s,§) = (HT(X757‘§)7”' ,HK;(X,S,&)).
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For u € W3 (Q), according to (1.10) and (2.1) we get

N

2" (x, 1, Vi) ||y ) = Y I @ (x,u, Vie) s (@
i=1
N

2 (m v
SELB,(al (x,u,Vu))dx+N
<a(Q).[|B(u)|[1a+|lella+N. (2.7)

Further, for a” (x,u,Vu) € Lz (), v € W} (Q) using Holder’s inequality we have

(8™ (), Vol <21]a" (x,u, Vi) g0 -1V i 0

+2[1H" (1, Vi) [ @) - [V ) + <o [V i o) (2.8)
Thus, $™ is bounded.
e S™is coercive
For u € W3 (Q)
N ou N
(S"™(u),u)q :Z a (x,u,Vu). =— dx + Z/Him(x,u,Vu).udx
i=1/Q oxi =179
—/gm(x) udx
Q
Then,
m 1 N 0
(s (”)a”>92 .[éZ/Bl(‘M )dx—m—co
Tl — Tl L2 & 0"\ |55
du

>dx—/gg(x) dx]

—l(u).ﬁ‘i/QB,(
2%.[(5(@)—cz).g/§23i< g;‘i )dX—CO—Cl_C3]

According to (2.1), we have for all 8 > 0, Jay > 0 such that

8xl-

||uxi HBi',Q

We take ||u? |[p.o>1n0 i=1,---,N.
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Suppose that || ug; ”v“vg (@) — 0 as & — co. We can assume that
g llgr@+ -+ [[u [18y.0 = N 1o
According to (1.10) for ¢ > 1, we have
[u|b([u”]) < cB(u®)

then, by (1.9) we obtain

m(,,Q0\ ;,0 = _
(8™ (u ),u>92a(9> 62.2/31_(%) L
||”a‘|vi/81(g) Nno —1J/Q Ix; Nno
> b(|u dx — ——
S T M AGIC IS
— . o
Z(a(Q) :2)9 Z/’ | < "ux,- )dx— C4
cN|luglls, = 4l |30 N1

Z(é(Q)C;ch).Q i/B(H u ”BQ>dX_NC;;O

(é(Q)—CQ).Q Cy4
cN NT[().

Which shows that S is coercive, because 0 is arbitrary.

e §" is a pseudo-monotone

Consider a sequence {«" }*_, in the space Wj (Q) such that

u™ — uweakly in Wa (Q)  m — oo. (2.9)
lim sup (S(u™),u" —u) <0 (2.10)
m—soo
we demonstrate that
S™(u™) — §"(u) weakly in (Wa (Q)), m — oo. 2.11)
(S"(W™), " —u) — 0, m — oo. (2.12)

Since B(t) satisfy the A;—condition, then by (1.10) we have

/QB(Z) dt < ¢ol|t]].0. (2.13)
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According to (2.9) we get

™ [l ) < e m>1, (2.14)

and
[|B(Vu™)||1 < c2 m>1. (2.15)
Combining to subsection 2.1.2 and (2.14) we obtain

N
||a™ (x,u,Vu)||z = Z || af" (x,u™, Vu™) Hgi <c3mée N (2.16)
i=1

And for m € N*, |H" (x,u,Vu) | = | T,,(H (x,u, Vu) | < m. Then, by (2.4) and (2.14) we have
N
1H" (x,u, Vi) || = Y || H" (x,u™, V) ||, < cam € N".
i=1

According to Lemma 1.1.2, we have

W3 (Q) < Lg,(Q) fori=1,---,N.

We set
N
S"(x) = Z [af (x,u”, Vi) — & (x,u, Vu) | (" —u),
i=1
N
+ Y [H (e ™, Vu™) = H* (x,u,Vu) | (" —u), m € N*.
i=1
then
(S(u™)—S(u),u" —u)y= [ S"(x)dx meN"
Q
By (2.9) and (2.10), we get
lim sup/ S"(x)dx <0
m—soo Q

So,

N N
S"(x) = Z [af (x,u™”, V™) — & (x,u™, V) | (" —u)y, + Z [af (x,u™, V) — a]" (x,u, Vu) | (u" — u),,

1 i
i=1 i=1

= SP(x)+ 85 (x) +S2(x) meN*. (2.17)
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We demonstrate that

ST (x) — 0 almost everywhere in Q ~ m — co. (2.18)
S5 (x) — 0 almost everywhere in Q ~ m — co. (2.19)
S5'(x) — 0 almost everywhere in Q ~ m — co. (2.20)

[a;"(x, u™ V™) —al" (x,u™, Vu)] (u™ —u)y,

—~3
=
I
™=

Il
—_

N
af (x,u, Vu) .uy + Z ay (x,u, Vu) . uy,
i=1 i=1

=

Il
-

I
™=

—_

a (x,u”, Vu'™) ) —

N
ay (x,u™, Vu™) .uy, —

using (1.1), (2.3), (2.15) and (2.16) we obtain

ST (x) > c(m) — 0 as m — oo.

Hence, we deduce the convergence (2.18).
As in [76], let S;(u) = a;(x,u,Vv)i=1,--- N be Nemytsky operators for v € W, (Q) fixed and
x € , continuous in Lz (Q).

Thus, according to (1.11) and (2.26), we have
S5'(x) — 0 almost everywhere in Q ~ m — oo.

Using the inequality (1.11) we obtain

=

'3”(36) <2 . ‘|Hzm(x7 um’vum) _Hzm(xa M,VM) ||B,’,Q(R) : ||um —u | |V°VI; (Q)

1

I
—_

<2c(m).||u" —u| |W1§(Q)'
Hence, combining to (2.26), we have
S5'(x) — 0 almost everywhere in Q ~ m — oo.
Consequently, applying (2.18), (2.19), (2.20) and the selective convergences, we deduce that

S§™(x) — 0 almost everywhere in Q =~ m — co. (2.21)
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Let Q' C Q, meas Q' = measQ, and the conditions (2.26), (2.21) hold, and (2.1) - (2.4) are satisfied.

We show the convergence

m
Xz

(x) — uy,(x) everywhere in Q fori=1,--- ,N , m — eo. (2.22)

By the absurd, we assume that we do not have convergence at the point x* € '.
Let u™ = uy(x*), u = uy,(x*),i=1,--- N, and & = @(x"), & = @(x*). We consider that the se-
N

quence Y Bi(u")m=1,--- oo is unbounded.
i=1

Lete € (0 ia> is fixed, according to (1.2), (1.4) and the conditions (2.1), (2.3), we have

o
S
=
N
I
™=

Il
_

<a;"(x*,um, Vu™) —al'(x", u,Vu)) V(u™ —u)

_l’_

I
_

<Hlm(x*, ™ Vu™) — H" (x*,u, Vu)> (u™ —u)

N
(" u", V") Vi = ) &l (x" ", V") Vu
i=1
N
ay (x*,u, Vu) Vu" + Y a" (x*,u, Vi) Vu
i=1
) N
H (x5 " V") — Y H (x5 " Vi) u
i=1
N
" u, Vi) u™ + ) (0, u, V.
i=1

I
Mz

le

—_

_l’_

Il
-

|
™=
=
3

I
-

Using the generalized Young inequality and (2.14), we get

4
=
=
v
1=

al (x*,u,Vu) Vu—l—Za x5 " Vu™) v
i=1

—_

|
.;’42

o]
M=

Il
_

i@ (x*u",Vu™)) —ci(e) ) Bi(Vu)

=1

|
(e7]
-MZ
S

Il
_

al'(x*,u,Vu)) — ca(€ ZB (Vu™)

+
™=

|
—_

H"(x*,u™,Vu™) . Vu"™ + ZH;"(x*,u,Vu).Vu
i=1

N
H"(x*,u™,Vu").Vu— ZHim(x*,u,Vu).Vum
i=1

|
™=

—_

=
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then,

N N N
—c2 Y Bi(Vu") — 4h(x") — c31(u) Y Bi(Vu) —cal(u™) Y Bi(Vu™)
=~ :

1

N N
> [a—ci(e) —ea—c3l(u)] ZB,(VMH— [a—eacr —cal(u™)] ZBi(Vum) —cs(é).

We deduced that the sequence S”(x*) is not bounded, which is absurd as far as (2.21) is concerned.
Thus, the sequences uy;, i =1,--- N, m — oo are bounded.
Let u* = (uj,u},--- ,uy) the limits of subsequence u™ = (uf',--- ,u}}) with m — oo. Then, taking

into account (2.26), we obtain
u"' — ul ,i=1,---,N. (2.23)

Therefore, from (2.21), (2.23) and the fact that a" (x*, u, Vu) are continuous in u (because they are

Carathéodory functions), we obtain

(a:"(x*, u"  vVu) — af”(x*,u,Vu)) . (u)’g —uy,) =0,

=

1

and from (2.2) we have, ujl_ = uy,. This contradicts the fact that there is no convergence at the point

x*.

According to (2.26), (2.23) and the fact that a)"(x*,u, Vu) are continuous in u, so for m — oo we get

alt (x,u™, Vu™) — a'(x,u,Vu), i=1,--- ,N almost everywhere in Q.

By Lemma 2.1.2 we get the weak convergences

a" (x,u™,Vu") = a"(x,u,Vu) in Lg,q),i=1,--- ,N. (2.24)

Then, the weak convergence (2.11) follows from (2.24).
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Moreover, to complete the proof, we note that (2.12) is implied from (2.9) and (2.21) :

(S"™(W™), u™ —u) =(S"(u™) —S"(u),u™ —u) + (S" (u),u™ —u) — 0, m — oo.

O
Theorem 2.1.2. Let Q be a bounded domain of RN. Under assumptions (2.1) - (2.4), there exists at
least one entropy solution of the problem (?) on the sense of definition 2.1.1.

Proof. We divide our proof in six steps.

Step 1 : A priori estimate of { 1™ }.

In this step we are concerning to show the following proposition :

Proposition 2.1.1. Suppose that the assumptions (2.1) - (2.4) hold, and let (u™),,eN be solutions
of the approximate problem (). Then, for any 0 > 0, there exists a constant 6 .c| + ¢, ( not

depending on m ), such that

/QB(WTQ(M'")D <0.c140

s (¢
Proof. Taking v = exp(G(u™)).To(u™), as a test function with G(s) = / Q dt and a is the
0o a

coercivity constant, we obtain

N
izl/Qa;n(X,u'n’Vum).V(exp<G(um))'T9(um)) dx
+;/QHim(x,um’Vum).exp(G(um))‘Tg(um) dx

= /g’”.exp(G(um)).Tg(um) dx.
Q

—
=
o
=

’

al (x,u™, Vu"™)exp(G(u™)) VT (u™)) dx

It
S

/Qa;"(x,um,Vum).Vu’".(I;l_im).exp(G(u’"))Tg(um)dx

+

l
-

|H" (x,u™,Vu™)|.exp(G(u™)).To(u™) dx+ /Qg'". exp(G(u™)).To(u™) dx

I
1
S5

[h(x) + 1(u™) . Bi(Vl™) ] . exp(G(u™)) . To (u™) dx+ /Q g" . exp(G(u™)). Ty (u™) dx

—_

A A
= T
s~

Il
_

L(u™).Bi(Vu™). exp(G(u™)) . To(u™) dx+ /Q (8" + h(x)).exp(G(u™)).To(u™) dx,
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S0,
N
Z/ al (x,u™, Vu™) . Vu" . exp(G(u™)) dx
=<0}
m [(™) m m
< [ 18760+ 1) + 000 5. exp(Glu) To(u) di,
by (2.3), we get
N
a Bi(Vu™) exp(G dx
L e gy BV XB(GO0)
< / o (x) exp(G(u™)) dx
(Q:|um| <6}
+ / +0(x ) ) ] .exp(G(u™)) T (u™) dx,
I
since ¢, handg™ € L'(Q), and the fact that exp(G(£o)) < exp (';MR)) , we deduce that,
/ B(VT@(Mm)) dx < 0.ci+cp 6 > 0.
{Q:um<6}
Finally
/B(VTg(um)) dx < 0.ci4cr 6> 0.
Q
O
Step 2 : Almost everywhere convergence of { u/”" }.
Lemma 2.1.3. For all u™ measurable function on Q, we have
meas{x € Q, |u"| >0} — 0.
Proof. According to Lemma 1.1.1 and Lemma 1.1.2, we have
[ To(u™) |- <A.[[VTo(u™)|[5
<A.e(0) / B(VTy(u™) dx
Q
<c.0.€(0), for6 > 1, (2.25)

with €(0) — 0 as 6 — co.
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Form (2.25) we have

B*(M)meas{xeﬂ: |um|29}§/QB*<M)dx

L (oo )

IN

by (2.25) again, we obtain

0
>—>ooast9—>oo.
B*

5 (e

Hence,

meas{x € Q: |u"| >0} — 0as @ — oo forall m € N.

We have now to prove the almost everywhere convergence of { u™ }
u" — ua.ein Q. (2.26)

Let K(6) = sup meas{x € Q: |u"| >0} — 0as O — oo.
meN
Form proposition 2.1.1 and Lemma 2.1.3, the sequence { Ty (™)} is bounded in W, (Q). Then, there

exists a subsequence of { Ty (u™) }, denoted again by { Tp (™) } and a function vg in W4 (Q) such
that for P < B

To(u™) — vg in Lp(Q) as m — oo.

Consequently, we assume that { 7 («™) } is a Cauchy sequence in €, since { T («™) } is bounded in

W3 (Q). Then, there exists A > 0 and a constant ¢, such as
T n
/ B < |9(”)|> dx < o,
Q A
On the other hand, for any § > 0, we have

meas { |u" —u"| > 6} <meas{|u"| >0} +meas{|u"|> 0}

+meas { | Ty (u™) —To(u")| > 6 }.

Let € > 0, using (2.25), and the fact that { Ty («™) } is a Cauchy sequence, there exists some constant
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0(¢€) such as

meas{ |u" —u"| >} <eg, forallm,n>c(6(¢), o).

This shows that {«” } is a Cauchy sequence in Q. Thus, we prove that there is u : Q — R measu-
rable such that ¥ — u a.e in Q. This implies the (2.26).

Step 3 : Weak convergence of the gradient.

Since W, (Q) reflexive, then there exists a subsequence such that

To(u™) — v weakly in Wy (Q), m — oo,

And since,

W3(Q) = Lp(Q),

we have

VTo(u™) — Vvin Lp(Q) as m — oo,

Beside, Ty (u™) — Ty (u)a.e inQ, gives Ty (u™) — Ty (u) strongly inLg(Q). Then, we obtain for
any fixed 6 >0

VTy(u™") — VTy(u) a.e in Q.

Applying Lemma 2.1.2, we have the following weak convergence

VTQ (I/tm) — VT@(L{) in LB(Q.) as m —» oo,

Step 4 : Strong convergence of the gradient.

For o0 > 0 > 0, we introduce the following function defined as

1 if |s|]<oa,

ha(s) =4 1—|s—a| if a<|s|<o+1,

0 if s>o+1.

and we show that the following assertions are true :
Assertion 1 :

N
lim lim ) / a (x,u™, Vu'™) . Vu'™ dx = 0. (2.27)
i—1/{a<|um |<a+1}

Ol—00 mM—+o00
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Assertion 2 :

Vi — Vua.ein Q. (2.28)

Proof. We take v = exp(G(u™)) T o (u™) = exp(G(u™)) T (u™ — T, (u™)) as a test function in the

problem (£,,), we obtain

N
i:Zl /Q a;n(X, um7Vum) . V( eXP(G(um)) T (um B Ta(um))) i
N
< ; /Q |H" (x,u”, Vi) | . exp(G(u™)) . Ty (u" — Ty (u™)) dix

+ /Q &"(x) . exp(G(™) . Ty (" — To (™)) b,

according to (2.3) and (2.4) we deduce that

N
Z/ a? (x,u™, Vu™) . Vu" . exp(G(u™)) dx
i—1{a<|um|<a+1}

I(u™)

a

< /Q [gm(x) +h(x)+¢(x). .exp(G(u™)) . Ty (u™ — Ty, (u™)) dx,

!
since ¢ € L'(Q),h e L'(Q), g" € (L'(Q))V, and the fact that exp(G(+)) < exp (”';WR)>, we

deduce from vitali’s Theorem that

lim lim [gm (x)+h(x)+ ¢ (x).

O0—0 m—3o0 J )

Hence,

lim lim af (x,u™,Vu™) . Vu"™ dx = 0.
O—ree m—ee JL o< um |<a+1}

And to show that assertion 2 is true, we take

v=exp(G(u™)) (To(u™) —To(u)) ho(u™),
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as a test function in the problem (%7,,). We have

Z/Qa;"(x, W™, V") .V (exp(G(u™)). (To(u™) — To(u)) . ha (u™) ) dx
i=1
N
+ l; /QHim(x, u™ Vu™) . exp(G(u™)). (To(u™) — To(u)) . he (u™) dx
< /ng(x) .exp(G(u™)) . (To(u™) — To(u)) . ho(u™) dx,
which implies

al (x,u™, Vu™) . Vu" . l(u;) .exp(G(u™)) . (To(u™) — Ty(u)) . ho(u™) dx

I
5

+

Mz

a? (x,u™,Vu™) . exp(G(u™)).(VTo(u™) —VTy(u)) . ho(u™) dx

ZH

/Q a” (x,u™, V) . exp(G(u™)) . (To (u™) — To (u)) . Vi (u™) dx

N

< Z/Q]H;"(x,um,Vum) |.exp(G(u™)) . (To(u™) — Ty (u)) . ho (u™) dx
+ | 70 exp(Glu) . (To (™) = Tow) ha ") d,

thanks to (2.3) and (2.4), we obtain

Z’/ (x, ™, Vu"™) . exp(G(u™)).(VTo(u™) — VTy(u)) . ho(u™) dx

=

< [ |00+ 00015 | explGlum). (T u) ~ ofw) hau) a,

sine hy > 0, and u™ (T (u™) — T (u)) > 0 we have

N
,-; /{Q:|um |<6} ai(x’ Tg(um), VTs (um)) eXp(G(um)) . (VTQ (um) —VTy (u)) dx

(e, ", Val™) Vil exp(G(u™)) (To (u™) — To () dx

< [ |-+ o.

g/
{(Qa<|um|<a+1}

.exp(G(u™)).(To(u™) — Ty (u)) dx
N
+izi/sz'9<um<a+l}ai(x’ To1 ("), VIar1(u™)) . exp(G(u™)). [ VTo(u) | dx

N
+Z/ a? (x,u”,Vu") . Vu" . exp(G(u™)) .| To(u™) — Ty (u) | dx.
=1 {Qa<|um [<a+1}

+ Z / & (1", Vi) Vi . exp(G(u™)) . (To (u") — Ty (1)) dx
1/{Q:a<|um |<a+1}
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The first term in the right hand side goes to zero as m tend to oo, since Ty (u™) — Tp(u) weakly in
Wi (Q).

Since a}" (x, Tyt 1(u™), Vi1 (u™)) is bounded in Lz(Q), there exists 8" € Lz(Q) such as
|af" (x, T 1 (u™), VI 41 (u™)) | — 8" in L(Q). (2.29)

Thus, the second term of the right hand side goes also to zero.

According with (2.27) and the fact that Ty (™) — Tp(u) strongly in W ,,.(Q) we deduce that

N
,-_Zl/{g:|w<9} ai(x, To (u™),VTo(u™)) . exp(G(u™)) .| VT (u™) — VTy(u) | dx

<e(or, m).
Then,

N

Y[ aie 7o, 9700~ i 7o), T | (T (a) T
N

<= Y [ e To(), VTo(u)) . xp(G(u™)). | VTo (") = VT (u) |

_ Z/{Q:um@} ai(x,To(u™),VTo(u™)).exp(G(u™)) . VTy(u) dx+ €(a, m). (2.30)

i=1

According to the Lebesgue dominated convergence Theorem, we have Tp (u”) — T (u) in W) loc(82)
and VTy(u™) — VTy(u) in W} (Q), then the terms on the right hand side of (2.30) go to zero as m
and « tend to infinity.

Which implies
N
Z/ [ai(x, To(u™),VTy(u™)) —ai(x,To(u™),VT(u)) | X (VTe(u™) —Ty(u)) dx — 0. (2.31)
=1/
Thanks to Lemma 2.1.1, we have for 6 > 1,
VTy(u™) — VTy(u) a.ein Q, (2.32)

Then,

Vu™ — Vu a.e in Q.
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Step 5 : Equi-integrability of H” (x,u™, Vu™).

