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Abstract. The main objective of this work is to present a brief tutorial
on minimal surfaces. Furthermore, a great deal of effort was made to
make this presentation as elementary and as self-contained as possible.
It is hoped that the materials presented in this work will give some mo-
tivations for beginners to go further in the study of the exciting field of
minimal surfaces in three dimensional Euclidean space and in other am-
bient spaces. The insight into some physical systems have been greatly
improved by modeling them with surfaces that locally minimize area. Such
systems include soap films, black holes, compound polymers, protein fold-
ing, crystals, etc. The relevant mathematical field started in the 1740s but
has recently become an area of intensive research. This is due to the wide
spread availability of powerful and relatively inexpensive computers com-
bined with the preponderance of suitable graphical application software
packages. Furthermore, its anticipated use in the medical, industrial and
scientific applications have provided further impetus for research efforts
concerning minimal surfaces. It was shown that minimal surfaces do not
always minimize area. Some advantages and shortcomings of the Weier-
strass equations were highlighted. Finally, the proofs of Bernstein’s and
Osserman’s theorems were sketched out and some other improved (sharp)
versions of these theorems were presented followed by some remarks on
surfaces of finite total curvature.

M.S.C. 2010: 53A05, 53A10.
Key words: minimal surfaces; mean curvature; Bernstein’s and Osserman’s theo-
rems.
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Chapter 1

Introduction

In 1744, Euler posed and solved the problem of finding the surfaces of revolution that
minimize area. The only solution was the catenoid. After about eleven years, in a
series of letters to Euler, Lagrange, at age 19, discussed the problem of finding a graph
over a region in the plane, with prescribed boundary values, that was a critical point
for the area function. He wrote down what would now be called the Euler-Lagrange
equation for the solution (a second-order, nonlinear and elliptic partial differential
equation), but he did not provide any new solutions. In 1776, Meusnier showed that
the helicoid was also a solution. Equally important, he gave a geometric interpretation
of the Euler-Lagrange equation in terms of the vanishing of the mean of the principal
curvatures of the surface, a quantity now known, after a suggestion of Sophie Germain,
as the mean curvature [7, 11, 28].

Minimal surfaces are of interest in various branches of mathematics, science and engi-
neering. In calculus of variations they could appear as surfaces of least or maximum
area, (the surface with the least area is called the stable minimal surface). Further-
more, in differential geometry, a surface whose mean curvature is zero everywhere is
called minimal surface. In gas dynamics, the equation of minimal surface is usually
interpreted as the potential model of a hypothetical gas, which yield flows closely
approximating that of an adiabatic flow of low Mach number. This interpretation
is due to Chaplygin and has been used extensively in aerodynamic studies [3]. In
the general theory of partial differential equations, the minimal surface model is the
simplest nonlinear equation of the elliptic type. It has the defining property that
every sufficiently small piece of it (small enough, say, to be a graph over some plane)
is the surface of least area among all surfaces with the same boundary. The simplest
minimal surface is the flat plane, but other minimal surfaces are far from simple [24].
Minimal surfaces are realized in the physical world by soap films spanning closed
curves, and they appear as interfaces where the pressure is the same on either side.
Finding a surface of least area spanning a given contour is known as the Plateau
problem, after the nineteenth-century Belgian physicist Felix Plateau.

Surfaces that locally minimize area have been extensively used to model physical
phenomena, including soap films, black holes, crystalline and polymer compounds,
protein folding, etc [6]. Although the mathematical field started in the 1740s, it has
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recently become an area of intensive mathematical and scientific study, specifically in
the areas of molecular engineering, materials science, and nano-technology, because
of their many anticipated applications. Some of the areas where these phenomena are
likely to play prominent roles are; interfaces in polymers, physical assembly during
chemical reactions, microcellular membrane structures, architectural designs, etc.

Closely related to minimal surfaces are surfaces of constant mean curvature. The
definition means what it says, with the only exception that the constant is nonzero.
Constant mean curvature surfaces minimize area subject to a volume constraint. The
most famous example is the sphere, which minimizes surface area subject to the
constraint of enclosing a fixed volume. The physical realization of these type of
surfaces appear as soap bubbles and, more generally, as interfaces when there is a
pressure difference from one side to the other.

The objective of this survey is to briefly describe some of the major developments
in the field of minimal surfaces. It is pretty obvious that it will be impossible to
give a complete account of all the works that has been done in this field. In view of
this, a number of results which seem to be both interesting and representative, and
whose proofs should provide a good picture of some of the methods were presented.
Furthermore, a great deal of effort was made to make this survey as elementary and
as self-contained as possible. It is my hope that the materials presented in this work
will motivate beginners to go further in the study of the exciting field of minimal
surfaces.