Letv=exp(2G(|u™|)).Ti(u™ — Tg(u™)) as a test function in the problem (2,,), we obtain

a" (x,u”, Vu'") . V(exp2G(|u"])) . Ty (" — Tr(u™)) ) dx

M-
S5

+

=

I
—_

/QH;"(x, WV exp(2G (|l ) Ty (" — Tr(u™)) dx

< [ §7(0). exp(2G (" ). Ty(u” — Ti(u)) di

which implies that

g/ (e, 1™, Vil™) Vum.l(L;m).exp(ZG(]um\)).Tl(um—TR(u’"))dx
+;/{Q:RS|MM|SRH}a;-"(x,um,Vu’").Vu'". exp(2G(|u™ ) dx

N
< Z/ \HP (e, V™) | exp(2G(| ™)) . Ty (" — Tr(u™)) dx

+/ Lexp(2G (W™ ). Ty (" — Tr(u™)) d,

by (2.3) and (2.4), we obtain

N
3 vu™ (2G d
ang'/{ﬂlklu'"<R+1} (V™). exp(2G([u"]) dx

Q

< [ |00+ 0.1 | exp@6(1a ). T - T a

+/ 0(x). exp(2G(|u™ ) dx
{Q:R<|u™|<R+1}

I
Since exp(G (o)) < exp (2”;‘““), g" e (LY(Q))N, ¢ and h € L'(Q). Then, Ve >0, IR(e) >

0 such as
<€
Z/ B(Vu")dx< & VR>R(e).
Q:|uwm|>R+1} 2
Let V(Q) be an arbitrary bounded subset for Q, then, for any measurable set E C V(Q) we have
N N
y / Bi(|Vu"|) dx <Y / Bi(| VTx(u"
i=1"E i=1"E

N
+ / Bi(|Vu™ ) dx, (2.33)
i:ZI {|u™|>R+1}
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we conclude that VE C V(Q) with meas (E) < B(¢) and Tr(u™) — Tg(u) in W} (Q)
al €
Y [ BVIRw) D dr< S (234)
i=1/E 2
Finally, according to (2.33) and (2.34), we obtain
N =]
Z/Bi(\Vum\)dxge VE C V(Q) such as meas (E) < B(€).
i=17E

Which gives the results.

Step 6 : Passing to the limit.

Let £ € Wj(Q)NL>(Q), using the following test function v = Ty (u” — &) in the problem (Z2,,),
with the fact that || — || & || < |4 —&| < aand {|u" - & | <a} C{|u"|<a+]||&]«}, we

obtain

N
), Vu ) VT (u™ — &) dx e, u™, Vu™ u" —&)dx
Y i )V Ty (u” +Z/H ) Tolul” ~§)

S/g’"(X)-Te(u’"—i)dx, (2.35)
Q

which implies that

1M
M= 5—

I
T
S5

ai(x, T (™), Vu™) . Ty (u™ — &) dx
2 (%, Tog )] (U"), VTgp g1 (™)) X Ty ). (U™ = &) - Xgum—& |<aydx

A |:ai(x7Ta+§|w(um)7VTa+§||m(um)>_ai(x7Ta+||§m(um)vvé) Vo). " = &) Xfjum—e|<a) dX

Il
= =
S~

+Z/Qa,-(x,Ta+H5Hw(um),Vﬁ).VTa+H§Hw(um—é).%{|wn_§|<a} dx. (236)
i=1

By Fatou’s Lemma, we have

N
lim ian/ a;i(x, Ty (u™),Vu™) . VT (u™ — &) dx
=178

nm—oo
N
=z Z/Q [ai(x, Tor) &)l ("), Vg ). (™)) — ai(x, Ty g ). (u™), VE)
i=1
X Vo g (" = &) X um—g|<ay dx

+ lim Z/ a, X TOH‘H§|| ),Vg) X VT(X-&-HéHw(um_5)'X{\um—§\<a} dx. (2.37)

m—yoo
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The second term on the right hand side of the previous inequality is equal to

/Qai(x, Tor) ). @), VE) . VTo g (u—8)  X{ju—t|<a) dx.

Then, since Ty (u” — &) — Ty (u — &) weakly in W, (), and by (2.28), (2.32) we have

N N
Z;/QH,- (x,u™,Vu™) . Ty (u —5)dx—)l;/QHi(x,u,Vu).Te(u—é)dx, (2.38)
and
JRECEACE dx—>/ ). To(u— ) dx. (239)
Q

Combining (2.35) - (2.39) and passing to the limit as m — oo, we have the condition 3 in definition
2.1.1.
O

Example 4. Let Q be a bounded domain of RN, (N > 2). By Theorems 2.1.1 and 2.1.2 it exists an

entropy solutions based on the Definition 2.1.1 of the following anisotropic problem (Z3) :

Mz

N
Bi(|Vul) Z (|Vul) =gx) in Q,

—~
>
~
<
[T
o —_

on 9dQ,

with & is a positive constant, | : R — R™ a positive continuous functions such as | € L'(R)NL*(R),
g€ LY(Q) and

B(t) = |t|P20, witht e Rand p > 1,
satisfying the Ay —condition.
Example 5. The same problem (Z3) but

[1]"26

B(t):m>

with t # 0 and B(0) = 0 satisfying the Ay—condition.
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2.2 Existence and Uniqueness of entropy solution in unbounded do-

main
2.2.1 Introduction

In this section, we focused on the study of existence and uniqueness solution to anisotropic
elliptic non-linear equation, driven by low-order term and non-polynomial growth; described by
n-uplet of N-function satisfying the A, —condition, in Sobolev-Orlicz anisotropic space WBI (w) =
S Wi (@)

C=(w) "

To be more precise, @ is an unbounded domain of RV, N > 2, we study the following equation :

N
A(u)—i—Zbi(x,u,Vu) =f(x) in o,

u=0 on Jm .

Where, A(u) = ¥ (ai(x,u,Vu)),, is a Leray-Lions operator defined from Wj () into its dual,

=

[
_

B(6) = (B1(6),---,By(0)) are N-uplet Orlicz functions that satisfy the A —condition, and for
i=1,---,N,bj(x,u,Vu): ® x R x R¥ — R the Carathéodory functions that do not satisfy any sign
condition and the growth described by the vector N-function B(6).

In the recent studies, specifically in the case when @ is an unbounded domain; namely, without
assuming any condition on the behaviour of the solutions when |x| — +oo. The existing result has

been established by Brézis [43] for the semi-linear equation :

A [l = (),

where x € RN, pg > 2, f € Ly jo.(R"). Karlson and Bendahmane in [22] solved the problem (£?)
in the classic case such as b(x,u,Vu) = div(g(u)), with g(u) has a growth like |u|7~! where
q € (1,po — 1). For more result, we refer to [28, 50].

Our goal, in this section, is to show the existence and uniqueness of entropy solution for the
equations () ; governed with growth and described by an N-uplet of N-functions satisfying the
A —condition. The functions b;(x,u, Vu) do not satisfy any sign condition and the source f is me-
rely integrable, within the fulfilling of anisotropic Orlicz spaces. An approximation procedure and
some a priori estimates are used to solve the problem, the challenges that we had were due to

behaviour of solution near infinity.
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2.2.2 Existence results

In this subsection, we assume they have non-negative measurable functions ¢, ¢ € L'(®) and

a, a are two positive constants such that

N N
Y lai(x,s,8)] Z Bi(|&]) + o(x), (2.40)
i=1 =
l ! /
; a,xsé (xﬂs7§))'(§i_§i)>07 (2.41)
N N
Z x,5,8). Z, (1&h - (2.42)

and there exists h € L'(Q) and [ : R — R™ a positive continuous functions such that / € L'(R) N

L*(R).

Mz

N
;\bi(xas,i)l <I(s). }_ Bi(|&])+h(x). (2.43)

I
—_

i
Definition 2.2.1. A measurable function u: @ — R is called an entropy solution of the problem
() if it satisfies the following conditions :

1/ ue %I’B(a)) = {u: ® — R measurable, T,(u) € W} (o) for anyk > 0}.

2/ b(x,u,Vu) € L'(w).

3/ Foranyk >0,

/ (x,u,Vu) . VT (u— & dx—l—/bx u,Vu) T (u—§) dx

/f Tu—&)dx  VEeEWHo)NL™(w).

Theorem 2.2.1. Let ® be an unbounded domain of RY. Under assumptions (2.40) - (2.43), there

exists a least one entropy solution of the problem () on the sense of definition 2.2.1.

Proof. Let wo(m) ={x€ w: |x| <m} and f"(x) = %‘Xﬂ)(”l)‘

We have [ — fin L' (@), m — oo, | f"(x)| < | f(x) | and [ /"] < mxo(m)-
a"(x,s,8) = (af'(x,5,8), - ,ay(x,5,8))
where a'(x,s,§) = ai(x, T, (s),&) fori=1,--- |N.

b"(x,5,8) = Tu(b(x,5,6)) . X
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and for any v € ng (w), we consider the following approximate equations

(@m):/a(x,Tm(um),Vum)Vvder/bm(x,um,Vum)vdx:/fmvdx.
(0] (0] (0]

For the proof. See Appendix 2.2.4.
We divide our proof in six steps.

Step 1 : A priori estimate of { v }.

Proposition 2.2.1. Suppose that the assumptions (2.40) - (2.43) hold true, and let (u™),,en be a
solution of the approximate problem (). Then, for all k > O, there exists a constant c .k ( not

depending on m ), such that

/wB(|VTk(um) ) <ec.k.

S l t
Proof. Taking v = exp(G(u™)).Tx(u™), as a test function with G(s) = / Q
0o a

dr and a is the

coercivity constant, we obtain

N N
L L et V) ¥ (exp(Gu)) ")) -+ Y [ o ) exp(Glu) . Ty d
< /w £ exp(Gu™)) . T(u") dx.

=~
=
o
B

al (x,u™, Vu™)exp(G(u™)) VT, (u™)) dx

l()

T
8\

a’ (x,u™, Vu™).Vu™ .exp(G(u™))Tr(u™)dx

IN n
= 1=
S 8\

| b7 (x,u™, Vu™)| . exp(G(u™)) . Ty (u™) dx+ /wfm .exp(G(u™)) . Ti(u™) dx

Il
_

IA
™=
e

I
_

[h(x) + 1(u™).B;(Vu™)] . exp(G(u™)) . T (™) dx + /wfm. exp(G(u™)). T (u™) dx

IA
™M=
e

I
—

1(u™).B;(Vu™). exp(G(u™)) . Tp.(u™) dx + /w (/™ + h(x)).exp(Gu™)). T(u™) dx,

SO,

N
Z/ Tou™, Vu™) Vu™ . exp(G(u™)) dx
“~ a)|u’"|<k}

I(u™)

a

< [ 17700+ hx) + 000 T2 ] exp(G™) T d
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by (2.42), we get

Z/w oy BV (Gl

</ w.\um}"’(” exp(G(u") dx

* / )+ 0(x) L) |- exp(G(u™)) Ti(u™) dx,

a

since ¢, hand f™ € L!(w), and the fact that exp(G (o)) < exp <|L(R ) , we deduce that,

/ B(VI(u™)) dx < k.c, k> 0.
{wrfur] <k}

Finally
/B(VTk(u’”)) dx <k.c, k> 0.
[0)

Step 2 : Almost everywhere convergence of { u/”" }.

Lemma 2.2.1. For all u™ measurable function on ®, we have

meas{x € o, |u™| >k} — 0.

Proof. According to Lemma 1.1.1 and Lemma 1.1.2, we have

[T (™) |

B <A.|| V(™) ||
<A.g(k) / B(VTi(u™) dx
k)

<c.k.g( fork > 1,

with (k) — 0 as k — oo.

Form (2.44) we have,

k
B —————— Jmeas{xcw: [u"| >k} <
(s ) meestreor 125

(i)

/
L2 () =

IN

(2.44)
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by (2.44) again, we obtain

)
as k .
B*

5 (e

Hence,

meas{x € @: |u"| >k} —> 0ask —> oo forall m € N.

O
Lemma 2.2.2. For all u™ measurable function on m, such that
Ti(u™) € Wi (o) Yk > 1.
We have,
meas{®: B(Vu") >r} — 0asr — oo.
Proof.
meas{x € @: B(Vu") >0} =meas{{x€ w: |u"| >k, B(Vu")>r}
U{xcew: |u"| <k, BVU")>r}},
if we denote
g(rk)=meas{xcw: |u"| >k, B(Vu")>r},
we have
meas{x € @ : |u"| <k, B(Vu")>r}=g(r,0)—g(rk).
Then,
/ B(Vul™) dx = / (8(r.0)— g(rk)) dr < c.k, (2.45)
{xew:|um|<k} 0

with r — g(r,k) is a decreasing map. Then,

g(r,0) < ! /Org(r,O) dr

r

< [ (etr0)-grh)) dr [ gy ar

r

<1 /0 "(5(n0) — g(rk) ) dr+(0,k), (2.46)

r
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combining (2.45) and (2.46), we obtain

C.

g(r,0) < — +g(0,k),

r

by Lemma 1.1.1,
lim g(0,k) = 0.

Thus

g(r,0) — 0as r — oo.

We have now to prove the almost everywhere convergence of { 1™ }.

" —suaein Q.

Let g(k) = sup meas{x € o : |u"
meN

Since ® is unbounded domain in RY, we define Mg as

| >k} — 0ask —> oo,

1 if r<R,
NrR(r) =4 R+1—r if R<r<R+1,

0 if r>R+1.

For R, k > 0, we have by (1.6)

| BOme(|x)) T dx < e

{xew:|um|<k}

<c(k,R),

(2.47)

B(V™) dx+cAB(n(u"l).vnR(|x|)dx

which implies that the sequence { ng(|x|) Ti (™) } is bounded in W} (@(R+ 1)) and by embedding

Theorem, for P < B we have

Wi(w(R+1)) — Lp(@(R+1)),
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and since Ng = 1 in ®(R), we have

Nr Tk(um) — Vi in LP(a)(R+ 1)) asm —» oo,

Fork > 1,

Ti(u™) — v in Lp(@(R+ 1)) as m — oo,

by diagonal process, we prove that there is u : ® — R measurable such that u™ — u a.e in .

This implies the (2.47).

Lemma 2.2.3. Let an N-functions B(t) satisfy the Ay—condition and u™, m = 1,--- oo, and u be

two functions of Lg(®) such as

[|lu" ||l <c m=1,2,---.

u™ — u almost everywhere in @, m — oo.

Then,

u™ — uweakly in Lg(®@) as m — oo.
Proof. See Lemma 1.3 in [79]. ]

Step 3 : Weak convergence of the gradient.

Since W4 (@) reflexive, then, there exists a subsequence

T (u™) — v weakly in W} (@), m — oo.

And since,
Wi (0) = Lp(),
we have
VTi(u™) — Vvin Lg(®) as m — oo,
since

u" — ua.ein @ as m — oo,
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we get

Vu"™ — Vua.e in @ as m — oo.

Then, we obtain for any fixed £ > 0,

VT (u") — VTi(u) a.e in o.

Applying Lemma 2.2.3, we have the following weak convergence

VT (u™) — VT (u) in Lg(®) as m — o,

for more detail see page 11 in [26].

Step 4 : Strong convergence of the gradient.

For j > k > 0, we introduce the following function defined as

I it |s| <,

hi($) =4 1—[s—j| if j<|s|<j+1,

0 if s>j+1.

and we show that the following assertions are true :

Assertion 1 :

N

lim lim Z/ ai’ (x,u™, Vu™) . Vu™ .ng(|x|) dx = 0. (2.48)
1/ [<j+1}

Jj—roo onol.

Assertion 2 :

Viu" — Vua.ein @o(m). (2.49)

Proof. We take v = exp(G(u™)) Th j(u™) nr(|x|) = exp(G(u™)) T1 (" — T;(u™)) Nr(| x|) as a test
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function in the problem (7,,), we obtain

;/wazm(x,um,Vum).V<eXp(G(um)).Tl(umTj(um)).nR(|x|)) dx
N
SZ/ | b7 (o, u™, V™) | exp(G(u™)) . Ty (" —T;(u™)) . ne(|x]) dx

4 [ 170 exp(G) T3 (" = Tal")) . e ] .

according to (2.42) and (2.43) we deduce that

N
Z/ A (e, ™ V™) Vi exp(G (™)) . Mr(| x]) dx
S Ji<un <1y

I(u™)

a

< /w [f’"(X) +h(x)+¢(x). -exp(G(u™)).T1 (u™ = T;(u™)) . Mr(| x|) dx,

1
since ¢ € L' (), h € L'(®), f™ € (L'(®))V, and the fact that exp(G(=£e)) < exp <|2‘<R>> we

deduce from vitali’s Theorem that

lim lim [fm(x)+h(x)+¢(x).

J—roo m—roo [y
Hence,

lim lim al (e, ™, Vu™) . Vu™ .ng(|x]) dx = 0.

. l
e m=es J{jcum|<jt1}

And to show that assertion 2 is true, we take

v =exp(G(u")) (T (") — T (u)) hj(u™) M&(|x1),
as a test function in the problem (%7,,). We have
N
;/wa?"(xvum,wm)~V(CXP(G(Mm))~(Tk(M ) = Tic(u)) . hj(u™) .ne(|x]) ) dx

N
) / B (e, V") . exp(G(ul™)) . (T (") — Tew)) . I (") . (| x1) dlx
< [ 70 exp(G ™)) (Tulu™) Tiu)) (") ma( x]) i



2.2. Existence and Uniqueness of entropy solution in unbounded domain 57

which implies

N e
Zi/wa;"(X, Mm,Vum).Vum.l(d) L exp(G(u™)) . (Tie(u") — Te(u)) .1y (™) x Mg (|x|) dx
N

+ Za;"(x, u", Vu™) . exp(G(u™)) . (VT (u™) = VTi(u)) .hj(u™) . nr(|x]) dx

i=1

N
+Z1/wa$"(x,u'”,vu’”)-exp(G(um)).(Tk(um)—Tk(u)).th(um).nR(\x\)dx
N
+;/wa§n(x’umvvum)'exP(G(um))'(Tk(um)_Tk(“))-hj(um)-VnRﬂxDdx
N
< Z{/wwlm(%um,Vum)|.exp(G(um)).(Tk(um)Tk(u)).hj(um).nR(|x|)dx

+ /wf’"(X) -exp(G(u™)) . (T(u™) = Tie(w)) . hj (™) . Mr(| x|) dx,

thanks to (2.42) and (2.43), we obtain

N
Z}/{ua}"(x,um,Vum).exp(G(um)).(VTk(um)—VTk(u)).hj(um)_nR(|x|)dx

N
+Y / & (el V™) Vi exp(G(™)) x (Tu(u™) — To(u)) . Mr(| x]) dx
= Jiar i<l i<je1)

N
+§/w"?"<x’”mvw”>-exp<G<MM>>.<Tk<uM> — Ti(u)) (") x V(| x]) dx

< [ [ ne) 00" | exp(Glum) (7)) x e+

a

sine j > 0, ng(|x|) > 0 and u™ (Tj(u™) — Tr(u)) > O we have

N
Y[ el T VI exp(Glu™)  (VI) = VT () x M) d
i=1 7/ {o:|um|<k}
o, o V) Vil expG")) (") — T () ()
N
+Z‘{/wa?1(x,um,Vum).exp(G(u’")).(Tk(u’")—Tk(u)),VnR(|x|)dx
S/w [f’”(x)+h(x)+¢(x).l(”;) _exp(G(™)) . (Ti (™) — Ti(u)) . ng(| x|) dx
N
+ ;/{w:k<|um<j+1}ai(x’ Tip1(u™),VTjp1(u™)). exp(G(u™)) .| VTi(u) | x nr(|x]) dx

N
+Z/ _ ad (xu", Vu") V" exp(G(u™)) | Ti(u™) — Ti(u) | x Mr(|x|) dx.
i=1/{o:j<[ur|<j+1}

The first term in the right hand side goes to zero as m tend to o, since T (u™) — Ti(u) weakly in
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Wy ((m)).
Since a}" (x, Tj11(u™),VTj+1(u™)) is bounded in Lg(@(m)), there exists @” € Lz(w(m)) such as

la" (x, Tjp1 (u™),VTjp1 (u™))| — @ in Lg(@(m)). (2.50)

Thus, the second term of the right hand side goes also to zero.
Since Ty (u™) — Tk (u) strongly in Wé 1oc(@(m)). The third term of the left hand side increased by

a quantity that tends to zero as m tend to zero, and according to (2.48) we deduce that

N
Z/ww'q}ai(x,Tk(u’”),VTk(u’”))-exp(G(u’”)).yvrk(u) VTi(u) | x Nr(|x|) dx

<&(j,m).

Then,

™M=

/w [a, X, (™), VT (u™)) — ai(x, T (™), VT (w)) | . (VT (u™) — Tk (u) ) X Nr(|x]|) dx

1

N
< ;/a T (™) VT(w)) . exp(G™). | VTL(u") — VT () | % ma(|x]) dx

0]

N
—Z/ . a;(x, T (u™), VT (u™)) . exp(G(u™)) . VTi (1) . nr(| x|) dx+ €(j, m). (2.51)
i=1 /{0 [um <k}

According to Lebesgue dominated convergence Theorem, we have Ti(u”) — Ti(u) in Wé’ loc (@)
and VT;,(u™) — VT;(u) in W} (), then the terms on the right had side of (2.51) go to zero as m and
Jj tend to infinity.

Which implies that
Z/ [a, (o, T (u™), VT (u™)) — ai(x, Ti(u™), VTi(w)) | ¥ (VTi(u™) = T (u)) dx — 0. (2.52)
i=1
Thanks to Lemma 2.1.1, we have for k > 1,
VT (u™) — VTi(u) a.e in w(m), (2.53)
and by diagonal process, we prove that

Vu" — Vu a.e in Q(m).
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Step 5 : Equi-integrability of ™ (x,u™, Vu™).

Letv=exp(2G(|u™|)).Ti(u" —Tr(u™)).nr(| x|) as a test function in the problem (7, ), we obtain

N
; al (x,u”,Vu™) .V (expG(|u"])) . Ty (" — Tr(u™)) . Nr(| x]) ) dx

(0]
N

+ _Z/ b (x,u™, V™) . exp(2G(|u™ ) . Ty (u™ — T (u™)) . nr(|x|) dx

(O]

7). exp2G (1" ). Ti (" — Te(u")) . Mg x]) dx,

(0]

which implies that

a

N u"
;/ﬂ)aT(x,um,Vum>-VuM.l(_ ).exp(ZG(|um|)).Tl(um—TR(um)) x Nr(|x]) dx
+,-Zl/{w.R<|um<R+1}“71<’“’”m’V“m>~V“'”-eXP<2G<|u'"|>>.nR<|x|>dx
+Z/ 2", Vi) exp(2G([" ) Ty (" — Te(u™)) . Vi(|x|) dx
SZ L1 V) | exp (2G| ). T3 (" = Te™)) (] d

+ [ 7). xpG(" D). Ty (0" = Ti(u) . (| ]) i,

by (2.42) and (2.43), we obtain

N
Zr/w R<|wn |<R+1} Bi(|Vu"|).exp(2G(|u™]).nr(|x]) dx

+ X{/@a?’(x,um,Vum) L exp(2G(|u™ |). Ty (u” — Tr(u™)) . Viig(| x]) dx

I(u™)

a

< /w {f’"(X) +h(x)+¢(x). ] -exp(2G([u™])). Th (u™ — Tr(u™))

et [ 900 exp(G( ) ] x]) d

Since Mg(]x|) > 0, exp(G(£e)) < exp <2 1ot e ) fme (L"(®)N, ¢ and h € L'(w). Then,
Ve >0, 3R(e) > 0 such as

N
Z/ BV dx<E,  VR>R(e).
= J{o:|wn|>R+1} 2
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Let V(@(m)) be an arbitrary bounded subset for @. Then, for any measurable set E C V(o (m)) we

have

2

N
Z/ (‘Vum‘ Z/ ‘VTR ) dx
i=17E i=
N
Z/ Bi(| Vi) dx (2.54)
{|u"|>R+1}
we conclude that VE C V(w(m)) with meas (E) < B(€) and Tg(u™) — Tg(u) in W3 (@)
o €
Z/ Bi(|VTr(u™)|) dx < 5. (2.55)
i—1 E 2
Finally, according to (2.54) and (2.55), we obtain

N
Z‘i/EBi(\Vum Vdx<eg VE C V(w(m)) such as meas (E) < B(¢).

Which gives the results.

Step 6 : Passing to the limit.

Let & € Wi (w) NL™(w), using the following test function v = o Ty (u” — &) in the problem (2,
with

1 for w(m),
% =

0 for w(m+1)\w(m),
and || =[G [l < [u" =G| < j. Then, {|u" =G| < j} C{[u"]<j+][S]|~} we obtain
N
Z/a,-(x,Tm(um),Vum).ﬁkVTk(um—é)dx
i=17®
N
+Z/ i, T (™), Vi) Ty (W — €) VO dx
i=17®
N
—I-Z/b;-"(x,u’",Vu’").ﬁka(um—é)dx
i=17®

< /wfm(x) T (" =€) dx, (2.56)
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which implies that

N . . i
;/a»w)ai(x’T’"(” ), Vi) Ti(u™ = &) dx

= Z}/w(m) ai (%, T 1 ("), VT e (™) - T g1 (0" = &) - X um—g < jydx

N
- .Z/w(m) [“i(xv Tjriig ("), VT (") — @il T (), VE)
X Vg (4" = &) - X(jum-g|<jy 4%

+Z/ ai(%, Tjsjg )} ("), VE) - Vg1 (0" = &) - Xjum—g <y -

By Fatou’s Lemma, we have

lim inf ) a;(x, T, (u™), V") VT (u™ — &) dx

N
ZZ/(D( )[ai(xjﬁllé‘w(“m)7VTj+élw(”m))_“i(x7Tj+lléw(”m)’vé)
i=1/@(m
X Vg ). (0" = &) - Xijum—g<jy dx
+ lim Z/ ai(% Tjjg )} ("), VE)- Vg (" = &) - X (um—g 1<y dX-

Mm—yoo

The second term on the right hand side of the previous inequality is equal to
/w(m) ai(% Tjp g .. (1), VE) - Vg1 (4= 6) - K ju-g 1<)} 4
Then, since Ty (u” — &) — Ti(u— &) weakly in W} (@), and by (2.49), (2.53) we have
N N
Z/ b e, u™ Vu™) S T (W™ — &) dx — Z/ bi(x,u,Vu) . % Tr(u—&) dx,
=170 =170

and

/f O Ti(u —é)dX—>/f ) O Ti(u—&) dx.

(2.57)

(2.58)

(2.59)

(2.60)

Combining (2.56) - (2.60) and passing to the limit as m — oo, we have the condition 3 in definition

2.2.1.

O
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2.2.3 Uniqueness result in unbounded domain

In this subsection, we demonstrate the Theorem of uniqueness solution to the problem (2?)
in an unbounded domain; using the fact given in [3, 32, 33] such as b;(x,u, Vu) are a contraction

Lipschitz continuous functions.

Theorem 2.2.2. Under assumptions (2.40) - (2.43), and b;(x,u,Vu) : ® x R x RV — Rfori=

1,---,N contraction Lipschitz continuous functions do not satisfy any sign condition, and

N
Y [ai(x,&,VE) —ai(x,& ,VE)] . (VE-VE) > 0. 2.61)

=

—_

The problem () has a unique solution.

Proof. Letu! and u? be two solutions of problem (&) with u' # u? then,

N N
Z/a,-(x,ul,Vul).Vvdx—i—Z/bi(x,ul,Vul).vdx:/f(x).vdx,
i=17® i=1/0 0]

and

N N
Z/ai(x,uz,Vuz).Vvdx—i—Z/ bi(x,uz,Vuz).vdx:/f(x).vdx,
=170 =1/ ®

we subtract the previous inequality, we get

N
Z/ [ai(x,ul,Vul)—ai(x,u2,Vu2)] .Vvdx
i=1

+Y / xut , Vul) = bi(x,u?,Vu?) | .vdx =0
i=1

we take v =1 (x) . (u' — u?)(x) with
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Combine to (2.61), we obtain
N
Z/ [ai(x,ul,Vul) fa,-(x,uz,Vuz)} (u' —u?) .V (x) dx
i=17®
N
+ Z/ [b,-(x,ul,Vul) — bi(x, uz,Vuz)} (' —u?).n(x) dx
=170
<0,
according to (1.2) and the fact that b;(x,u, Vu) contraction Lipschitz functions for i = 1,--- /N, we
get
N N
Z/ Bi(ai(x,u',Vu") —a,-(x,uz,Vuz))dx—i—Z/ Bi(u' —u?)Vn(x))dx
=10 =170
N oo N
< Z B,-(ai(x,ul,Vul) — a;(x, uz,Vuz)) dx+2 Z/ Bi(u' —u?) dx
=170 =170
N N
<a Z/ Bi(u' — i) dx+ Z/ Bi(n(x). (u' —u?)) dx, (2.62)
=10 =10
then
N -
Z/ Bi(ai(x,ul,Vul)—ai(x,uz,Vuz)) dx
=170
N N
<(a—2) Z/ Bi(u' — ) dx+ o Z/ Bi(n(x). (' —u?)) dx. (2.63)
=170 =170
Since,

=

Il
—_

/wé,-(n(x).(ul_uz))dxgﬁ‘i/m{Xlﬁ(}&((k—‘xk‘z> ,(ul_u2)> dx
N

+;/cz)ﬂ{XI>k}Bi(n(x) (u' —u?)) dx

—0ask—0,

and since the N-functions B; verified the same conditions and properties of the B; then, according
to (1.6) and (2.40), we obtain

N N
Z/ Bi(ai(x,ul,Vul)—a,-(x,uz,Vuz)) dx < dc Z/ Bi(V(u* —u?)) dx
=170 =170

<ac||B(u' —u?)||10-
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Combine to (2.62) and (2.63), we deduce that
0< (dc+2—a)|[Bu' —u?) |10 <0.
Thus

1B(u' — )10 = 0.

Hence, u! = u? a.e in o. O

2.2.4 appendix
Let

A" Wy (@) — (Wi (@)

D

(a,m(x,u,Vu).ax +b;~"(x,u,Vu).v) dxf/ fM(x).vdx,
i Q)

=

I
—_

Vo 4w, = [

@

N
and let denote Lz(®) = HLBi (w) with the norm
k=1

N
Ilg0) = Y IVills.o  v=(v1,--,vn) € Lz(®).
i=1

Where B;(t) are N-functions satisfying the A, —conditions.

Sobolev-space Wj (@) is the completions of the space C3(®).

am(xwgvg) = (alr(x?Své)a T 7a%(x7s7§))7

and

bm(x7s,§) = (brln(xvsvg)’”' vblr(l’(x’svg))'

Let’s show that operator A is bounded, so for u € VCVBI (w), according to (1.9) and (2.40) we get

N
[la" (x,u, Vi) [ L) = Zi [lai” (x,u, Vi) || (0)
p

IN
M= |

/B,-(a;"(x,u,Vu))dx—i-N
w

—_

IN
sy

(@) 1[B(u) |10+ @0 +N. (2.64)
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Further, for a” (x,u,Vu) € Lz (@), v € W} () using Holder’s inequality we have

A" (), Vo | <211a" (e, V10 1y 11 i )

215" (o1, V) g - 19 iy 0110l - 2.65)

Thus, A™ is bounded.

And that A™ is coercive, so for u € W} (o)

(A™(u wa/ (x,u,Vu). gxdx—i—Z/bmxuVu)udx
i=1 t
—/fm(x).udx.
[0

Then,

N

(A7 (), )
- ||u||WB [ 3

H“Hvi/,;(w) i=1

Bl< ox;
/wBl< ox;
1 / <

>
= Tl [ ; p

According to (2.40), we have for all k > 0, F 0o > 0 such that

>dx—cl—co
)dx /h dx}
>dx—C()—Cl—C3:|.

"["12 e\

bi(luxi\)>kb,~<w>, i— 1N,

Hux[ HBi,CU

We take || uy, |0 >0 i=1,---,N.

Suppose that || uy, ”v“v,;(w) — 0 as j — oo. We can assume that
130+ + |l lay.0 > N 00.
According to (1.9) for ¢ > 1, we have

! [b([u']) < cB(u'),
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then, by (1.8) we obtain

<’TZ€-“|"|3;;">‘“ - B (|5

(@)

dy— 4
N o
N
C4
I 1b(|ul |) dx—
Z/ ul |b(|ul|) dx Noo
N
2 (a( Z/| ( ‘M)Q’ )dx_ C4
eN||uf, HB i=1 ||M B0 N o

> (a(@)—cr) -k _C2 / ( )dxc4
|\Mx,||B o Nao

N () er)t
- cN Noco

| \/

Which shows that A™ is coercive, because k is arbitrary.

And for A” pseudo-monotonic, we consider a sequence {#” }*>_, in the space W, (®) such that

W™ — uweakly in Wa (@)  m — oo,

lim sup (A" (u™), u™ —u) <0

m—yoo

we demonstrate that

A" (™) — A" (u) weakly in (Wi (®))', m — oo,
(A" (™), u™ —u)y — 0, m — oo.

Since B(0) satisfy the A;—condition, then by (1.9) we have
/wB(G) dx < o]0 |5.0-
According to (2.66) we get
[|u™ HW ) S m=1.2,---

and

|| B(Vu™) |1 < ca, m=1,2---.

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

2.71)

(2.72)
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Combining to (2.64) and (2.71) we obtain

N
||a™ (x,u,Vu) | Z Tu™, Vu") ||g <csm=1,2,--
i=1

And for m € N*, | " (x,u, Vu) | = | T(b(x,u, Vu)| < m. Then, by (2.43) and (2.71) we have

N
|| 6" (x,u,Vu)||p = ZHb}"(x,um,Vum)HBi <c4y, m=1,2,---

i=1

According again to proof of Lemma 2.2.2 and Lemma 1.1.2, we have

W (o(R+1)) — Lg,(w(R+1))forR>0andi=1,---,N

We set
N
A" (x) =Y [a (e, u™, Vi) — @ (x,u, V) | (™ —u)y,
i=1
N
+Z (B (o, u™ V™) = b (x,u, V) | (W™ —u), m=1,--.
i=1
Then

<Am(um)—Am(u),um—u>:/G)Am(x) dx m=1,---.

By (2.66) and (2.67), we obtain

lim sup / A™(x)dx <0.
()

m—yoo

So,
N
A"(x) = Z [af (x,u™, V™) — a* (x,u™, Vu) | (u" —u)y,
i=1
N
+ Z [a (x,u™,Vu) — a} (x,u,Vu) | (u" —u)y,
i=1
N
+ Z (B (x,u™ , V™) = b (x,u, Vu) | (u™ — u)
i=1
=Al(x) +A% (x) +AF(x) m=1,---
We prove that

AT'(x) — 0 almost everywhere in Q@ m — oo.

(2.73)

(2.74)

(2.75)
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A% (x) —> 0 almost everywhere in Q  m — oo.

A% (x) — 0 almost everywhere in Q  m — oo.

=
3
=
I
=

Il
—

[alm(x, u™ Vu™) —a (x,u", Vu)] (" —u),,

1

N
al (x,u™, Vu™) ull — Za’-”(x, u™ Vu'™) . uy,

Il
™=

[
—
[
—

applying (1.1), (2.42), (2.72) and (2.73) we obtain

AT(x) > ¢(m) — 0 as m — oo.

Hence, using the diagonal process, we conclude the convergence (2.75).

(2.76)

(2.77)

As in [76], let A”(u) = @ (x,u,Vv)i=1,--- N be Nemytsky operators for v € Wj (o) fixed and

x € ®(R), continuous in Lz (@(R)) for any R > 0.

Thus, according to (1.10), (2.47) and the diagonal process, we have for any R > 0,
A% (x) — 0 almost everywhere in @  m — oo.
Applying the inequality (1.10) we obtain

N
AT (x) <2 ) (1B (x ™, Vi) = b (1, V) ||, oy - || 1" = iy )
i=1

<2c¢(m).||u"— uHWé((D).
Hence, combining to (2.47) and the diagonal process, we have for any R > 0
A% (x) — 0 almost everywhere in @  m — oo.
Consequently, by (2.75), (2.76), (2.77) and the selective convergences we deduce that

A™(x) — 0 almost everywhere in @  m — oo.

(2.78)
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Let @ C @, meas® = meas ®, and the conditions (2.47), (2.78) are true, and (2.40) - (2.43) are
satisfied.
We prove the convergence

Uy (x) — uy,(x) everywherein w fori=1,--- \N, m — oo. (2.79)

Xi

By the absurd, suppose we do not have convergence at the point x* € @’.
Let u™ = (x*), u=uy(x*), i=1,--- N, and @ = ¢ (x*), @ = ¢(x"). Suppose that the sequence

N
ZB,-(um) m=1,--- oo is unbounded.
i=1

Lete € (0, 1ia> is fixed, according to (1.2), (1.4) and the conditions (2.40), (2.42), we get

b
3
=
=
I
1=

<al'~”(x*, u™ Vu™) — a?"(x*,u,Vu)) V(u™ —u)

U
™M= -

(b;"(x*, u™ Vu™) = b (x*, u, Vu)> (u" —u)

—_

N
al'(x*,u" Vu") V" =Y af (x"u" V") Vu
i=1
N
al(x*,u, Vu) Vu™ + Za;" (x*,u,Vu) Vu
i=1
N

Il
™=
=3

Il
_

-

Il
_

N
b (x* u, Vu)u™ + Z b (x*,u,Vu) u.
1 i=1

™=

B (o u™ V" — Y b (™, V™) u—

1

+

l
Applying the generalized Young inequality and (2.71), we obtain

N N
A"(x) > Y al (xFu, Vu) Vu+ Y al'(xFu" Vi) Vi — €
i=1 i=1

N N
—ci(€) ZB,-(Vu) — € ZB,-(a;-"(x*,u,Vu)) —ca(€)

i=1 i=1 i

Bi(a? (" ", Vi)

M=

I
_

™=

I
> -

N
+ )BT, V) V" + ) B (T u, V) Vu— Y B (", V™) Vu
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So

=

Il
—_

M=

Aj(x*)Z[dfcl(s) —€ed—c3l(u)] Y Bi(Vu)+ [a— €dcy — csl(u™)] Y Bi(Vu") — cs(e).

i=1

So we deduce that the sequence A™(x*) is not bounded, which is absurd as far as what is in (2.78).
As a consequence, the sequences uy’, i =1,--- N, m — oo are bounded.
*

Let u* = (uj,uj,--- ,uy) the limits of subsequence u™ = (uf',--- ,uj;) with m — co. Then, taking

into account (2.47), we obtain
u’"—>u* ,i=1,--- N. (2.80)

As aresult, from (2.78), (2.80) and the fact that a}" (x*,u, Vu) are continuous in u (because they are

Carathéodory functions), we have

=

I
—_

(a?"(x*, u™ Vu™) — a?"(x*,u,Vu)) . (u)’c’f —uy,) =0,

and from (2.41) we have, u;. = uy,. This contradicts the fact that there is no convergence at the point

x*.

And referring to (2.47), (2.80) and the fact that a/"(x*,u,Vu) are continuous u, so for m — o we
get

al(e,u™, Vu™) — al'(x,u,Vu), i =1,--- N almost everywhere in ®.
Using Lemma 2.2.3 we find the weak convergences

aj (x,u™,Vu™) = aj(x,u,Vu) in Lg (), i=1,--- ,N. (2.81)

The weak convergence (2.68) follows from (2.81).

Furthermore, to complete the proof, we note that (2.69) is implied from (2.66) and (2.78) :

(A" ("), u™ —u) =(A" (") = A" (), u" —u)

+ (A" (u),u"™ —u) — 0, m — oo.

We’re ending this section by a suitable example, that checks all the above conditions and proposi-

tions,
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Example 6. Let @ be an unbounded domain of RN, (N > 2). By Theorems 2.2.1 and 2.2.2 it exists

a unique entropy solution based on the definition 2.2.1 of the following anisotropic problem (%) :

N N

Z Bi(|Vul) Z (|Vul)=f(x) in o,
(Z)q = =

u=20 on 0o,

with @ is a positive constant, | : R — R a positive continuous functions such as | € L'(R)NL™(R),
feL(w)and

B(z) = |z|° (|Inlz]| + 1), b > 1.

satisfying the A, —condition.






The Existence and Uniqueness of an Entropy
Solution to Unilateral Orlicz Anisotropic Equations

in General Domain

In this chapter, we study a certain class of unilateral elliptical operators whose nonlinearity is
given by a vector of N-functions in the framework of anisotropic Orlicz spaces. In the first part, we
prove the existence of entropic solutions for our problem in the bounded domain. In the second part,
we show the existence and uniqueness solution to the same problem but with an unbounded domain
namely ; without assuming any condition on the behavior of the solutions when |x| tends towards
infinity. Moreover, we are giving some examples of an anisotropic elliptic equation that verifies all

our demonstrated results in each section.

73
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3.1 Existence of entropy solutions in a bounded domain

3.1.1 Introduction

Let Q be a bounded domain of RN (N > 2). The aim of this section is the study of boundary
value problems for a class of nonlinear anisotropic elliptic equations. More specifically, we consider

the unilateral elliptical operators whose nonlinearity is given by a vector of N-functions like

N
A(u) + Zbi(x,u,Vu) =f in Q,

u>¢ aein Q,

N
where, 2A(u) = Z(Gi(x,u,Vu))xi
i=1

adherence space Cy'(€2)) into its dual (see assumptions (3.1), (3.2), (3.3) in Section 3.1.2 below);

is a Leray—Lions operator defined in WA}(Q) (defined as the

M(t) = (M (t),--- ,My(t)) are N-uplet Orlicz functions that satisfy A,—condition; the obstacle
¢ is a measurable function that belongs to L=(Q) N W,,(Q); and for the i = 1,--- ,N, b;(x,s,&) :
Q x R x R¥ — R are Carathéodory functions (measurable with respect to x in Q for every (s, £) in
R x RM, and continuous with respect to (s, &) in R x RY for almost every x in ) that does not satisfy
any sign condition and the growth which is described by the vector N-function (M, (t),--- ,My(t))
( see assumption (3.4) ). As well as f € L1(Q).

For several years great effort has been devoted to the study of nonlinear elliptic equations with
an operator which was described by polynomial growth. For example, in the classical Sobolev
space, Boccardo and Gallouét in [35], proved the existence of a weak solution of () in the case
¢ = g = 0. Bénilan in [21] presented the idea of entropy solutions which were adjusted to the
Boltzmann condition. For a deeper comprehension of these types of equations in this field, we refer
the reader to [5, 30, 34, 35, 67, 69, 77] and references therein.

Next, in the Orlicz space, Benkirane and Bennouna in [25] demonstrated the existence of entropy

solutions to the following nonlinear elliptic problem :

—diva(x,u, Vu) +div(o(u)) = f,

where ¢ € (C°(R))N and f € L'(Q). For more results, we refer the reader to [4, 11, 12, 38—41, 46,
47,52,79, 84, 91] and references therein.

And in the anisotropic Sobolev-Orlicz space, there are few results dealing with this topic. We will
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mention recent papers, and we are starting by the pertinent works of Korolev and Cianchi [48, 72]
who proved the embeddings of this space. For more results dealing this field, we refer to [13, 20,
26, 28, 74, 75] and the references therein.

This kind of operator arises in a quite natural way in many different contexts, such as the study
of fluid filtration in porous media, constrained heating, elasticity, electro-rheological fluids , optimal
control, financial mathematics and other domains, see [19, 23, 45, 96] and the references therein.