The objective of the present study was achieved by dividing it into eight Chapters.
Section 1 gives a brief introduction into some of the history of the studies that have
been carried out in the area of minimal surfaces. In Chapter 2, a literature survey
of recent works on minimal surfaces are presented. Some of the basics of differential
geometry of surfaces which are relevant to this work were discussed in Chapter 3. In
Chapter 4, examples of the classical minimal surfaces, namely, the helicoid, catenoid
and Scherk’s surface were presented. These surfaces were derived by imposing dif-
ferent conditions (algebraic and geometric) on the minimal surface elliptic partial
differential equation. Since the theory of complex functional analysis is intimately
intertwined with the study of minimal surfaces, Chapter 5 was devoted to examining
the relevant portions of it. The Weierstrass-Enneper representation of minimal sur-
faces was covered in Chapter 6. It was shown in Chapter 7 that minimal surfaces do
not always minimize area. The proofs of Bernstein’s and Osserman’s theorems were
sketched out in Chapter 8 and some other improved (sharp) versions of these theo-
rems were presented followed by some remarks on surfaces of finite total curvature.
Some concluding remarks were presented in Chapter 9.

The work reported herein was graciously supported by the Nigerian Defence
Academy, Kaduna, Nigeria and the Ministry of Defence, Abuja, Nigeria. The idea
for this work grew out of a graduate course the author took in Differential Geometry.
The course was expertly taught by Professor Min Ru of the Department of Mathe-
matics, University of Houston, Houston, Texas, USA. Finally, I would like to express
my sincere thanks to my colleagues and reviewers for their insightful and constructive
remarks which led to improving this work considerably.



Chapter 2

Literature review

The bulk of the results of the research that have been done in this field may be found in
the works of Douglas [12, 13] and in the books of Rado, Courant and Osserman, [36, 10,
31], respectively. Of all the research that has been carried out in the field of minimal
surfaces, Bernstein’s work offered a perspective which was different from those of Rado
and Courant [10, 36] in that he considered minimal surfaces mainly from the point of
view of partial differential equations. Recent efforts in the study of minimal surfaces
have been in the areas of generalizations to higher dimensions, Riemannian spaces and
wider classes of surfaces. Most recent results on minimal surfaces, focusing on the
classification and structure of embedded minimal surfaces and the stable singularities
were discussed in [8]. The survey of recent spectacular successes in classical minimal
surface theory were presented by [26]. For more information on the theory of minimal
surfaces, the interested reader should consult the survey papers [19, 23, 35, 37].
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Chapter 3

The basics of differential
geometry of surfaces

What is a surface? A precise answer cannot really be given without introducing
the concept of a manifold. An informal answer is to say that a surface is a set of
points in R3 such that, for every point p on the surface, there is a small (perhaps
very small) neighborhood U of p that is continuously deformable into a little flat
open disk. Thus, a surface should really have some topology. Also, locally, unless
the point p is ”singular”, the surface looks like a plane. Properties of surfaces can
be classified into local properties and global properties. In the older literature, the
study of local properties was called geometry in the small, and the study of global
properties was called geometry in the large. Local properties are the properties that
hold in a small neighborhood of a point on a surface. Curvature is a local property.
Local properties can be studied more conveniently by assuming that the surface is
parameterized locally. Therefore, it is relevant and useful to study parameterized
patches.

Another more subtle distinction should be made between intrinsic and extrinsic prop-
erties of a surface. Roughly speaking, intrinsic properties are properties of a surface
that do not depend on the way the surface is immersed in the ambient space, whereas
extrinsic properties depend on properties of the ambient space. For example, we
will see that the Gaussian curvature is an intrinsic concept, whereas the normal to a
surface at a point is an extrinsic concept.

In this chapter, we shall focus exclusively on the study of local properties.

1. By studying the properties of the curvature of curves on a surface, we will be
led to the First and the Second Fundamental Form of a surface.

2. The study of the normal and tangential components of the curve will lead to
both the normal and geodesic curvatures. But we shall not be treating geodesic
curvature, since the objective of this report is to study minimal surfaces.

3. We will study the normal curvature, and this will lead us to principal curvatures,
principal directions, the Gaussian curvature, and the mean curvature.

9
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4. The study of the variation of the normal at a point will lead to the Gauss map
and its derivative.

3.1 Parameterized surfaces

In this chapter, we consider exclusively surfaces immersed in the affine space R3.
In order to be able to define the normal to a surface at a point, and the notion of
curvature, we assume that some inner product is defined on R3.
Unless specified otherwise, we assume that this inner product is the standard one,
that is,

(3.1.1) ⟨(x1, x2, x3) , (y1, y2, y3)⟩ = x1y1 + x2y2 + x3y3.

A surface is a map X : D → R3, where D is some open subset of the plane R2, and
where X is at least C3-continuously differentiable. Actually, we will need to impose
an extra condition on a surface X so that the tangent and the normal planes at any
point p are defined. Again, this leads us to consider curves on X.

Definition 3.1.1. A smooth curve lying on the surface X is a map t → (u(t), v(t))
with derivatives of all orders such that C(t) = X(u(t), v(t)) is a parameterized curve
in R3.

For example, the curves v → X(u0, v) for some constant u0 are called u-curves, and
the curves u → X(u, v0) for some constant v0 are called v-curves. Such curves are
also called the coordinate curves.