As far we know, no previous research has investigated the existence of entropy solutions to
unilateral problem (£?) with the second term as an operator with growth described by an n-uplet of
N-functions satisfying the A, —condition, within the fulfilling of anisotropic Sobolev-Orlicz space
with bounded domain, the function b;(x,u, Vu) does not satisfy any sign condition and the source f
is merely integrable. Hence, motived by the aforementioned papers, our main work is to obtain the
existence Theorem for unilateral problems corresponding to (£?) via an approximation procedure

and some priori estimates.

3.1.2 Assumptions on data and definition of solution

Statement of the problem : Suppose they have non-negative measurable functions ¢, @ €

L'(Q) and positive constants @ and @ such as :

!

(Gi(x,5,&) — 0i(x,5,E)) . (& — &) > 0, (3.1)

=

Il
-

N
Y oilx.s,8).5 > a Y Mi(|&i]) — 9(x), (32)

Il
—_
Il
—_

N N
) loi(x,5,8)| SdZMi_]Mi(\il) + (), (3.3)

and

N N
Y 16i(x,5,8) | < h(x) +1(s). Y Mi(&]), (3.4)

i

Il
—_
Il
—_

with M(t) the complementary of M(t), h(x) € L'(Q) and [ : R — R™ a positive continuous func-
tion such as : [ € L'(R)NL>(R).

Definition of entropy solutions

Definition 3.1.1. A measurable function u is said to be an entropy solution for the problem (&), if
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u € Wh(Q) such that u > ¢ a.e. in Q and

Y N
;/Qci(x,u,Vu).V(uv) der;/Qbi(x,u,Vu)_(uv) dx

g/f(x).(u—v) dx  WveK NL*(Q),
Q
where, Ky = {u € Wh(Q) suchasu> Cae inQ}.

3.1.3 Main result

In this part, we will show the existence of our problem (7). There exist f™ € C’ () such that
fm— fin LY (Q), m — oo, | f™(x)| < | f(x)| and fori=1,--- ,N,

7" (x, t, Vi) = (Wyy (Q) )N — (W' (Q) )V being Carathéodory functions with
o/"(x,u,Vu) = oi(x,T,,(u),Vu),

and b7 (x, iy, Vi) : Q x R x RY — R again being Carathéodory functions not satisfying any sign

condition, with

\%
bm(x,u,Vu) — bl(x7u7 M) ,
1+ [b6(x,u, Vu) |
and
| 6™ (x,u, Vi) | = | b(x, T, (u), Vu) | < mforall me N*, (3.5)

Consider the penalized equations :

N N
(Pp) - Z/ 0" (x, U, Vity) . V(tyy — v) dx—l—Z/ b (o, um, Vity,) . (tty — v) dx
=172 =172

+/Qm.Tm(um—C)_.sgl(um).(um—v) dx:/gfm(x).(um—v) dx v € Wh(Q),

m

with sg,,(s) = L) for m € N*, and we define the truncation at height m, T,,(u) : R — R by

m

u if |u|<m,
Tu(u) =

m if |u|>m.

Theorem 3.1.1. Let’s assume that conditions (3.1)—(3.4) and (1.18) hold true, then there exists at

least one solution of the approximate problem (Zy,).
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Proof. See appendix 3.1.4. O

Now, we will show some results in the form of propositions that will be useful for the demons-

tration of existence Theorem 3.1.2, see below.

Proposition 3.1.1. ( see [28] ) Suppose that conditions (3.1) - (3.4) are satisfied, and let (up)meN
be a sequence in Wa(Q) such as

(@)  wn—u in WhQ),
(b) o™ (x,um, V) is bounded in Ly;(Q),

(c) / (6" (x, ttm, Vit) — 6™ (X, 4y, Vu k) ) . V(tty — uxx ) dx — 0 as K — +oo ( xx the cha-
Q

racteristic function of Qg = {x € Q; |Vu| < K} ).

Then :

M(|Vuy,|) — M(|Vu|) in LY(Q).

Proposition 3.1.2. ( see [26] ) Let’s assume that conditions (3.1) - (3.4) and (1.18) hold true, then

the generalized solution of the problems (&) satisfies the following estimate :
| MOVTlun) ) < c=c(K), K >0,
Q

Proposition 3.1.3. ( see [26] ) Suppose that the conditions (3.1) - (3.4) and (1.18) are satisfied, and
let (um)men be a solution of the problem (), then there exists a measurable function u such as
VK > 0, we have for all subsequence noted again uy,

(@) um —>u a.e in Q,
(b) Ti(un) = Tic(u) weakly in Wy (Q),
(¢) Tx(upm) —> Tx(u) strongly in VVM*I(Q).

Proposition 3.1.4. Suppose that the conditions (3.1) - (3.4) and (1.18) are satisfied, and let (up)meN

be a solution of the problem (,,), then for any K > 0, we have
(1) o™ (x,Tg (um),VTx(u,)) is bounded in W%(Q),

(2) M(|VTx(un)|) — M(|VTx(u)|) is strongly in L'(Q),
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Proof. 1)

I
™=

Il
_

|10 (x, T (4m), VT () | 37,02 107" (x, Tk (), VT () |37, 0

IN
™=

| M1VTkun) ) dx + @]l + .

—_

from Proposition 3.1.2 we obtain :
16" (6, T (), VT () 37,0 < ¢(K) + || @[ + N

Hence, 6™ (x, T (), VTk (1)) is bounded in WML(Q).
2) Showing that M (| VTk (u,)|) — M(|VTx(u)|) strongly in L' (Q) that’s why, let’s introduce the

1 if |K|<j,

following functions of a variable K defined as 4;(K) = ¢ if [K|>j+1, with

JH1+|K| ifj<|K|<j+1,

J as a non-negative real parameter, Qg = {x € Q : |VTx(u(x))| < K} and we note that xx is a
characteristic function of Qg. It’s clear that Qg C Qg and meas(Q \ Q) — 0 since K — o
shows that the following assertions are true.

Assertion 1 :

lim lim 0" (X, tp, Vity,) . Vity, dx = 0.
Joreom—eo JL Qi< K|<j+1}

Assertion 2 :

Tk () — T (1) modular convergence in Wy (Q).

Proof of assertion 1. Let

Vv =ty +exp(G(|um|)) - T1 (tm — T](um)),
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S It
with G(s) = / Q dt as a test function in (%,,) then we get :
0 a

N
;/chi'”(x,um,Vum).V(exp(G(|um])),Tl(um_Tj(um))) dx
N
+;/Qb§”(x,um,Vum).exp(G(|um\)),Tl (t — T () dx
—|—/Qm.Tm(um—C)f.sg%(um).exp(G(]um|)),Tl(um_Tj(um)) dx

= [ £ xB(Gltn) Tyt — T 1)) i,

by (3.2) and (3.4) we obtain :

N .
,-Zi/fz 67" (%t Vitm) - exp(G i) - V (T (tm — T (1)) dx

[Tt =€) 5., (). xP(G ) Ti (= T 1) i

</ [fm<x>+h<x>+¢<x>.“”_’")} - exp(G[um])) . Ti (1 — Ty (1) i,

a

Ly,
since f, ¢ € L'(Q), 1€ LY(R)NL>(R), exp(G(+£)) < exp ( ”(LHLI(R)> and by proposition 3.1.3

we obtain

I ()

a

lim lim [fm(x) +h(x)+¢(x).
Q

] . exp(G(|um|)) - Th (tm — Tj(um)) dx = 0.

Hence,

N
lim lim ) / 6" (X, Vi) . Vity, dx = 0,
Mmoo j—eo i3 J{Q: j<|um|<j+1}

and

lim lim | m.T,(uy— &)~ .sg%(um) . exp(G(|um|)) - Ti (tm — Tj(ttm)) dx = 0.

m—eo j—o0 |

Proof of assertion 2. Let j > K > 0, we consider

v =t +exp(G(|tm])) - (Tic (um) = Tic (u)) - hj(ttm),
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as a test function in (22,,) we obtain :

N
Zi/ 07" (X, tm, Vi) . V(exp(G(lum|)) - (Tx (um) — T () . hj(up)) dx
+Z/ 07" (X, ttm, Vity,) . exp(G(|tm])) - (Ti () — Tic () - 1 () dx
—l—/ m.Tm(um—C)f.sg%(um).eXp(G(]umD).(TK(um) Tx(u)).hj(up) dx

= [ 7). exp (Gl ) (T () = T ) (1)

by (3.2) and (3.4) we have :

ﬁl /{ - 67" (x, T (ttm), VIx (ttm)) - (VTx () — VT (1)) . exp(G(|utm|)) dx
+/Qm.Tm(um—C)’.sg%(um)exp G|tm))) - (Ti () — Tic (1)) T () dx

< [, h0) o0 1

a

xp(Glun])) . (Ti (1) — Tic(u)) .y (0,) dx

N
+Z/ 0" T (), VT 1 (um)) || VT () | exp(G([um)) dx
; QK< |up|<j+1}

N
+ Z/ " (X, t, Vidy) Vi, .| T (um) — Tx (1) | . exp(G(|um|)) dx
= k<|ug|<jt+1}

and since Tk (u,,) — Tx(u) is weakly in W, (Q), we have :

/ [f’"<x>+h<x>+¢<x>.’ )

and

/Qm.Tm(um —0) 581 (1) exp(G [ ])) - (T (1) — Tic(w)) o t) dx — 0,

 exp(G(|um])) - (Ti (ttn) — Tic (u)) -1 (1t) dx —> 0,

(3.6)

since | 67" (x, Tjt1(um), VTj(un))| is bounded in Lz;(Q), then there exist 6 € L;;(€2) such that

| 67" (6, Tt (4m), V1 () ) | = 6™ in Lz (Q),

3.7)
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N
3 /mm oy |7 T ). VT ) || VT tn) | xp (G )
i=1 . Um

|ZHL1(R)) N
<exp| ———~ |. / /" (X, Tjx1(um),VTjs1(tm)) |- | VT (um) | dx
e ()Y T T () VT ) - T

) N
a i=1 7 { QK <[up|<j+1}

according to assertion 1, we get :

N
Z/ /" (X, thyny, Vi) . Vg, | Tg () — T (1) | . exp(G(|um])) dx
i=1 {Q1K<‘Mm‘<j+1}

i N
<2K. exp (HHEI(R)> ) Z/ 0" (x, Uy, Vity) . Vit dx —> 0 as j — oo, (3.9)
a i1 H{QK<|um|<j+1}

combine (3.6) - (3.9) we obtain :

N
Z{ /Q [Gim(x, Tk (um), VT (um)) — 07" (x, Tg (), Vg (1)) | - (VTx () — VTx (1) ) dx — 0O

as m — oo, (3.10)
According to proposition 3.1.1, we conclude that
M(|VTx(um)|) — M(|VTk(u)]) in L' (Q).

O]

Proposition 3.1.5. ( See [26] ) Suppose that the conditions (3.1) - (3.4) and (1.18) are true, and

w ,ue WhiQ)

W/l oy S =1, 00 (3.11)
w —s uin Ly(Q), (3.12)

with M(z) is a N-function. Let’s assume the following functions :

N

Wx) =Y <o,.m(x, uj,Vuj)—Glm(x,u,Vu)> V(uj—u)+i <b;"(x, uf,wf)—w(x,u,w)) (! —u),

i=1 i=1

j=1,--- satisfying the condition

/W@W—N,j—m. (3.13)
Q
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Then, there exists a sequence of natural numbers J C N such that as j— o, j€J
o (x,u! ,\Vu') = 0" (x,u,Vu) in Ly (Q), i=1,--,N. (3.14)

Theorem 3.1.2. Under assumptions (3.1)—(3.4), the problem () has at least one entropy solution.

Proof. We divide our proof in six steps :

Step 1 : A priori estimate of { 1™ }.

We consider the following test function :
v =ty + 1 exp(G(|un|)) Ty (um — Tj(um)),

with 1) small enough, we get :

N
;/gc{"(x,um,Vum).V[exp(G(|um]))Tl(um_Tj(um))] dx
N
+ i_zl/gb?l(x,um,wm)  exp(G([ttm])) Ti (1 — T (1)) dx

+ [T = £ 52 (1) . xp(G{Jtn ) Ti (1t = Ty 1))

< /Q () exp(G ) Ti (i — Tj(um)) dx,

according to (3.2) and (3.4) we obtain :

N
g{/gafl(x,um,Vum).exp(G(\umD)VTl(um_Tj(um)) dx

"‘/Qm'Tm(”m_C)ijg%(”m)-CXP(G(|”m|))Tl(”m_Tj(”m))

</ [fm<x>+h<x>+¢<x>.’<”_m)} - exp(Glem]) T (ttm — T(atm) i,

a

!
since f,h, ¢ € L'(Q), I € L'(R)NL”(R), exp(G(£)) < exp <|H5<R)> and the fact T (u, —

Tj(m)) — 0 is weakly in W, (Q) as j — oo ( proposition 3.1.3 ). We have :

|70+ 8001+ 000 "2 | exp Gl i 7)) i — O = =
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then,
N
Z /Q 07" (X, tp, Vi) . exp(G(|um|)) . VTi (um) — Tj(um)) dx
i=1
+/Qm.Tm(um —-6)” .sg%(um) . exp(G(|uml)) - Ti (tm) — Tj(upm)) dx
<0
Hence,
N
lim lim / /" (X, ttyn, Vity) . Vi, dx =0,
m—eo j—reo 0 J{ QK< |<j+1}
and
lim [ m.Ty(um— &) .sg1 (uy) dx=0. (3.15)
m—e O m

Step 2 : Almost everywhere convergence of the gradient.

In this step we consider again the following test function :

v =ty + 1 xXp(G(|um|)) (T (tm) — Tic () hj(utm),
1 if {|um’ > J} )
with, 1 (um)) = 1= | Ty (um — Tj(um)) | =% 0 if {|um| > j+1},

JHT=lum| i {j <fum| <j+1},
and |Tx (up) — Tk (u)| at the same sign when u,, € {|u,,| > K} where j > K > 0 and 1 are small

enough, we obtain

N
+Z/Qb§~"(x’ s Vitm) - €xp(G(|ttm|)) (Tic (tm) — Tk (u)) hj () dx
i=1

< [ 7). exp(G ) (Ti 1) = Tc(w)) 1y ) i,
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by (3.2), (3.4) and the fact j > K > 0 we have this :

N
i_Zl/“um<K}Gim(x,TK(um)aVTK(um)).CXP(G(|Mm|)).V(TK(um)TK(M)) dx
N
X [ 0ttt Vi) . exp (Gl ) (Tic 1) = T () V()
i=1

+ /Qmj;n(”m -4)” -Sgi(“m) -exp(G(|um|)) - (T (um) — Tk (u)) - hj(um) dx

a

g/g[fm(x)+h(x)+¢(x).l(|u_m)].exp(G(um|)).(TK(um)TK(u)).hj(um)dx, (3.16)

then, by the condition ( ¢ ) in proposition 3.1.3 we have T (u,,) — Tx(u) weakly in W,;(Q), and

since f™, h(x),9 € L'(Q) we get

/Q[f’”(x)+h(x)+¢(x).l(|u_m|)].exp(G(\um|)).(TK(um)—TK(u)).hj(um)dx—>O, (3.17)

a

and
/Qm. Tn(um —C)~ -Sg#("‘m) - exp(G(|um|)) . (Tk (um) — Tg (u)) - hj(um) dx =0,
and

07" (x,um, Vity,) . exp(G(|um|)) - (Tx (um) — Tx (w)) . Vhj(up,) dx

M-
S5

X

: 1/{Q:j<u,n<j+l}

X exp(WHU(g)) i/
' a & S j<luml<j+1}

combining (3.16) — (3.18), we get

0" (x, Uy, Vity) . Vidy . exp(G(tm|)) - (Ti () — Ti (1)) dx

IN
)

0;" (X, U, Vity) . Vit dx —> 0 as j — oo, (3.18)

N
X e OF T ), VT0) - (Gt ) - ¥ Tt) ~Tic)) i < e, om),



3.1. Existence of entropy solutions in a bounded domain 85

;/Q [G?(X’TK(”m)vVTK(”m))Gim(%TK(Mm),VTK(M)) V(T (um) — Tg (w)) . exp(G(|um|)) dx
N
<= | 0o T ). V()9 (Tt ~ T @) - xp(Gl )

N
_ tz;/{umﬂ(} /" (x, Tk (um), VTk (tm)) . V(T (um) — Tk (u)) . exp(G(|um|)) dx+ €(i, j,m),

letting i, j, m tend to infinity, we have :

N
;/Q [G?(X’TK(%)vVTK(”m))_Gim(xaTK(”m)aVTK(M)) V(T (um) — Tg (w)) . exp(G(|um|)) dx

—0asm — oo, (3.19)
which is implied by proposition 3.1.1,
M(|Vuy|) — M(|Vu|)in L1(Q). (3.20)
Hence, we obtain for a subsequence :
Vu,, — Vu a.e in Q. 3.21)

Step 3 : The equi-integrability of b} (x,u,,, Vu,,).

In this step, we will show that :
b (X, thm, Vityy) — bi(x,u, Vur). (3.22)

Therefore, it is enough to show that b} (x, u,,, V) is uniformly equi-integrable. We take the follo-

wing test function :

0
V=Up+1 exp(G(\um]))/ / I(s) ds dx,
lum| J{ s>}
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we obtain :

- 0
iZI/QGi (x, tm, Vi) . V(exp(G(|um|)) /um/{|s|>/}l(s> ds dx

+ /b (%, tm, Vi) . exp(G(|um / / I(s) dsdx

Z ‘ ‘”m| {‘ ‘>J}

+/m.Tm(umC)_.sgl(um).exp(G(|um|))/| |/{| 1(5)ds d
U s|>J

—/f( .exp(G(|uml)) / / s) ds dx,
|t {|S|>J}

by (3.2) and (3.4) we get :

N
dl;/QMi(Wum\).exp(G(\umD)./ (1t dx

{lum!>Jj}

0
—&—/Qm.Tm(um—C)*.sgi um).exp(G(um]))/|um/{|S|>j}l(s) ds dx

g/g {f’"%—h(x)—irqb(x).l ’”;’"D] .exp(G(|um\))/;/{x>j}l(s) ds dx

+ 000Gl [ ) d

which implies :

0
aZ/M |Vitm|) . exp(G(|tm|)) - 1(tm) - X ju,|>j} dX < 1 /| |l(um>-%{\u,,l\>j}dX-

Therefore,

N 0

Z/ l(um).Ml-(|Vum|)dx§c‘2/ U ltm!) - X o1

i1/ { |um|>j} 179
and

0
OS/m.Tm(um—C)_.sgl(um).exp(G(]umD)/ / I(s) ds dx < c3, (3.23)
Q " RPN

and since [ € L'(R) N L*(R) we deduce that :

N
lim  sup Z/ [(Jttm]) - My(|Vit]) dx = 0,
NYi=1/{ luml}

jﬁmme{ 1,...7

by (3.19) and (3.13) we conclude (3.12)
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Step 4 : Passing to the limit.

Let @ € W) (Q) NL>(Q) we take the following test function :

V:“m_nTj(”m_(P)v

and || = [|@lle0 < |t — @[ < j. Then, {|un — @[ < j}  {|um| < j+ |||} we obtain :

Z/ x umgvum) VT dx-l—Z/ bm x umavum T( Um (p) dx
i=1

+/Qm-Tm(um_C)_-Sgé(um)'Tj(um_(p) dx
g/ﬂf’”(x).Tj(um—fp) dx,

which implies that :

N
Z/ Gim(x7um7vum).VTj(um_(p) dx
i=1
_Z/ " Tl (), Vi )1 (1)) = 67" (2, Ty g (ttm), V)]
i=1

X VTiy)jg.tm = @) - X{ ju,—o|<)} 4X

N
+) /Q 67" (%, Tj (o)l (1m), VO) VT4 g1 (thin — @) - X o)< j} 4
i=1
by Fatou’s Lemma we get :
N
lim 1an/Q 07" (%, T gl (m), VO) VT )1 (U — @) - X{ ju—o| <} 4%
1
= Z/QG,-'"()G Tig)g)).. (), VO) VT i jjg)l.. (U= Q) - X{ju—p]<j} 4X,
and the fact that

07" (%, Tt (o). tm), VI 1 lg||.. (1m)) AZG % Tyl () VT4 gl (1),

i=1

=

(3.24)

weakly in W, (Q). And since Tj(u,, — @) — T;(u— @) weakly in W,;(Q), and by (3.21) we obtain :

i/ﬂb (6, ttm, Vi) Tj (um dx—)Z/b (x,u,Vu) Tj(u — @) dx,

i=1
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and

|0 T = @) dx — [ FTu— ) .

which completes the proof of Theorem 3.1.2. O

Remark 11. For the demonstration of the uniqueness solution to this problem (&) in unbounded
domain is obtained in [26] with the operator b;(x,u, Vi) : Q x R x RN — R are strictly monotonic,
at least for a broad class of lower order term, and in [28] with the operator b;(x,u,Vu) : Q x R x
RN —s Rfori=1,--- N are contraction Lipschitz continuous functions which do not satisfy any

sign condition, and

N
Y [0i(x,&,VE) —0;(x, &, VE) | .(VE—VE) dx > 0.

i=1
3.1.4 appendix

Let

A" Wiy (Q) — (W ()

s (0 (u), v) :/Q

N
and let denote Ly;(Q) = HLM,- (Q) with the norm :
k=1

=

(G{”(x,u,Vu) gx—i—bm(xu Vu). )dx /fm v dx,

i=1

N
1Vl = X villize  v= (1 vv) € Liz(Q).
i=1

Where M;(t) are N-functions satisfying the Ay —conditions.

Sobolev-space W, (Q) is the completion of the space C;*(Q2).

Gm(x7s,§) = (Glm(xﬂgvg)?'” 76](?(%&&))7

and

bm(x7s>é):(brln(xvsvé)>"' m(xs 5))
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Let’s show that operator 2™ is bounded. So, for u € WA}(Q), according to (1.9) and (3.5) we get :

N
167 (x,u, Vi) |10 = Y I 07" (6,10, Vo) ||, (o
i=1

<Z/M "(x,u,Vu))dx+N

<a(Q).[[M(u)

Further, for 6 (x,u,Vu) € L3,(Q), v € W) (Q) using Holder’s inequality we have :

| (A" (), v)a| <2 0™ (x,u, Vu) ||LM(Q) : ||V||V°VA[1(Q)

+2(1 6 (x,u, Vi) |y @) -1V sy + €0 1V i -

Thus, 2" is bounded.

And that ™ is coercive. So, for u € W (Q),

N du
U)o :Z/Qcyim(x,u,Vu £ dx—i—Z/ b7 (x,u,Vu) . u™ dx
i=1 i

—/Qfm(x).udx.

Then,

TP Y F

Nl — Hullpq)

Ju
Mi< afxf

)dx—cl—co
ax, )dx /fm ]
2%.[(5(9)—cz).;/§zm<

According to (1.18) we have for all £ > 0, do > 0 such that :

bi(!uxi|)>kbi<’”""|), i=1,---,N.

||t |31,

We take ||uy, [|[mo>a i=1,---,N.

Suppose that || u,, ||W ) — 0as j — eo, we can assume that :

llad, o+ -+ [l llagy. 0 > N 00,

0
a—;ti )dx—co—cl—q].

(3.25)

(3.26)
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According to (1.9) for ¢ > 1, we have :

|l [b([u![) < eM(u),

then, by (1.8) we obtain :

<m<e~‘>,uf>92 —cz ¥ [ (‘3 )dx— Gt
N ¢4
> £ = /|uf 16(Jud |) dx—
N o
Z(a( Lk § ) o 1 | ) 3
CNH”x,HM i=1 H“x,HMQ N oo

Z(d( —Cz / ( o, | )dx— cs
e, ||, Nao

S (d(Q)—cz) k_ ,
- cN NOCO

which shows that 2{ is coercive because k is arbitrary.
And finally that 2l is pseudo-monotonic. Following up this assumption and since the space WA},(Q)

is separable, then 3(u/) € CJ(Q) such as :

w — uin W (Q), (3.27)
and
A(w) = yin (Wy(Q))'; (3.28)

according to (3.27), we have for all subsequences denoted again by u/,
HMJHW1 <c, jEN.

Then (#/)jen is bounded in Wy, (Q), and since W},(Q) is continuously and compactly injected
into Ly (), we have that

w — uweakly in Ly (Q),

W —uae. inQ, jeN,
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and according to (3.21), we have :
o/ (x,u!,Vu') — o (x,u,Vu) a.e.in Q, j €N,

and

67 (x,u’, V') — b7 (x,u,Vu) a.e.in Q, j €N,

and

m. T — )" .sg1 () —sm. Ty(u—&) .sgi(u)ae. inQ, jeN,

m

from (3.27) and (3.28), there exist ™ in Ly;(Q2) such as :

o (x,u’,Vu') — 6™, j €N,
and there exist b in Ly;(Q) such as :

b (x,u’, Vi) — 8™, j € N.
By (3.15) it is clear that for any v € W\ (Q), we get :

= lim Z/ u] Vuf .Vvdx—+ lim Z/ b (x u’ Vuf vdx

j—reo j—reo
:/6m.Vvdx—|—/5m.vdx
Q Q

whereof :

lim sup (A(u'),u/) = hm sup{Z/ x,ul,Vu!) Vil dx

J—ree

—i—hmZ/b’”xu] Vuf)ufdx}</ mVujdx+/5”’ujdx.
Q

Joreo

By (3.30), we have :
/bm(x,uj,Vuj)uj dx — / 0" u dx.
Q Q

Consequently,

lim sup Z/ o (x,u’, Vu') V! dx < / 6" Vi dx.
b o) Q

J—reo

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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On the other hand, we have by the condition of monotony :

(07" (x,u!, V! ) — 0" (x,u’,Vu) ) . V(! —u) >0,

=

I
—_

which implies

=

Il
—_

then,

=

—_

i=1 i=1

and by Step 2, we get :

=

l
_

i=1

according to (3.29), we obtain :

lim ian / Xl Vi) Vil dx > [ &7l dx.
Jree Q

Therefore, from (3.34), we have :

]131010121/ M (x,ul,Vu') Vufdx—/ 6™ .V dx,
according to (3.31), (3.33) and (3.36) we get :
(A(u!),u’) — (y,u) as j— oo.
Hence, from (3.37), and (3.21) we obtain :
j—so0

By (3.31) we can conclude that

(v,u) = (), 1) Ve Wy(Q).

(0;(x, T (u!), V') — 6i(x, T’ (u!),Vu)).V(u/ —u) >0,

N
ci(x, Ty (u!), Vi) — Z 0i(x, T,,(u), Vu) in Ly;(Q),

llmZ/ (x,u/, V') — " (x,u’,Vu)). V(' — u) dx = 0.

(3.35)

N N
oi(x, Ty (u),Vu') . Vu! > ZG,-(x, Tu(w),Vu) .V —u) + ZGl-(x, Tn(w),Vu!) . Vu,

(3.36)

(3.37)
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3.2 Existence and Uniqueness of entropy solution in unbounded do-

main
3.2.1 Introduction

Let @ be an arbitrary domain of RV, (N > 2). In this section, we investigate the existence and

uniqueness solution of the following problem

where, A(u) = i(ai(x,u,Vu) )x; is a Leray-Lions operator defined on W4 (@) ( is defined as the
adherence spacé:é'g’(a)) ) into its dual, B(t) = (B;(t),---,Bn(t)) are N-uplet Orlicz functions that
satisfy A, —condition, the obstacle y is a measurable function belongs to L*(®) N W, (), and for
i=1,---,N, bi(x,s,E) : ® x Rx RY — R are Carathéodory functions ( measurable with respect to
xin @ for every (s, &) in R x RN and continuous with respect to (s, &) in R x RM for almost every x

in @ ) does not satisfy any sign condition and the growth described by the vector N-function B(z).

Aswellas f € L' (w).

We recall that in the last few decades a tremendous popularity has achieved the investigation of
a class of nonlinear unilateral elliptic problem due to their fundamental role in describing several
phenomena such as the study of fluid filtration in porous media, constrained heating, elastoplasticity,
optimal control and financial mathematics and others, among these large numbers of mathematical

articles, see [14, 19, 23, 45] for more details.

When Q is an unbounded domain, namely without expecting any assumptions on the behaviour
when |x| — +oo, Domanska in [51] was investigated the well-posedness of nonlinear elliptic

systems of equations generalizing the model equation

=Y (lus ()17, (1), + () [P 2u(x) = £ (),

with corresponding indices of non-linearity p; > 1 (i = 0,n). In [22] Bendahmann et al., were

solved the problem (&) with b(x,u,Vu) = div(g(u)) and g(u) a polynomial growth like u? in
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LP-spaces. For more outcomes concerning the existence of solutions of this class in the Lebesgue

Sobolev spaces, we quote [36]. And [26, 28, 29, 48, 72, 74-76] for the classical anisotropic Space.

The oddity of this section, is to continue in this direction and to show the existence and unique-
ness of entropy solution for equations () governed with growth and described by an N-uplet of
N-functions satisfying the A, —condition, within the fulfilling of anisotropic Orlicz spaces. Besides,
the challenges coming about due to the absence of some topological properties like the density of

bounded or smooth functions.

3.2.2 Statement of the problems

Suppose they have non-negative measurable functions ¢, ¢ € L' (®) and &, @ are two constants

positive such as for & = (&;,---,&y) € RV and &' = (&,,---, &) € RY we have

!

[ai(x,5,8) —ai(x,5,E)] . (& — &) >0, (3.38)

=

Il
—

M=

ai(x,s,é).é,‘zd. Bi(’§i|)—¢()€), (3.39)

Il
—_
Il
_

N
|ai(x,5,&)| <a Y. B 'Bi(|€]) + (), (3.40)
1 i=1

M=

and
N

N
;!bi(x,s,éﬂ < h(x)+1(s). ;Bioé\), (3.41)

with B(t) are the complementary function of B(t), h € L' (@) and [ : R — R a positive continuous

function such that I € L' (@) NL>(w).

3.2.3 Existence of entropy solution

This part is devoted to the proofs of our main results which will be split into different steps.

For m € N*, we define the truncation at height m, 7,,(u) : R — R by

u if |u|<m,
Tn(u) =

m if |u|>m.
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Definition 3.2.1. A measurable function u is said to be an entropy solution for the problem (&), if

u € Wi (@) such that u> v a.e in @ and

N N
a;(x,u,Vu).V(u—v) dx bi(x,u,Vu).(u—v) dx
I AR {TENEIED W L CIA DRI

fgﬁfuyw—myu v e Ky ML (o),

where, Ky = {u € Wg(®)/u> yacinw}.

We have f™ —s finL'(@),m — oo, | f"(x)| < |f(x)] and for i = 1,--- ,N, @™ (x,tm, Vit,) :

(W) ()N — (WB_I (@) )N be Carathéodory functions with

a’ (x,u,Vu) = a;(x, T,y (u), Vu),

and b (X, tm, Vity) : ® x R x R¥Y — R again be Carathéodory functions not satisfying any sign

condition, with

b(x,u,V
b" (x,u,Vu) = l(x,u, u) ,
L+ [b(x,u, Vu) |
and
|b™ (x,u,Vut) | = | b(x, T (1), Vi) | < m for all m € N*, (3.42)

and for allv € WBI (w), we consider the following approximate problem

N
(Py) - Z al (x,tm, Vi) .V (thy — v) dx + Zl/w b (X, thm, Vi) . (U — v) dx
+ | m.Ty(um— )~ .sg%(um).(um—v) dx = /wfm(x).(um—v) dx,

with sg,(s) = T’"ngs).

Theorem 3.2.1. Assume that conditions (3.38) - (3.41) and (2.17) hold true, then there exists at

least one solution of the approximate problem ().
Proof. See appendix. O

Theorem 3.2.2. Under assumptions (3.38) - (3.41), the problem (&) has at least one entropy

solution.

N g1\ ¥
Proof. LetR>0and ®(R) ={x€ ®:|x| <R}.Noteby h(r) = (H ! t( )) and we assume
i=1
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Uh(z
that / (t> dt converge, so we consider the N-functions B*(z) defined by
0

Izl h
CORICE R

0 t

Lemma 3.2.1. [72] Let u € W} (w(R)). If

then, Wi (@(R)) C Lg-(®(R)) and ||u
If

5 o® < "5l o)

*h
/ ﬁdt<oo,
1

t

o . o0 h t
them, WH(0(R)) € Lu(@(R)) and |1ty < B0l oy with B= [ " d
Step 1 : A priori estimate of { u,, }.

Let v = u, — 1N exp(G(um)) - Ti(m — vo) ™ where G(s) = /
0

U(1)

a

(3.43)

(3.44)

dt, k> 0 and n > 0, we have

Ve Wl} (Q) and for 1 small enough we deduce that v > y. Thus v is an admissible test function in

(Pm) and we get for all vy € Ky NL*(Q) that

N
Z/ @l (X, tm, Vi) .V (exp(G(un)) - Ti(ttm — vo) ™) dx
i=1
+Z / B (%, s Vi) - exp(G 1)) - Tit — vo) " dlx
—1—/ m. Ty ( .sg)n;(um).exp(G(um)).Tk(um—vo)+ dx

/f . exp(G(up)) . T (um —vo) T dx,

then,

a

Z/ m )C Mm,vum> Vu,, . l(l/l_ ) eXp(G( )).Tk(um—v0)+ dx

—1—2/ x Mm,vum) eXP(G(“m)) VTk( _VO) dx

—1—/ m. T ( .sg%(um).exp(G(um)).Tk(um—v0)+ dx

=< ;/wIbi-"(x,um,m)|-eXp(G(um)).Tk(um—vo)+ dx+/wfm(x).exp(G(um)).Tk(um
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by (3.39) and (3.41), we obtain

N
y / @7 (%, i, Vi) . exp(Gttm)) . VTt — vo) ™ dix
=17/@

+/wm.Tm(um — ) 581 (1) . exp(Glun)) Tt — vo) * dx

< /w [A(x) + f™(x) + ¢ (x). l(uc_lm)] . exp(G(up)) . Ti(um —vo) ™ dx,

SO,

N
Z/ ai (X, tm, Vi) . Vi, . exp(G(up,)) dx
=1 {lum*VO‘Sk}

i/ i'( ) -2 p(G(um))
c al'(x,um, Vi) . .exp(G(uy,)) dx
y {l P— ‘<k} 1 m m c m

+ /wm.Tm(um — ) 581 (1) . xp(Glun)) Tt —vo) * dx

< /w [A(x) + f™(x) + ¢ (x). l(uc_lm)] . exp(G(up)) . Ti(um —vo) ™ dx,

where, c is a constant such that 0 < ¢ < 1, and since h, f™, ¢ € L'(®) we deduce that

N
Z/ ai (X, up, Vity,) . Vity, . exp(G(up,) dx
{|um7V0 ‘<k}

+ /w . Tt — )58 1 (1) exp(Glt)) - Tty —vo) * dix

N Vg Vg
<-—c / [a;" Xy, Vi) — a7 (X, tty, —) | . V(g — —) . exp(G(up)) dx
Y | ) = e 20 | = T2 exp(Glo)
+c Z/ (X, thy Vi) . Vi, . exp(G(up,)) dx
‘”m_"0|<k}
N VV() VV()
ey | st~ ) |-Vt = )| exp(Glun) dix-+ 1,
{lum—vo|<k} ¢ ¢
by (3.38)

N
(1-0} / @ (3, t, Vit) - Vit exp(Glum)) dx
{|”m_"0 ‘<k}

+/wm.Tm(um — ) 581 (i) . xp(Glutn)) . T —vo)* dx

N
<c / al'(x,u
Z {\umfvo|<k}’ 7t

+CZ/ |a" (x, upy, —

{]ttm—vo |<k}

00 | ] exp(Glun) d

VVO

Vv
‘ O\ exp(Gum)) dx+c1,
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. !
since @ € Wi (®), and by (1.4), (3.40), (1.2) and the fact that exp(G(£o)) < exp (”2]@) we

have

(1—¢) Z/ (2, Uy Vi) . Vit dx + m.Tm(um—l//)*.sg%(um) dx

‘“m—VO ‘<k} {| Um—V0 ‘20}

a(l—c)

< / B;(Vuy,) dx+cy(k) .cq,
2 l; {tm—vo | <k} (Vitn) (k)1

where, ¢ (k) is a positive constant which depends only on k.

Finally, by (3.39) we obtain

N
y / Bi(Vuy) dx < 3.k, (3.45)
i=1 7 {lm—vo |<k}

and

OS/ m. Tyt — W)~ .sg1 (up) dx < cy. (3.46)
{ltm—vo|>0} m

Similarly, taking v = u,, — 1. exp(G(upm)) - T (4, — vo)~ as a test function in (Z7,,), we obtain

N

Z{/ﬂ)af”(x,uWVum).V(exp(G(um)).Tk(um—vo))dx
+Z/b %, s Vit - exp(=Gum)) - T (1t — v0)~ dix
+/m Tt — ) 581 () - exp(—Glt)) . T (1t — v0)

/f .exp(—G(up)) . Te(tm —vo)~ dx,

and using same techniques, we obtain also

N
Y / Bi(Vuy,) dx < ¢4 .k, (3.47)
{ um—vo| >k}

and

OS/ m. Tyt — W)~ .5g1 (Up) dx < cs. (3.48)
{‘um_V0‘<0} "

And by (3.45), (3.46), (3.47) and (3.48) we conclude that
/ B(VTi(u)) dx < c .k, (3.49)
Q

with ¢3, ¢4, c5, g are positive constants. OJ
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Step 2 : Almost everywhere convergence of { u,, }.

Firstly we prove that meas{x € ® : |u, | >k} — 0.

According to Lemma 3.2.1, we have

| Tic(um) |3+ < || VTi(um) || 5

<c.e(k) / B(VTi(u)) dx

0]

<c.g(k).k fork>1,

with ¢ be a positive constant and €(k) — 0 when k — . By (3.50) we obtain

B*<W>mea5{xew:|uml zk}g/G)B*<HTkTI(‘IEm> dx

<[5 ()

Thus, we deduce that
k

5 (i

> — oo when k — oo
B*

Hence

meas{x € @ : |uy| >k} —0ask — ooforallme N.

Secondly we show that for all {u,,} measurable function on ® such that

Ti(up) € Wi (@) Vk>1,

we have

meas{x € @:B(Vuy,)>a}—0asa— oco.

In the beginning

meas{x € ®: B(Vu,,) >0} =meas{{x € o : |u,| >k, B(Vu,) > a}

U{x€ew:|uy| <k,B(Vuy,)>o}},

if we denote

glo, k) =meas{x€ @: |uy|>k,B(Vu,)>a}l,

(3.50)

(3.51)

(3.52)
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we have

meas{x € @ : |uy | <k,B(Vu,)>a}=g(a,0)—g(a,k),

then

v " - ) ’ - ) = LRy .
/{xew:um<k}B( ) dx /0 (8(05 0) —g(a k))doc<c k (3.53)

with o0 — g(a, k) is a decreasing map, then

IS

gmmg;Agmpma
jg;Aawumﬁ—gakﬂda+;lfgakﬁw
< é /O " (5(0,0) — g(atk)) dot +g(0,k), (3.54)

according to (3.53) and (3.54) we have

.k
8(0,0) < ==+ 5(0,k),
like [67] we obtain
lim g(0,k) =0
k—yo0

Hence

g(a,0) > 0as @ — oo.

We must now demonstrate the convergence almost everywhere of { u,, }

U, — u almost everywhere in @.

Let g(k) = sup,,cymeas{x € @ : |u, | >k} — 0ask — . Since ® is unbounded domain in RY,

we define

1 if x<R,

MrR(X) =4 R+1—0a if R<x<R+1,

0 if x>R+1.
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For R, k > 0, we have by (1.6)

/wB(vnR(yxy).Tk(u,,,))dxg c/ B(Vuy,) dx

{xew:|uy|<k}
¢ [ BT ) . Vne(|x]) d
(0]

<c(k,R),

which implies that the sequence { Nz(|x|) Ti(i,,) } is bounded in W (@(R + 1)) and by embedding

Theorem, for an N-function P with P < B we have
Wi (@(R+1)) = Lp(®(R+1)),
and since Ng = 1 in @(R), we have
Ne Ti(um) — v in Lp(w(R+1)) as m — oo,

For k € N*,
Tk(um) — Vi in Lp(w(R—l— 1)) as m —» oo,

by diagonal process, we prove that there is # : @ — R measurable such that u,, — u a.e in .

Lemma 3.2.2. [79] Let an N-function B (t) satisfy the Ay—condition and w,,, m > 1, and u be two
functions of Lg(®) such as

llum||p <c m=1,2,---.
Uy, — u almost everywhere in @, m — oo.

Then,

Uy — uweakly in Lg(®) as m — oo.

Hence,

meas{x € @ : |uy| >k} —> 0 when k — oo for allm € N.

Step 3 : Weak convergence of the gradient.

Since WBl (w) reflexive, then, there exists a subsequence

Ti (1) — v weakly in Wa (@), m — oo,
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and since

Wi (0) — Lp(),

we have

VTi(um) — Vi, in Lp(@) as m — oo,

since

u, — u almost everywhere in @ as m — oo, (3.55)

implies the local convergence in measure and, therefore, the local Cauchy property of u,, in measure

meas{ ®(R) : |y —u,| >k} — 0asm, n — oofor anyk > 0. (3.56)

Proving that

Vu,, — Vulocally in measure asm — co. (3.57)
For that, we use the ideas of Evans [57], Demangel-Hebey [51] and Koznikova L. M. [74, 75]. Let

0 > 0 be given. By Egoroff’s Theorem, there exists Ej  , CC Q such that

Esjoa(R) ={0(R) : |up —un| <k, B(Vup) < &, B(Vu,) < a, |un| < o,

|y | < a, |V(upm—uy)| >0}

{o(R) :|V(up—uy)| >0} c{®:B(Vuy,) >a}U{w:B(Vu,) > o}
U{@(R) : |ty —uy| >k} U{®: |up| > a}

U{o: |un] > 0} UE5 4alR).

Then, by Lemma 3.2.2 and (3.52) we obtain that

meas{ @(R) : |V(uy —u,)| > 0} <4e+measEs  (R)

+meas{ @(R) : |um —u,| >k} Vn,me N*. (3.58)

According to (3.38) and the fact that a continuous function on a compact set achieves the lowest

value, then, there exists a function 8 (x) > 0 almost everywhere in @, such as, for B(§) < o, B(&') <
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o,|s|<aandfori=1,--- N, |§i—§;\ > k, we have

/

[alr.n(x’svg) *a;‘n(xasa’é,)] '(éi*’éi) > G(X)v (3.59)

M=

Il
N

holds. Writing (£,,) twice for {u,, } and {u, } and subtracting the second relation from the first

and according to (3.42), (3.46), (3.48) and (3.55) we obtain

N
Z/ [al (x, tm, Vi) — @ (%, tn, Vitn) | .V (tyy — 1ty — v) dx = 0.

=170

Considering the following test function
V= ttyy — ty — NR(|X[) Na(|tn [) Na (|t |) exp(G(| i — un [)) T (ttm — tn).-
Further on, applying (3.59), we get

N
/ 0(x) dx < Z/ [l (x,um, Viw) — ai* (x, t, Vuay,) |
Eﬁ,k‘a(R>

i=17Es ka(R)
X V(Nr(x]) Mo (| tn |) Mo ([t [) exp(G(|tm — 4 |)) T (st — un) ) dx

N
X oy M) M) el ) xP(G 1)

x [ (%, tm, Vit) — @' (X, 0, Vitn) | .V (ty — uy) dx

= AT (x) + A7 (x),
with,
AT (x) :Z/ N&(|x]) Na (| un|) Na(|tm|) exp(G(| tm —unl))
i=1 { st —un | <k}
X [a:'n(xv vavum) _a:n(x, l/tn,VLtn)] -V(um - “n) dx,
and

N
A7 (x) :Z/ Mr([x]) Mo (| tn [) e[ ) exp(G (| tm — un )

im1 [ —un | <k}

X [a;"(x, Un, Vi) — a* (X, t, Vun)] V(uy — uy) dx.
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Since B(u) satisfy the A;—condition, then by (1.9) we have

/w B(u) dx < co || u]|5.0- (3.60)
According to Lemma 3.2.2, we get
H”mHvi/,;(w) < m e N*, (3.61)
and
[|B(Vum) |1 < c2 m e N*. (3.62)

And using (1.9) and (3.40) we have

N
[la(x,u, Vi) [|Lyw) = ; [lai(x,u, Vu) |, (o)

N
<Y [ Bilatxu Vi) de N
=170

<alBWlhotllelhot+N

< e (3.63)

Hence,

N
AT (x) = / exp(G(|lu, —u
') l; {0 tm—it | <k x| <Rt | <01, | un | <0t} P(G([tn = un]))
X [a;_n(x’ umavum) _a;n(x’ Mnavun)] -V(um — un) dx

N
/ (R+1~]x)
im=1 /{0 |ty —uy |[<k,R<| x| <R+, a< |ty | <041, <] up |[<a+1}

x(a+1—uy|).(a+1—|up|). exp(G(|um —un|))

X [a;"(x, U, Vi) — a' (x, up, Vun)] V(uy —uy) dx,

since, exp(G(£)) < exp (llnzl(m> and according to (3.61), (3.62), (3.63) and (1.10) we obtain
that

ATl(x) <ci(R, @) .k,

the same for A%’ (x) we get

AY(x) < (R, &) .k.
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Then,

/ 0(x) dx < 3(R, &) .k. (3.64)
Eé.k,a(R)

For any arbitrary 0 > 0 for fixed m and @, choosing k from (3.64) we establish the following

inequality

/ 0(x) dx < 6.
E&k,a(R)

Applying the Lemma 1.1.3, for any € > 0, we find
measEs ; 4(R) < €. (3.65)
In addition, according to (3.56), we have
meas{ ®(R) : |uy —u,| >k} < &, myn>0. (3.66)
Combining (3.58), (3.65) and (3.66) we deduce the inequality
meas{ ®(R) : |V(uy —u,)| > 8} < 6€, n,m>0.

Hence, the sequence { Vu,, } is fundamental in measure on the set @(R) for any R > 0. This implies

(3.57) and the selective convergence,
Vu,, — Vu almost everywhere in @, m — oo. (3.67)
Then, we obtain for any fixed £ > 0
VT () — VTi(u) almost everywhere in @ as m — co.
Applying Lemma 3.2.2, we have the following weak convergence
VTi(tm) — VTi(u) in Lp(®) as m — oo.

Proposition 3.2.1. Suppose that conditions (3.38) - (3.41) are satisfied and let (u,,)men be a se-
quence in W) (o (R)) such that

(@) ty — uinWi(o(R)).
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(b) @™ (x,upm,Vuy,) is bounded in Lz(®(R)).
Z/ Oty Vi) — @' (%, Vu)e) .V (U — u)e) dx — 0 as € — +oo ( )¢ the charac-
i=1

terlstlcfunctlon of Wg(R) ={x € w;|Vu| < e} ) Then,
B(| Vi |) — B(|Vu|) in L' (@(R)).
Proof. Let € > 0 fixed, and 17 > &€, then from (3.38) we have

[af' (x, tm, Vi) — @ (x, i, Vi) | .V (, — u) dx

)
IA

™=

e

I
—
3
—
=
=

IA
M=
s

[alf (x, tm, Vi) — @} (X, i, Vit) | .V (, — u) dx

Il
—_
o~
—~
=
N2

[a?"(x, U, Vidy) — a' (X, up, Vqu)] V(um —uxe) dx

[
1=
s
=

" [alf' (x,um, Vi) — af* (o, tm, Vuye) | .V (um — uxe) dx,

IA
™=
e

I
—

using the condition (c¢) we get
nligl}o;/ (@ (o, tm, Vi) — @ (X, um, Vuxe) | .V (um — uxe) dx =0,
proceeding as in [67], we obtain Vu,, — Vu, by letting € — o we get
Vuuxe — Vu.

So, since

Z/ (O, U, Vidy) . Vi, dx = Z/ O, U, Vi) — a?’ (x,um,Vuxg)] V(uy —u)e) dx
i=1

—l—Z ( )a;"(x,um,ng). (thm — u)e dx+Z/ (X, thy Vi) . Vuye dx,
i=17/0R

using (b), we have

N N
Zalm(x, U, Vi) — Zalm(x,u,Vu) weakly in (Lz(@(R)))N.
i=1 i=1
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Therefore

N
Z/ al (x,up, Vi) . Vuxgdx—>2/ (e, u, Vi) . Vudx asm — oo, € — co.
i=17 ©(R)
So,
N
Z/ [alf' (x,um, Vi) — af* (x, tm, Vuye) | .V (um — Vuye) dx — 0 as m — oo, € — oo,
i=1/0(R)
and
N
Z/ al (x,um, Vuxe) . V(um —u)e) dx —> 0 asm — oo, € — oo,
i=1/o(R)
Thus,

lim Z/ al (x,um, Vi) . Vi, dx = Z/ " (x,u, Vu) . Vu dx,

from (3.39), and the vitali’s Theorem, we get
N
aZ/ (| Vi |) dx — / 2&2/ (| Vul) / o (x) dx.
i=1 o(R) i=1 o(R)
Consequently, by Lemma 2.6 in [12] and (3.67), we get
B(| Vit |) — B(| Vul) in Wy (@(R)),
thanks to lemma 1 ( see [72] ) and (3.67), we have

B(|Vun|) — B(|Vu|) in L' (o(R)).

Step 4 : Strong convergence of the gradient.

In this step we consider again the following test function

V =ty + 1 eXp(G(|tm|)) (T (m) — Tic(u)) 1 (|tm]) hj (um),
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1 if {[um| = j}
with, hj(um)) = 1= | Ty (tm — Tj(um)) | = § 0 if {|un| > j+1},

\j+1_’”m| if{jg‘”m|§j+l}7
and, | Ty (u,) — Ti(u)| at the same sign when u,, € { |u,,| > k} where, j > k > 0 and 1 small enough,

we obtain

N
.t i) X0t ) (7~ T00) it s )
+/wm.Tm(um—w)*.sg%(um).exp(G(\umy))(Tk(um)_Tk(u))nj(,um|)hj(um) "
N
+;/wb;?’(x,um,wm).exp(G(|um|))(Tk(um)—Tk(u))nj(|um|)hj(um) dx

< /wf’"(X)-eXP(G(IumI))(Tk(um)—Tk(u))nj(luml)hj(um) dx,

which implies,

N
Z{/wa;n(x, Uy, Vi) .V (exp(G(Jum|))) (Ti(tm) — Tic(w)) 0 (|t ]) B j () dx

_|_
™=
e

[
_

i (0, s Vitm) - xp(G([u|)) V ((Tk () = Tic(w))) M ([tm]) 1 (14m) e

ai (%, tm, Vim) - exp(G(|tm])) (Tic(um) — Ti () V11 ([ttm]) P () dic

+
™=
s

I
—_

a; (%, tm, Vi) - exp(G([tm]))) (Tic(um) — Te(w)) 0 ([tem]) VI (1tm) dx

—_

_.I_
M=
s

by (x, i, Vi) - €xp(G(|tm|)) (Tic(um) — Ti(u)) 1 ([thn]) B j () dx

|
—

_|_
s~ M=
s

+ wm-Tm(“m —y) -Sg%(”m) - exp(G(|um|)) (Te(um) — Tic(u)) 1 (|t |) 1 () dx

< /wf’"(X) - exp(G(|um|)) (Tic(um) = Tic(w)) ([ |) 2 (1tm) .,
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then,

()

a’ (x,up, Vi) . Vg, .

- exp(G(|um|)) (Tic(um) = Te(u) ) 0 ([tem]) P (1tm) dlx

1M
e

(6, Vit « xp(G (1t ])) V(i) — Ta0))) 1t (1) dix

—_

_I_
™=
s

a" (X, tm, Vi) . €xp(G(|um])) (Tic(um) — Ti () an(‘um’) hj(”m) dx

_"_
™=
s

Il
_

+
M=
s

|
—

ai" (0%, tm, Vi) - exp(G([un|))) (Tic(tm) = Ti()) 0 (|tm|) VI j () dic

A Tt = )58 1 (1) - xp(G(lum)) (Te(tm) = Tic(u)) 0 (lam]) (1) dlx
N
< [0t Vi) |- xpG ) (T tn) = T2 st )

+/wf’"(X) - exp(G(|um|)) (Tic(um) = Ti(w)) 0 ([tem]) () dx,

by (3.39) and (3.41) we get

N u
Y 309 22 exp ) (74— 40)) s ) ) i

+i [ttt Vi) xp(G ) V(o) = Tu) 1t )

+§ .t Vi) PG ) (Tet) — Te) Yy ) iy )

+§ 5t Vi) DG ) (1) = T0)) ) Vo 1) i

[ T = ) sy (). DGt ) (Tt) = To(u)) 1 ) iy 1)

si . B0t ) ] PG t])) (Telt) = 1)) 1 ) s 1) i
(i

+/w(h(X)+f’"(X)+¢(X)- ) . exp(G(|um|)) (Te(um) — Te(w) ) 1 ([em]) 2 () dx,

a

~—
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we obtain

N
Z/{I e 7 (o, Uy Vi) . €xp(G(|um|)) (VTic(um) — VTic(u)) 1 (|um|) dx
i=1 Um|=J
N
- / a;” (%, U, Vitm) NVt . (j+ 1+ ] ) . Vi (1) (|t |) exp(G(|um|)) dx
{J< um|<j+1}

+ Z, /wa;"(x, s Vit) - exp(G (i) (T ttm) — T (1)) V1, ttn]) P (1) dix

+3

i=1
—l—/wm-Tm(Mm—‘l/)_~58$(um)-exP(G(|um‘))(Tk(u1n)_77c( ))n1(|“m|) ( Unm) dx
|

/ a;' (x, tm, Vi) . Vit . exp(G(|um|)) (Ti () — Ti(u)) le(|”m|) dx
{J<lum|<j+1}

(|t |) )‘eXp(G(|umD)(Tk(um)ka(u))nj(\umD j(um) dx,

a

< [ (b + 0+ 9.
by (3.39) we get

N
g/{lumlﬁ} (%, t, Vi) . exp(G(|um|)) (VT (ttm) — VTi(1)) N (|tm|) dx

+Z/ (%, ttm, Vitm) - €xp(G(|tm|)) (Tic(ttm) — Tic(u)) V0 ([ttm]) P (4m) dx

Tt = )5 ) x0(G i) (Tit) = Toa)) 1 L) s 1) i

s/(h<x>+f (9 +6() (";’"’)) exXP(GHt)) (75 ) ~ 75 0)) 1ty ) i

/ 1+ ) VT () exp(G i) 1 (1)
{i<lum |<J+1}

/ ). exp(G(|um)) (Ti(um) — Tic(u)) (|t |) dx
J<\um|<}+l}

Ql

/ Bi(|Vum|) (j+ 1+ [um|) . VTi(u) exp(G(|um|)) 1;(|um|) dx
{U<lum|<j+1}

Ql

N
Ak
N
ARy BiVnd) (G ) (Teltn) = Tia)) 1 )

According to (3.46), (3.48) and the fact that T (i,,) — Ti. () weakly in W3 (@), and ;> 0, 1;(|un]) >

!
0, and uy, ( T () — Ti(u) ) > 0 and exp(G(Foo)) < exp <|21<R)> we deduce that,

N
Z/{I <y a;" (X, tm, Vi) . exp(G(|tm|)) (VTic(m) — VT () 0j(Jum|) dx < C(k, j,m). (3.68)
i=1 U |<
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Then,

-

Il
_

/w (a6, Tettm), VT (1)) — ai(x, Ti(m), V(1)) ]
< exp(G [t ])) (VT ) — V() ;)

N
<-X ] 08, T30, V(1)) PG 1)) | VT 10) = VT30 1)

N
—Z/ a;(x, Ti(um), VT (1)) . exp(G(|um|)) VTi(u) Nj(|um|) dx + C(k, j,m). (3.69)
i=1 7 {lum| <k}

By Lebesgue dominated convergence theorem, we have Ty (u,,) — Ti(u) strongly in V‘Vé’ 1oc(@) and
VT (i) — VTi(u) weakly in W} (®), then the terms on the right hand side of (3.69) goes to zeros

as k, j,m tend to infinity which gives

N
;/@[ai(x, Tic(um), Vi (um)) — ai(x, T (um), Vi (1)) | (3.70)

X (VTi(m) = VTi(u) ) exp(G(|um])) 1j(|tm|) dx — 0,
by Proposition 3.2.1 and diagonal process, we deduce for k — oo that
B(|Vu|) — B(|Vu|) in L' (w). (3.71)
Hence, we obtain for a subsequence
Vu,, — Vu a.e in o. (3.72)

Step 5 : The equi-integrability of b7 (x, u,,, Vuy,).

In this step we will show that

b (x,up, Vi) — bi(x,u,Vu). (3.73)

Therefore, it is enough to show that b (x, u,,, Vu,) is uniformly equi-integrable. We take the follo-

wing test function

v = ity =1 exp2G(|un|)) 0j([tm]) T (st = Tj (),
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we have

N
Z{/wa;"(x,um,wm) -V (exp(2G(|um|)) 1 ([wm|) Ti (s — Tj(um))) dx

+Z / (6t Vit « xp(2 G (1)) 15 (1)) T (1t — T3 (1))

+ / Tt — )58 1 () P (2 G (u6])) 0 [t T4 (s — T 1)

< [ 70 exp .Gt ) 1t ) Tyt — T (1))

then,

l(l ml)

™=

/a;" Xy Uy, Vi) . Vidy, . exp(2G(|um|)) nj(|um|) Ty (ttm — Tj(um)) dx
(0]

—_—

+§ /a,a?’<x7umawm>-exp<26<\umr>>V<n,-<|um|>>T1<um—T,~<um>> dx
v
—l—;/wa?'(x,um,Vum).exp(ZG(\um]))nj(]um‘)VTl(um_Tj(um))dx
—i—/wm.Tm(um—l//)f.sg%(um).exp(ZG(\um]))nj(]um\)Tl(um_Tj(um)) dx
N
< Z/ | B (x, e, Vi) | . exp(2G(Jum|)) M (|ttm]) Ti (s — Tj(um)) dx

+/f’" - exp(2G(|um|)) 0 ([tem]) T (1t — T (um)) dx,

by (3.39) and (3.41) we get

N
Z‘{/a?"(xaumwm%GXP(2G(|um\))V(nj(\um!))Tl(um—Tj(um))dx
+Z/ (X, U, Vity,) . eXP(ZG(‘“mD)77](|um‘>VTl(Mm_T (um)) dx

+/m Tn( )" 581 (um) - exp(2G([um])) Mj(|ttm]) Ty (s — Tj(um)) dx

< [ (o s <x>+¢<x>.“’“c_;"").exp<2G<|um|>>nj<|um\>n<um—n<um>>dx,
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we deduce that

N
z{/wa;‘n(x,um,Vum).exp(ZG(|Mm|))V(T]j(|um]))T1(umTj(um))dx
l N

+Z/{1<|um|<1+1}a (x, U, Vi) . Vi, eXp(ZG(|”m|))nj(\um])dx

*—]an-Yh(um-—'V)*-sg%(um)-eXP(2<?OunJ))njﬂunJ)YH(um-—7}(um))d%

< [ (@470 + o). D)

). exp(2G([tn])) 1 (16 Tt — T 1) .

Since @ (x, Uy, Vi) is bounded in W3 (@), and 1;(|u,|) > O then by (3.46), (3.48) we obtain

N
Z/ Bi(|Vity]) dx
i=1 {+1<]um] }

11l ey \ 1(Jm)
<exp (250 FR ) [ I 00 A+ )+ o). )
So, Ve > 0 3 j(&) > 0 such that
N €
\% = j i(€). .
Y/ BV dx s 5> e (.74

Let V(@(R)) be an arbitrary bounded subset for @ then, for any measurable set E C V(@ (R)) we

have

Z/B Vi) dx < Z/B IV Ti(n)]) dx + Z/ Bi(| Vi) dx (375)

{j+1<|um| }
We conclude that VE C V((R)) with meas(E) < (&), and Ty (u,) — Ti(u) in Wj (o),
N e
Z/ Bi(|VTi(um)|) dx < 3. (3.76)
—1/E 2
Finally, combining the last formulas we obtain

i/EBiGVMmD dx < € VE C V(®(R)) such that meas(E) < B(€),
=1

giving the assumed results.

Step 6 : Passing to the limit.
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Let ¢ € W) (@) N L”(w) we take the following test function

V=it — Wi Tk (um — @), Yx € 2(0),

such that

1 for (R),
Vi(x) =
0 forw(R+1)\w(R),

and [up| —[|@[|eo < |um — @[ < j. Then, {|un — @[ < j} C {|um| < j+|/@[|~} We obtain
N
Z/ a;(x, T (tt), Vi) Wi Vi (thyy — @) dx
i=1/ o(R+1)
N
+Z/ (Re1) ai(xa Tm(um)avum) Tk(”m*(P) Vy dx
=

+ Z/ bm )C l/lm,vum) Yk Tk(”m (P) dx

(R+1)

_|_/ —l//)i.sgl(um)'llfka(um_(P) dx
R+1 m

<[ T — ) dx,
o(R+1)

which implies that

N
Z/ a,-(x, Tm(“m)yvum) Y VTk(”m - (P) dx
i=1 (R+1)
N
= Z/ ai (%, Ty gl (tm); VT s gl tem) Wi Vit — @) dx
i=1/ O(R+1)

N
= Z/ [ai(x, T g (um), VT g (1)) — @i (x, T g (1m), V@) ]
i=1 7/ o(R+1)
X VT +H(P||°°( (p) X{ ‘M/11_(P|<.]} dx

i Z1’ /0)(R+1) ai(% Ty o)\ (tm), V) VT gl (thn = @) - X 0]} -

By Fatou’s Lemma we get

m—yeo

N
lim inf ). / @i (%, Tt |1 (tm), V@) VT gl (tm = @) - X{ -1} 4%
i=1/ 0(R+1)

N
= Z/ ai (X, Tj 1)) @); VO) VT o). (4 — @) - X{ju—gp|<j} dX;
i=1 o(R+1)
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and the fact that

ai(x, Tit gl Um) VTt gl (m)) = @i (X, Tjs o)1 (1), VT g)1.. (1)), (3.77)

weakly in Wj (). And since W Ti (i, — @) — Wi Ty (u — @) weakly in W) (@), and by (3.72) we

obtain
N
Z/ by (%, um, Vi) Wi T (um — @) dx — Z/ i(x,u, Vo) Wi T (u — @) dx,
i=1 (R+1) (R+1)
and
/ fm(x) Vi Tk(um - (P) dx — / f(x) Wi Tk(u — (p) dx7
we get

(R+1)

/ ai(x,u, Vu) yu VT (u — @ dx—i—Z/ ai(x,u,Vu) Ty (u— @) Vi dx
1 R+1

i=

£y [ i Vi) i Telu— @) d
i=1 R+1)

S/ J &) Wi Tie(u — @) dx.
o(R+1)
Now passing to the limit to infinity in k, we obtain the entropy solution of the problem.

3.2.4 Uniqueness of entropy solution

Theorem 3.2.3. Suppose that conditions (3.38) - (3.40) are true, and b;(x,u,Vu) : @ xRxRY — R
is strictly monotone operators at least for broad class of lower order terms. Then, the problem ()

has a unique solution.

Proof. Let u and i belongs to Ky, N L™(®) be two solutions of problem (2?) with u # i. According

with Definition 3.2.1, we obtain

al N
;/wai(x,u,Vu) NV(u—v)dx+ Zbi(x,u,Vu) (u—v) dx

i=1

g/wf(x).(u—v) dx, (3.78)
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and

=

Il
—

N
/ ai(x, @, Vi) . V(i —v) dx+ Y bi(x, i, Vi) . (i — v) dx
o i=1

< [ f(x).(@a—v)dx. (3.79)

Denote v=u— p(x)(u—i)(x) and v =i — u(x)(u — @t)(x) with
0 if x>k,

pe) =9 k- B2 x| <k,

0 if x<—k,

as test functions in (3.78) and (3.79) respectively. Using (3.38), (3.46), (3.48) and the condition of

strictly monotone for the operator b;(x,u, Vu), we substract the equations to obtain

N
Z{/w [ai(x,u,Vu) _ai(x,ﬁ,Vﬁ)] (u—a)Vu(x) dx <0.

According to (1.2), we obtain

1=
s~

. N
Bi(ai(x,u,Vu) — ai(x,i, Vi) ) dx+;/wB,-((u—ﬂ).V,u(x)) dx

IN
M=

N
/B,-(a,-(x,u,Vu)—a,-(x,LLVﬁ)) dx+2 Z/Bi(”_ﬁ) dx
@ =170

IN
o

(3.80)
Since the N-functions B; verified the same conditions and properties of B;, then by (1.6), we have
N -
Z/ Bi(ai(x,u,Vu) —ai(x,ﬁ,Vﬁ)) dx
=170

N
|B,~(a,~(x,u,Vu))|dx—cZ/ | Bi(ai(x, 8, Vi) )| dx,
=17®



3.2. Existence and Uniqueness of entropy solution in unbounded domain 117

according to (3.40), we obtain

Bi(ai(x,u,Vu) — ai(x,i,Vii) ) dx

M-
s

N
< dc;/wB,-(V(u—ﬁ)) dx

< ac||Bu—)||1.0- (3.81)
Combine with (3.80) and (3.81) we get

0<(ac+2).[[Blu—u)[1o <0

Finally, || B(u—i) ||1,o = 0, therefore u = it a.e in ®. O

3.2.5 appendix

Let $™ be the operator defined by

N N
S™(u) :;/waﬁn(x,u,Vu) dx+;/wb§"(x,u,Vu) dx+/wm.Tm(u—l//)_.sg$(u) dx

— [ ) ax

and for any v € W3 (0), u € Wj ,.(0(R)) we have
N N
(Sm(u),v):Z/ a?"(x,u,Vu).VvdijZ b (x,u,Vu).vdx
i—17 0(R) i=1/0(R)

—I—/ m.Ty(u—wy) .sgi(u).vdx— f™(x).vdx. (3.82)
o(R) m )

o(R

In order to show the result of the Theorem 3.2.1, it is sufficient to show that operator § is bounded,

coercive and pseudo-monotonic.
Let’s start by demonstrating that S is bounded. And according to (3.82), (1.10), (3.46) and (3.48)

we obtain

(S (), v) | <2110 (2, V) 15 ey - 11V iy 215" G0, Vi) gy - 11V g o

—co- 117 Iiya):
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or

=

I
—_

" V) iy < X [ Bl (V) et N,
(]

and by diagonal process we obtain
[la™ (x, 1, Vu) |5 or) < allullyiy o) @1 +N,
and by (3.42) we deduce that
b" (x,u,Vu) bounded in Lz(®)

if u with bounded support and if supp u = ®(R), then (3.82) is bounded.

Next, we will move to proving that S is coercive. By (3.46), (3.48) for any u € W3 (o),

N
.~ )dx—/w(p(x) dx+l;/wb?1(x,u,Vu).udx—/wfm(x).udx,

N
Sm Zaz/ (’gu

then

ax;

<||S:|(I::) >Z!|u!|w [“i/ < )dx—cl—co}
1 Zl /w b (x,u, Vi) .u dx,

Hqu‘Vg(w) =

using (3.42), we obtain

1 N
_— Z/ b (x,u,Vu) .udx > —2c(m).
Tl ) o

Tf:|(12[>>uuuw (5

according to (1.18) page 5, we have for all kK > 0, 3o > 0 such that

Thus,

E > dx—c —co} —2¢(m)

bi(‘ux,-’)>kbi<w>, i=1,---,N

H”x,' HB;-,(D
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we take || uy, ||, 0 > @, i=1,--- ,N. And since ® is unbounded domain, then we can assume that

||”j||v°vl;(w) — o0 as j — co. We suppose
1l W30+ + [l 1y.0 > N o

according to (1.5) we get

|/ [b(|u’|) < cB(u’)

then,

Sln J ]
<(u)u_ 2/ <' >d— 2e(m)
[/ 1) o Nao, / ox; N o
(&)
>4 Z/| bl 1) dx— <2~ 2¢(m)
cNHuleB = %
_k N
a Z/ ( ’ux” >dx—c2—2c(m),
i=1 ’ux,HBa) N oy
with ¢, = cg + ¢1. Now, by the Luxembourg norm, we have

u (x)

HujHB:inf{k>O//wB< )dxgl}

then

e e S A

15,0
Hence,

<S’"(uj),btj> S ik il le)

J — I [ole] -] o (o]
Hl’thWl(w) = CNHM HWBl(a)) Nog 20(m)—> asHu HW[}(CO)—>
B

which gives the coercivity of the operator S”.
Finally, we will end it by the demonstration of pseudo-monotonic of §”. Following up this assump-

tion, since the space W (@) is separable, then 3(u/) € C5*(w) such that
w — uin Wi (w), (3.83)

and

S"(ul) = yin (W3 (@)), (3.84)
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according to (3.83), we have for all subsequence noted again by u/,

14/ [l ) S 20 J €N

then, (u/) jen is bounded in Wy (@), and since W4 (@) is continuously and compactly injected into

Lp(@),

w — uin L(o),

thus,

W —uaeinw, jeN,

and according to (3.72) , we have
a(x,u,Vu') — a"(x,u,Vu) aein @, j €N

and

b (x,u!,Vul) — b (x,u,Vu) a.ein @, j € N,
form (3.83) and (3.84), 33" € Lz(®) such that
a(x,u’,Vu') =~ a", jeN

and 30" € Lp(®) such that

b (x,u’,Vu') =", jeN

by (3.46) and (3.48) it’s clear that for any v € W, (@), we get

N
<y,v>:1irn2/a (x,u’,Vu') Vvdx—|—11mZ/bm ul Vul) v dx
i=17®

Jj—roo
_/ q" Vvdx+/bm

hence

Jeo

lim sup (S™ (u/),u’) = 11m sup{Z/ "(x,u!, Vu') Vi’ dx
i=1

+ lim /bmxuf Vu])ujdx}</

]—>°° 0]

a"vVul dx + / " dx,
w

(3.85)

(3.86)

(3.87)

(3.88)
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by (3.86), we have
/ b (x,u!, Vul Y u! dx — / b™ u dx,
(0] (0]

consequently,
lim sup Z/ x,u, Vuf Vu! dx < / a"vu dx.
J—ree i=1 ()

On the other hand, we have by the condition of monotony,

N
Z(a;”(x?uj,vuj) —a™(x,u!,Vu)).V(u —u) >0,

which implies

then,

=

Il
—

N N
ai(x, T (u/), V') . Vu/ > Y ai(x, T (u 7, Vu). V(! —u) + Y ai(x, T(
i=1 i=1

by Step 3, we get

ai(x, T (u’),Vu) — ;a,-(x, Tu(u),Vu) in Lz(w),

M=

according to (3.85), we obtain
lim ian/ x,ul \Vul). V! dx > / ar.vu' dx,
J—ree i=1 w

therefore, from (3.90), we have

lim Z/ (x,u!,Vu') . Vu/ dx = / ™ Vul dx,
Jj—reo
according to (3.87), (3.89) and (3.92) we get

(S™(u!),u’) — (y,u) as j— oo.

Hence, from (3.93), and (3.72) we obtain

J—ree

lim Z/ (x,u’,Vu') — a"(x,u’,Vu)).V(u' — u)dx = 0.

(3.89)

(3.90)

(3.91)

w),Vu').Vu,

(3.92)

(3.93)
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By (3.87) we can conclude that

(v,u) = (S(u), u) YueWs(w).



Existence Results for double phase obstacle

problems with variable exponents

4.1 Introduction

Let Q C RY be a bounded domain with Lipschitz boundary Q. In this chapter, we introduce a
new class of the approximating problems corresponding to a quasilinear obstacle equations, which
involves a general variable exponents elliptic operator in divergence form, called double phase

obstacle operator with variable exponents, defined as follows :

§
— divA (x, Va) + ]2 = A b(x) [uP¥ 2y in Q,

(Z) Q ulx) < d(x) in Q,

u(x) =0 on dQ.

123
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Where A > 0 is a parameter, A : R x RY — RV admits a potential <7, with respect to its second

variable {, satisfying the following assumptions :

(%) The potential &7 = 7 (x,€) is a continuous function in Q x Q, with continuous derivative

with respect to §, A = de.&7 (x, €), and verifies :
(i) o/ (x,-) is strictly convex in Q for all x € Q.
(i) <7 (x,0) =0and & (x,{) = o7 (x,—(), forall (x,§) € Q x Q.
(iii) There exist positive constants ¢y, ¢, and variable exponents p(-), g(-) : Q@ — R such that for

all (x,§) e QxQ

ct[CIPWsif 4] > 1,
Ax,§).C >
ct[ClP) it g <1,

and
| CPO-Tif |E] > 1,
A(x, §)| <
Gl i (g <1,

(v) 1< p(-) < q(-) < min{N, p*(-)}, and p(-), () are Lipschitz continuous in R", satisf
p q p p q p y

q(-) 1
—~ <l+—,
p() N
where
* T2 i p(x) <N,
prx) =
o0 Jif p(x) = N,

(V) A(x,8).¢ <s(-) o (x,{) for any (x,{) € Q x Q, where s(-) : Q — R is Lipschitz continuous
and satisfies ¢(-) < s(-) < p*().
(e%) < is uniformly convex, that is, for any 0 < € < 1, there exists (&) € (0, 1) such that

lu—v| < emax{|ul, [v|} or
%(*) < 3 (1= 8(€)) (o () + 7 (x,1))

for any x, u, v € Q

(vi) ®:Q — R™ is a given function satisfy : & € L% (Q).
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(viii) w e L'(Q),w > 0aein Q, 1 < r(x) < o, and

p*(x)
(%)

Y (x) < , VxeQ,

1
r'(x)

where 7/(x) is the conjugate function of r(x), namely r(lT) + = 1 and y(-) is Lipschitz

continuous satisfy o < y(+) < p*().

(ix) l<Bx)<Bt<a,bel (Q),b>0aeinQ, | < r*(x) < o, and

rt(x)

“Erm -

B(x) <p*(x) Vxe Q.

Recently, the existence of solutions to nonlinear problems with non-homogeneous structures
have received much attention, particularly the existence of solutions to double phase problems with
variable exponents. These operators are the natural extension of the classical double phase problems
when p and g are constants. For example, the existence solutions of such problems when p = ¢ =
constant and using the surjectivity theorem, multivalued mapping Kluge’s fixed point principle and
tools from non-smooth analysis, can be found in [100-102] and the references given there.

Let us mention some relevant papers in this direction. Zhikov in [104] describe models of strongly

anisotropic materials by treating the functional
ur— / (IVul|P + pu(x)|Vul?) dx. 4.1
Q

Li, Yao, and Zhou in [78] proved the existence and uniqueness of entropy solutions and the unique-
ness of renormalized solutions to the general nonlinear elliptic equations in Musielak-Orlicz spaces.
Moreover, they also obtain the equivalence of entropy solutions and renormalized solutions. For a
deeper comprehension, we refer the reader to [18, 49, 80, 81, 87, 88] and the references therein for
more background.

Moving on to another novel aspect; the double phase problem with variable exponents that
few author consider. Ragusa and Tachikawa in [91, 93-95] and reference therein, are the first ones
who have achieved the regularity theory for minimizers of (4.1) with variable exponents. Moreover,

Zhang and Rédulescu in [103] proved the existence of multiple solution for the quasilinear equation

divA(x, Vi) + V (x)|u|*¥ 24 = f(x,u) in RV,
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which involves a general variable exponent elliptic operator in divergence form. This type of pro-
blem corresponds to double phase anisotropic phenomena, in the sense that the differential operator
has behaviors like | {92 for small |{| and like | £|P®)=2¢ for large |{| where 1 < a(-) < p(-) <
q(-) < N. We refer to other methods to solve this type of problems which can be found in the work
of Shi, Rddulescu, Repovs, and Zhang [97] and the references therein.

The novelty of this chapter is the fact that we combine several different phenomena in one pro-
blem. More precisely, our problem (&) contains : Quasilinear equation ; which involves a general
variable exponents elliptic operator in divergence form, an obstacle restriction, and double phase
operators ; the reason why it is called double phase, is that (4.1) is defined by the fact that the
energy density changes its ellipticity and growth properties depending on the point in the domain.
To be specific, its behavior depends on the values of the weight function p(-). Actually, on the set
{x € Q/u(x) =0} it will be composed by the gradient of order p(-) and on the set {x € Q/u(x) #0}
it is the gradient of order ¢(-).

To the best of our knowledge, no previous research has investigated the double phase obstacle ope-
rator with variable exponents given in the general form (2?). Besides, we address the challenges
that come about due to the non-homogeneities of the growths, and the presence of several non-linear

terms.

4.2 Properties of functionals and mains results

In this section, we begin by presenting some results that can be concluded from the previous
assumptions in the section 4.1.

e The conditions (2] ), (i) and (ii) imply that
A (x,8) <A(x,§).¢ forall (x,{) € QxQ. (4.2)
e By (%), (i) and (iii), we get

1 g 1 e [CPWLif (¢ > 1,
A0 = [ Sa(x,00) dG:/O SA(,60).00 d0 > (4.3)

o do
cl|§leW it g <1,
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e According to (iii), (4.2) and (4.3) we obtain that

cr[§P it ] > 1, |G it (] > 1,
<d(x8) <A E).C< (4.4)

cr[Cl7) it ¢ <1, 2 |Cl7) it ¢ <1,

forall (x,{) € Q x Q.
By (g) of Proposition 1.3.5, we deduce that <7 (x,Vu) is integrable on Q for all u € X. Thus,
/ o (x,Vu) dx is well defined. For u € X, it follows by (4.4) that

Q

/A(x,Vu).Vu dx+/ || %) dx
Q Q

>l (/ |Vu|p(x) dx+/ |Vu|q(x) dx—i—/ \u|a(x) dx>, 4.5)
Qn@Vu Qﬂ@%u Q

and

/A(x,Vu).Vudx—i—/ || ) dx
Jo Q

SQ(/ |%M@w+/ |wm®m+/wwﬂw>
QNPy, Qngg, Q

where ¢ and c¢; are positive constants.

Similarly, using (4.4), we get for all u € X

1
% T
/Q,Q%(x, u) abc—i—/Q () |u| ) dx

1
Zc (/ |Vl 1) dx+/ | Va7 dx—l—/ |ua *) dx), (4.6)
QNI QnNZg, Q o(x)
and
L aw
/;z%(x,Vu) dx+/ —— |u| ¥ dx
Q Q o(x)
1
<o (/ [VufP) dH/ Va1 dx+/ | dx>,
QNP Qngg, o o(x)
where,

Dy ={x€Q/|Vu(x)| > 1} and Zgy, ={x € Q/|Vu(x)| < 1}.
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Let K be a subset of X (Q) defined by
K={uecX(Q)/u(x) <®(x)fora.axcQ}. 4.7

Remark 12. (a) The set K is nonempty, closed and convex subset of X (Q).

(b) From assumption (vi) we see that 0 € K.

Definition 4.2.1. (a) We say that u € K is a weak solution of problem () if

/A(x,Vu).V(v—u) dx—l—/ |u| 724 (v —u) dx
Q Q

://'Lb(x)]u\ﬁ(")*zu(v—u) dx,
Ja

forallv € K, where K is given by (4.2).

(b) We say that u € X is a weak solution of problem () if for all ¢ € X, we have

/QA(X, Vi) Vo(x) dx+p1n/§'2(u(x) _ ()" olx) d

+/ |02 4 (x) dx:/,lb(x)|u\ﬁ<)f>*2u.<p(x) dx,
Q Q

where {p,} is a sequence with p, > 0 for each n € N such that p, — 0 when n — eo.
It is easy to prove the following lemma.

Lemma 4.2.1. If hypotheses (vi) holds, then the function I : X — X* given by

(T, @)x — /Q(u(x) — o) .o(x)dx  forallu,@€X,

is bounded, demi-continuous and monotone, where (-, -)x denotes the duality pairing between X

and its dual space X*.

Proof. From (vi), we deduce that the function ® is nonnegative. Next, according to the Proposition
1.3.5 we get that the function / is bounded, monotone and for the demi-continuous of the function /,
we consider {u, },en+ a bounded sequence in Q such as u, — u for all u € Q, we get that Iu,, — Iu

in X(Q). O

Theorem 4.2.1. Assume that 1 < B(-) < a(-) <p(-) < q(-) <min{N,p*}, | < a(-) < p*(-) ZI,E:;, A

is small enough, and hypotheses (/1) — (%), (vi), (vii) and (ix) hold. Then, the problem () pos-

sesses a weak solution.
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Proof. Tt follows that solutions of (&) correspond to the critical points of the Euler-Lagrange

energy functional J : X — R

1

J(u):/g,xz%(x,Vu) dx—i—/gazx) e dx—pn/s.l(u(x)—cb(x))*‘ dx

[ 22080 gy
/lex)\\ dx.

Lemma 4.2.2. Assume that 1 < B(-) < a(-) < p(-) < q(-) < min{N,p*}, 1 < a(-) < p*(*) g’,g;g, A
is small enough, and hypotheses (2#1) — (24), (vi), (vii) and (ix) hold. The functional J satisfies
mountain pass geometry in the sense that :

(1) J(0)=0.

(2) There exists v, & > 0 such that J(u) > 0 if ||u||x > 7.

(3) There exists u, ||u||x > v such that J(u) < 0.

Proof. (1) According to (ii) and the nonnegativity of ®, we deduce that J(0) = 0.
(2) According to Lemma 4.2.1, (vi), (vii), (ix) and the monotonicity of the function s — 5T, we

get

! u|*) x—i u(x) — d(x X
a1 dv— - [ ()~ @) a

J(u):/g.d(x,Vu) dx—{—/Q

229 B g
oA gyt a

1
2@(/ Valr® dx [ vul) dxs [ WM”M)
QNAy, QNAS, o o(x)

1 b(x) | B
—pn/g(u(x)—q)(x))"’ dx—/g/lﬁ(x)]u|ﬁ()dx

1 1 1 -
zqﬂﬁ+¢+@_)w&—A@w%‘—ﬂmNmMMuﬁ+w

Then, 31 > 0 be small enough. Which for that, we have

Ju)>6>0 for all ||u||x = 7.

(3) Let K be a real fixed, choosing Y a k-dimensional linear subspace of X such that Y; C Ci’(Bg),
which the norms on Yy are equivalent. Then, for any & > 0 given, there exists oy € (0, 1) such that

u € Y with ||u|| < oy implies |u|z~ < &. Consider the following set :

FO ={uex,: ||lul| =0}
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ForuEFéf) and 0 <t < 1, we get

J(tu) /sz%x Vtu) dx—l—/
/A (%) 17 B0
x

1
<c1—c T~ —to—1P g,
a- *  p, ’

Sl d x—pln/Q(tu(x)—cp(x))+ dx

because, by the compactness of the set F, ( ) , 36 > 0 such that

/ A b(X) |tl/l’l}(x) dXZ 9k forall u € Fc(rf)
o Bx)

Hence, since 1 < B < a~, we find € (0, 1) and &, > 0 such that

J(tu) < —g <0 forallu ¢ F(g:).
Then,
J(u) < —& <0 forall u € F,Elgk.
Which completes the proof of the Lemma. O

Lemma 4.2.3. Assume that 1 < B(-) <o) < p(-) < q(-) <min{N,p*}, 1 < a(-) < p*(*) Zl,gig, A
is small enough, and hypotheses (<)) — (o), (vi), (vii) and (ix) hold. The functional J satisfies

Palais-Smale condition.

Proof. Let {u,} be a Palais-Smale condition sequence, such that the associated sequence of real
numbers {J(u,)} is bounded, and J'(u,) — 0 in X*. For that we will demonstrate the (u,) is
bounded in X, and we will argue it by contradiction.

We suppose that ||u,||x — oo when n — o. Then, we have



4.2. Properties of functionals and mains results

131

W pnJo

ch/ A (x, Vity) + || *) dix
Q

+<;—Q;J%mw—mwﬁw

Q
! 1 Ab B 4
+ i B ) Jo (x) |1z X

- +
> o [l — 2 lunllx — 3| Junl[5 —ca,

where, c1,c2,c3 and ¢4 are positive constants.

(4.8)

Dividing both sides of (4.8) by ||u,||x and passing to the limit n — +oo with the fact that = >

BT > 1, we get 0 > oo. Which is a contradiction.

Hence, the functional J satisfies the Palais-Smale condition.

Conclusion

According to the Lemmas 4.2.2 and 4.2.3, we conclude that the problem (&) possesses a weak

solution.






Existence Results for double phase problem in
Sobolev-Orlicz spaces with variable exponents in

Complete Manifold

5.1 Introduction

Let (M, g) be a smooth, complete compact Riemannian n-manifold. In this paper, we focused

on the existence of non-trivial solutions of the following double phase problem

—div(| Va(x) P25+ ()| V() 492 V)

(2)¢ = Au@) 11O u(x) = [u() PO ulx) + flxu(x)  inM,

u=~0 on dM ,

133
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where —A,yu(x) = —div (| Vu(x) P02 Vu(x)), —Aoyu(x) = —div (| Vu(x) 1992 Vu(x)) are
the p(x)-laplacian and ¢(x)-laplacian in (M, g) respectively, A > 0 is a parameter specified later, the
function u : M — R is supposed to be Lipschitz continuous, and the variables exponents p, g €
C(M) satisfy the assumption (5.1) in section 5.2.

The perturbation f(x,u) is a Caratheodory function which satisfies the Ambrosetti-Rabinowitz type

condition :

(f1) : There exists § > p™ and some A > 0 such as for each | &t| > A we have
(04

0< / F(x, ) dvg(x) < / Floa). 2 dvy(x) aexeM,
M M B

where F(x, o) = /Oaf(x,t) dt being the primitive of f(x,a) and dv, = \/det(g;;) dx is the Rie-
mannian volume element on (M, g), where the g;; are the components of the Riemannian metric g
in the chart and dx is the Lebesgue volume element of RY.

(f2) : f(x,0) =0.
And

(f3): lim fix @)

& OW = 0 uniformly a.e x € M.
o |—

Up to this day, several contributions have been devoted to study double phase problems. This
kind of operator was introduced, first, by Zhikov in his relevant paper [104] in order to describe

models with strongly anisotropic materials by studying the functional
wr— [ (Vul? + ()| Vul?) dx,
Q

where 1 < p < g < N and with a nonnegative weight function u € L*(Q), see also the works of
Zhikov [105, 106] and the monograph of Zhikov-Kozlov-Oleinik [107]. Indeed, we can easily see
that the previous function reduces to p-laplacian if p(x) = 0 or to the weighted laplacian (p(x), g(x))
if inf p(x) > 0, respectively.
xeM

Studying this type of problems is both significant and relevant. In the one hand, we have the
physical motivation; since the double phase operator has been used to model the steady-state so-
lutions of reaction-diffusion problems, that arise in biophysic, plasma-physic and in the study of

chemical reactions. In the other hand, these operators provide a useful paradigm for describing the

behaviour of strongly anisotropic materials, whose hardening properties are linked to the exponent
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governing the growth of the gradient change radically with the point, where the coefficient pi(.)
determines the geometry of a composite made of two different materials.

The aim of this chapter, is to prove the existence of non-negative non-trivial solutions of the pro-
blem (2?) where the perturbation f(x,u) is a Caratheodory function, that satisfies the Ambrosetti-
Rabinowitz type condition. To the best of our knowledge, the existence result for double-phase
problems (&) in the framework of Sobolev-Orlicz spaces with variable exponents in complete
manifold has not been considered in the literature. The present paper is the first study devoted to
this type of problem in the setting of Sobolev-Orlicz spaces with variable exponents in a complete
manifold.

We would like to draw attention to the fact that the p(x)—laplacian operator has more compli-
cated non-linearity than the p-laplacian operator. For example, they are non-homogeneous. Thus,
we cannot use the Lagrange Multiplier Theorem in many problems involving this operators, which

prove that our problem is more difficult than the operators p-Laplacian type.

5.2 Nehari Manifold Analysis for (&)

In what follows, we note by D(M) the space of C;° functions with compact support in M.

Definition 5.2.1. u € WO1 ) (M) is said to be a weak solution of the problem () if for every

¢ € D(M) we have

(1900619972 4 5) Vo) F19-2) (V) V9(6) vy 0

_ . u(x) 40— v LO(x) dve(x

= [ 1l u(2) 60 ()~ [ 1) P02 ). 0(x) )
+ [ 7). 000 dvy(x).

The variable exponents p,q € C(M), are assumed to satisfy the following assumption :
l<q <qg"<p <p'<N. (5.1)

Then, we have

p* ' —qt (G —q).-(r"—q")

g —q pt—q (pt—q).(pm—q)

5.2)

We suppose Z—; <1+ %, and the function u : M — R} is Lipschitz continuous.

Let us consider the energy functional Jj : WO1 4) (M) — R associated to problem (<) which is
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defined by
J;L(u):/Mp()|Vu( +/Mq((;‘|v 909 dyy (x)
-/ ()\ u(x) 70 dv (x +/Mp(1x 1P vy (x)
—/MF(x,u(x))dvg(x).

And, for any u € Wol’q(x) (M) with [|u| 140, > 1, we have by (f1), (f2), (1.23), Proposition 1.4.4
0

(M)
and Poincaré inequality that

hwzéll\wuwmm@mﬁ/”ﬂwwwww%w

Pl 8
A 1
=, g 1O ) [ s )1 a9
—/F<,<»wA>
/th @) dv () + Dﬁ@fyﬁﬁAgmn“”waw

_*/| dvg /‘ d"g()

/fxu u(x) dvy(x)

Mo A 1 1
Cp+ opt PP+ oo oy g PrO W) = = Pa) (W) P () = 5Py ()

(since B > p™ from (f;), and c is the Poincaré constant).

According to the proposition 1.4.6, we have that

A 1

1 1 Mo
Iy, (M) > (Cp+ + pj + WW) pp(~)(u) - quq()(”) - pqu(-)(u)

11 Lo A1 N
> - Rt 12 _ = - q .
- (Cp+ +p+ +Dp+(c+1)p+q+> ” H qu)( ) (q +p+> ||u||W01q(x)(M)

From (5.1), we have that J; is not bounded below on the whole space Wol’q(x) (M), but it is bounded
above on an appropriate subset of WO1 4 (M) which is the Nehari manifold associated to J; defined
by

M= {u e Wy " M\ {0} : (4 (), u) = 0}.

Indeed, if we take for example X a Banach space, and J the Euler (energy) functional associated

with a variational problem on X. If J is bounded above and has a minimizer, then, this minimizer is
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a critical point of J. Therefore, it is a weak solution of the variational problem. However, in many
problems, J is not bounded on the whole space X, but is bounded on an appropriate subset of X,
which is the case of our problem.

So, it is clear that the critical points of the functional J; must lie on .4, and local minimizers on

A4, are usually critical points of J5. Thus, u € .4, if and only if

. = [ [Vu() 17 dvy(x +/u ) V() 1) dv (2
A [ ) [ dvg()+ [ 1)) v
/fxu u(x) dvg(x) =0. (5.3)

Hence, .#) contains every nontrivial weak solution of problem (&) (see definition 5.2.1). Moreo-

ver, we have the following result

Lemma 5.2.1. Under assumptions (f1) — (f3). The energy functional J, is coercive and bounded

below on Wol’q(x) (M).

Proof. Letu € A and ||u|| > 1, where ||. || is the induced norm ofW Al ( )\{0}. Then, by (5.3),
(5.1), (1.23), (f1), (f3), propositions 1.4.4 and 1.4.6, we have

) 2 = [ 19u3) P o)+ = [ ()| V)19 g

_7/| ®) g, (x) /\ )P0 v (x) /qu ) dvy(x)
7/ Vau(x) [P dvg(x)+—/ 1) Vi) 99 dvg (x)

—7/ ()[4 v, (x +[ /|Vu P dvy(x) /u Vi) 1) g (x)
) / ()1 dvg(x) + / £, u(x)) . ulx) dvy(x ] / F(x,u(x)) dvy(x)

1 1 x
> Lo <q+ - ) / V() |10 dvg(x)+A <+ q) /M\u(x)yﬂ ) dvg(x)
.
b 1) ) dvg) + [ Fsuo) )
(since B > p*, then p% > % and by (f1) we get the following inequality)

Ho P —q" g —p"
> D (et 17 < Py >pp(.)(u) +A < = >pq(.)(u) (from (1.23))

Ho P —q" —-p" + g
> P — 4 (fi P tion 1.4.6).
_DP+(c+1)P+< P )HMH + < = [lu||? ( from Proposition )

As p~ > q", then J; (u) —> +oo as [|u|| — . It follows that J;, is coercive and bounded below on
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;. O

Next, we consider the functional y : .4} — R defined by
v (u) = (I3 (), u) for all u € A

Hence, it is natural to split .4} into three part : the first set corresponding to local minima, the
second set corresponding to local maxima, and the third one corresponding to points of inflection

which defined respectively as follows
={ue M (W (), u) >0},

N ={ue M (Y, (u),u) <0}
N ={we My (u), u) =0},

Lemma 5.2.2. Under assumptions (f1) — (f3). There exists A* > 0 such that for any A € (0, A*)

we have c/lﬁo =

Proof. Suppose otherwise, that is .4;° # 0 for all A € R\{0}. Let u € .#;” such that ||u|| > 1. Then
by (5.3), (5.1), (f1) and the definition of t/lao, we have

0= (V). ) = p~ [ [Vu(o) ") dvy()+q [ po) Vo)1) v,

| / V1) [ () + [ ()| V() 1 d ()

[ 1) 1P dve(o) = [ 7). )dvg()]
+p/y D dvy(o)— [ Flvu() dvg(x)
>(p"—q") / IVul) " dv() + (g~ =) | wOIVu()[) dv, (x)
(0 =a") [ [ dv()+4" [ 7). ux) dvy
_ / F(x,u(x)) dvg(x)
(since B > p™ > g™, and by (1.1) we have ¢g© > + > ﬁ Then,by (f1)
we get the following inequality)

> (g~ ") [ BV )+ (0 —g") [ )P dvy (o).
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Then,
0= (p=g") [ ()P dve() + (g~ —q") | w(IVul) 1) dve(v).

Therefore, by Propositions 1.4.6, 1.4.8 and Theorem 1.4.2, we have

_ - _ +
0= (p~ =gl +erlg —g")lull”,

where ¢ being the constant of the embedding Theorem 1.4.2.

Hence,
||u||s<cllfff_‘q‘i))”'l"+. (5.4
Analogously :
= (aw)) < p* [ V0017 dvel) 40" [ o) Vuo) 1) v, ()
g [ Juty |- /\w )P0 (o)
/u )| Va() |99 v (x +7L/y ) dvy(x)
+/fxu x) dv(x } /qu ) dvg(x)
<(q" ") / () | Vi) [ v ()
Mpt=q7) [ ) 19 dv()+p* [ Fxu))ux) dvg ()
< (q" = p") [ 1) VU [7 vy (x)
FAP =q7) [ a0 [ dv(x)+ p* [ a0l dv, (o).
Then,

polp* =) [ VU™ (@) < (0 ") [ )1Vl dve()

< 2" =a )+ p"] [ ) dve()
By (1.23) and proposition 1.4.4 we deduce that

7l _ _ +
W_O"_IW(P+—C]+>HMHP < [l(p*—q )+p+]Hqu :
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Thus, 1
DY (c+ 1) [A(pt—q ) +pT]
o (p* —q*)
: 2P =q")  _  mwalg"—q)pt—q) _ p* : )
For A sufficiently small (), < o ) g D et o g g P T ), if we com

bining (5.2), (5.4) and (5.5) we find ||u|| < 1 for yo sufficiently large, which contradicts our
assumption. Consequently, we can conclude that there exists A* > 0 such that JIﬁO = ( for any

A€ (0,1%). 0

Remark 13. As a consequence of Lemma 5.2.2, for 0 < A < A*, we can write N), = </VA+ U,
and we define

0," = inf J 0, = inf J
A ey A ), A e, A1)

Lemma 5.2.3. Suppose that (f1) — (f3) are true. If 0 < A < A* with A* > 0, then for all u € N;*

we have J) (u) < 0.

Proof. Suppose u € Jﬁf’, from the definition of J; , we have

hMSI/WWWm%@+1/MWW@WWMﬂ

= [0 v+ [ ) 190 vy

- / F(x,u(x)) dvy(x), (5.6)
M

from (5.3) and (5.6) we have

) < == [ V) 1P dy () + = [ o) V) o)

—1[/wmw®mw+/mmwwwwmm

q-‘r

+/| ) g (x) /fxu )dvg()]

Jrl/M|u( dvg /qu x)) dvg(x)
1

11 1

< (pi — CF) . IVu(x)[PY) dvg (x) + (q *)/ 1 (x) [Vu(x) |7 dvg (x)
1o "

(o= ) [ )+ — [ s ue) dv (o)
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using Poincaré inequality and Theorem 1.4.2, we find that :

T —qg" 1 - g 1 +
<= (EZEY (L)l + o (L5 )+ L e, 6

where c; being the constant of the embedding Theorem 1.4.2.

Asu e ,/ICIJr we have

Pt [ VU dvy(0)+g" | ) V) 1) dvy

—Aq /|u )20 dve(x)+p /|u )P dvg(x) /qu ) dvg(x) >0, (5.8)

we multiply (5.3) by (—p™), we obtain

0" [ V) vy ()= p* [ VU  dvg ()
+Ap* /|u 90 dvg( /|u 17 dvg(x)
+p+/Mf(x,u(x)).u(x) dve(x) =0, (5.9

we add (5.8) to (5.9), then according to the fact that § > p™* and by (5.1) we have p™ > p% > é

Therefore, we obtain that

(" =) [ BV dvg() + 20" =q7) [ 1) () > 0.

Then, by (1.23) and Proposition 1.4.4 we get

AMp=q7) [ )1 dvex) > (0 =) [ o) Va1 dve (o)

Holp —¢q
DP+C+1P+/| |p dvg )

Hence,

ADY (VP (p*=q7) o

ullP <
il wo(r* ")

According to (5.7), we get

P =g\ /(1 ) ADP (c+1)P" (p* —q7) <q+—q) 1} .
L < |—(=—L ) (=+1). — | []ul|?".
l(u)_[ <pq+ )(0+ to(pt —q*) ey e el

Finally, for A sufficiently large, we deduce that 8,” = inf, I () <0. O
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Lemma 5.2.4. Under assumptions (fi1) — (f3). If 0 < A <A™, then for all u € #,” we have

Jy,(u) > 0.

Proof. Letu € A, . By (5.1), (f1), (5.3) and the definition of J; , we find that

uwzl/vwwwmw+éﬂmmwwwwwm

- 2 [ el g+ | - /WMV e

/u )| V(e |4 dvng/y ) dvy(x)

+/fxu %) dvg(x } /qu ) dv(x)
(q+—;L)Mu@HVMw!“d%()

+)L(p1+—ql_) [ 1u) 19 dve () /fxu u(x) dvg(x)
/ F(x,u(x)) dvg(x)
>%;—/u|wmwdw>

R / () 909 div, (x) + ;3 /M Pl u(x)) - u(x) dvg(x)

- /M F(x,u(x))dvg(x)
(since B > p*, then L > % and by (f1) we get the following inequality)
_m4-*/WuV dve(x)

2 (=) [ 1)1 o),

according to (1.23) we deduce that

S B R T BT
Jz(u)ZW(qT—pT)HMH +A(p—+—qf)\|u\| :

Since, p~ > ¢+ we have

Ho P —q" .4 —p" -
Jy (u) > : A P,
b2 (e E oA 2
Thus, if we choose A < oF (ﬁiqlgp(f;:(?),qf) — 1**, we deduce that J; (i) > 0.
It follows that 6" = inf,,. - Jy(u) > 0. O

Hence, 4 = Jlfr U Jif{ and Jlfr N JI{[ = 0, by above Lemma, we must have u € Ji{l_.
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5.3 Existence of non-negative solutions

In this section, we prove the existence of two non-negative solutions of problem (2?). For
this, we first show the existence of minimizers in JV[ and .4, for all A € (0, A), where A =

min{ A%, A** }.

Theorem 5.3.1. Suppose that (fi) — (f3) are true, then for all A € (0, ™), there exists a minimizer

ug of Jy,(u) on N such that Jy (ug ) = ;.

Proof. From Lemma 5.2.1, J;, is bounded below on .47, in particular is bounded below on Jifr.

Then there exists a minimizing sequence {u; } C Jlf’ such that

lim Jj (u, )—ueil};+Jl(u):9;<0.

n—y—+oo

Since, Jj, is coercive, {u, } is bounded in WOI 4) (M). Hence we assume that, without loss genera-

lity, w7 — ug in Wol’q(x) (M) and by the compact embedding ( Theorem 1.4.1 ) we have
" — ug in LPY(M). (5.10)

Now, we shall prove u;” — ug in W, 4% (M), Otherwise, let u ug in W, 4) (M), Then, we

have
Py (ug) < lim_inf py) (1, ), (5.11)
using (5.10) we obtain
/M|u8r|p(x)dvg _ ngmf/wﬂP dvy(x),

since (J;L (u;)), u;7) =0, and using the same technique as in Lemma 5.2.4, we get by (1.23) that

. o 1ol . 11 .
Ja(uy ) > DF e+ )7 (qT - pT)Pp(.)(un )+ 2 (]7 - qi)Pq(.)(”n )-
That is
Ho 1 1 +
JHm 7 Gy )—DP*(chl)P* (qj pj) Lm0 (i)
1 1 .
+A (7_7,) lim pq()(u:)

pt g n—ote
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By (5.10) and (5.11), we have

+ Ho i _ L +|P” L _ i +(la"
6}, >Dp+(c+1)p+ <q+ p+)||u0|| +)’(p+ qf)”u()H ’
since p~ > ¢, for ||ug || > 1, we deduce
0,;" = inf J,(u) >0,
A ue(/Vl* /l( )
which is a contradiction with Lemma 5.2.3. Hence
u,, — ug in WOI’Q(X) (M),
and
: +y +\ _ g+
Tim i (af) = T () = 6
Consequently, ug is a minimizer of J; on %*. O

Theorem 5.3.2. Suppose that conditions (f1) — (f3) are true, and for all A € (0, A**), there exists

a minimizer uy of J) on ;" such that J; (uy ) = 6, .
Proof. Since J), is bounded below on .4} and so on .4, . Then, there exists a minimizing sequence

{u, } €A, such that
lim Jy(uy) = inf Jy(u) =65 >0.

n—r+oo ueN~

As Jj is coercive, { u, } is bounded in Wol’q(x) (M). Thus without loss of generality, we may assume

that, u, — u; in WO1 40) (M) and by Theorem 1.4.1 we have
u, — uy in LPY(M). (5.12)

On the other hand, if u, € .4}, then there exists a constant # > 0 such thattu, € .4, and Jj (1, ) >

Jy (tuy ). According to (f1) and the definition of 1////1, we have
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(alrag). 1) = [ p(o) Vi ()17 () +a(x) [ o) iy () 19 (o
~2q(o) [ 1 ()9 dvo)+ p(x) [ [y ()17 v )
= | F iy () g
<p' e [ 19ug P dv)+ gt [ (] Vi 19 dvg ()

gt [ 1 (09 dv)+ 7 [y (07 dv ().

Since g~ <g' < pT, and by (1.23), propositions 1.4.4 and 1.4.6, it follows that (l//;L (tuy,tuy)) <O.
Hence by the definition of A4, tu, € ;.
Next, we show that u, — u, in WO1 40) (M). Otherwise, suppose u,, # u, in WO1 40) (M). Then by

Fatou’s Lemma we have

[ 1)1Vt (1) dvy ) < tim [ () Vi () 19 d ().

n——+oo fpg

By (5.12) we get
n——+oo

1 @ dvy@) < tim [ ()17 dv (),

and
/M\Vua(x) PD) dv,(x) < lim / |V (x) [P dvg (x).

n——+eo

Then, according the above inequalities and (f1), we obtain

Ty (tu5) < / V15 () ) v (x) / ()| Vit () ()

/‘”0 dVg /|”0 d"g()

n—r+oo
i ~ () e

2 ) 9309 a0~ 25 [ )99 o)
P _

+p+/|u"( dvg /Fxtuo dvg()]
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Hence, J) (tu, ) <inf, s (u) = 0, , which is a contradiction. Consequently

w, —> ug in W) 7™ (M) and tim J; (1) = J3 (5) = 6.

Then, we conclude that 1 is a minimizer of J, on .4, O

Theorem 5.3.3. Under assumptions (f1) — (f3) we assume that the smooth complete compact Rie-
mannian n-manifold (M, g) has property B,y (A, v). Then, there exists A such that for all A € (0, 1),

the problem () has at least two non-negative weak solutions.

Proof. Form Theorems 5.3.1 and 5.3.2, we deduce that for any A € (0,2), there exist u] € MNF
and u, € .4, suchas
J;L(u(f) = inf J;L(u) andJ;L(ua) = inf Jx(u).
Lt»EJV[r ueN;~
Then, the problem (%) has two solutions uj € 4, and uy € .4, in WO1 40) (M).By Lemma 5.2.2,
it follows that .4~ N ,/V)f = 0. Then, u, # ug . Thus these two solutions are distinct.

Next, we prove that u, and u(f are non-negative in M. For this, we introduce the truncation function

hy : M xR — R defined by

0 ifs <0,
h(x,s) =

h(x,s) ifs>0.

S
We set H (x,s) = / f(x,t) dt and consider the C' —functional
0

Jr WO1 4) (M) — R given by

M—Lux ) dv, (x H) u(x) |99 dvy (x
B = [ s IVl P dvg(0)+ [ B V) 19 )

_ /M H (x,u(x)) dvg(x).

Then, by (1.23) and proposition 1.4.6 we have for all u_ = min{0, u(x) } that

0= (U (e-), ) 2 ™ Py (Vi )+ e ey )

D (c+1

> Pp(y(u=) = [Ju— ||
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Hence, ||u_ || =0, and thus u = u... Then, by taking u = u; and u = u; respectively, we deduce

that uy, and u are non-negative solutions of problem (2?). O

Conclusion : According to the above results, we can then say that u™ are critical points of J;

and hence are non-negative weak solutions of problem (7).
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