A parameterized curve implies u(t), v(t) have derivatives of all orders and C′(t) =
Xuu

′ +Xvv
′ ̸= 0. The definition of a surface implies that Xu, Xv are linearly inde-

pendent, so this condition is equivalent to (u′, v′) ̸= 0.

When the curve C is parameterized by arc length, s [2], we denote

dC(s)

ds
,
du(s)

ds
and

dv(s)

ds
,

by C′(s), u′(s), and v′(s), or even as C′, u′, and v′. Thus, we reserve the prime
notation for the case where the parametrization of C is by arc length.

Note that it is the curve C : t→ X(u(t), v(t)) which is parameterized by arc length,
not the curve t→ (u(t), v(t)).

Using these notations, Ċ(t) is expressed as follows:

(3.1.2) Ċ(t) = Xu(t)u̇(t) +Xv(t)v̇(t),

or simply as

Ċ = Xuu̇+Xv v̇.

Now, if we want Ċ ̸= 0 for all regular curves t → (u(t), v(t)), we must require that
Xu and Xv be linearly independent and are in the tangent space of surface, X.

Equivalently, we must require that the cross-productXu×Xv ̸= 0, that is, be non-null.
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Definition 3.1.2. A smooth surface in R3 is a subset X ⊆ R3 such that each point
has a neighbourhood U ⊆ X and a map X : D → R3, from an open set D ⊆ R2, such
that:

• X : D → U is a homeomorphism,

• X(u, v) = (x(u, v), y(u, v), z(u, v)) has derivatives of all orders, and,

• At each point Xu = ∂X/∂u and Xv = ∂X/∂v are linearly independent.

We say that the surface X is regular at (u, v) ∈ D if and only if Xu ×Xv ̸= 0, and
we also say that p = X(u, v) is a regular point of X. If Xu × Xv = 0, we say that
p = X(u, v) is a singular point of X.

The surface X is regular on D if and only if Xu × Xv ̸= 0, for all (u, v) ∈ D. The
subset X(D) of R3 is called the trace of the surface X.

Remark: It is often desirable to define a (regular) surface patch X : D → R3 where
D is a closed subset of R2. If D is a closed set, we assume that there is some open
subset U containing D and such that X can be extended to a (regular) surface over
U (that is, that X is at least C3-continuously differentiable).

Given a regular point p = X(u, v), since the tangent vectors to all the curves passing
through a given point are of the form

(3.1.3) Xu u̇+Xv v̇.

it is obvious that they form a vector space of dimension two isomorphic to R2, called
the tangent space at p and denoted as Tp(X).

Note that (Xu, Xv) is a basis of this vector space Tp(X).

The set of tangent lines passing through p and having some tangent vector in Tp(X) as
direction is an affine plane called the affine tangent plane at p. This is the projective
space PTp(X) associated to Tp(X). [41, 1]

The unit vector

(3.1.4) Np =
Xu ×Xv

|Xu ×Xv|
.

is called the unit normal vector at p, and the line through p of direction Np is the
normal line toX at p. This time, we can use the notationNp for the line, to distinguish
it from the vector Np.

The fact that we are not requiring the map X defining a surface X : D → R3 to be in-
jective may cause problems (Local injectivity might help in handling self-intersecting
surfaces). Indeed, if X is not injective, it may happen that p = X(u0, v0) = X(u1, v1)
for some (u0, v0) and (u1, v1) such that (u0, v0) ̸= (u1, v1). In this case, the tangent
plane Tp(X) at p is not well defined. Indeed, we really have two pairs of partial deriva-
tives (Xu(u0, v0) ,Xv(u0, v0)) and (Xu(u1, v1), Xv(u1, v1)), and the planes spanned
by these pairs could be distinct.
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In this case, there are at least two, for a multiple point tangent plane T(u0, v0)(X) and
T(u1, v1)(X) at the point p where X has a self-intersection. Similarly, the normal Np

is not well defined, and we really have two normals N(u0, v0) and N(u1, v1) at p.

We could avoid this problem entirely by assuming thatX is injective (homeomorphic).
Furthermore, in order to rule out many surfaces (self-intersecting surfaces) which may
cause problems in practice, we only need to restrict the domain D of X.

If necessary, we use the notation T(u, v)(X) or N(u, v) which removes possible ambi-
guities. However, it is a more cumbersome notation, and we will continue to write
Tp(X) and Np, being aware that this may be an ambiguous notation, and that some
additional information is needed.

The tangent space may also be undefined when p is not a regular point. For example,
consider the surface X = (x(u, v), y(u, v), z(u, v)) defined such that

(3.1.5) x = u(u2 + v2), y = v(u2 + v2) and z = u2v − v3/3.

Note that all the partial derivatives at the origin (0, 0) are zero. Thus, the origin is
a singular point of the surface X. Indeed, one can check that the tangent lines at the
origin do not lie in a plane.

It is interesting to see how the unit normal vector Np changes under a change of
parameters.

Assume that u = u(r, s) and v = v(r, s), where (r, s) → (u, v) is a diffeomorphism.
By the chain rule

Xr ×Xs =

(
Xu

∂u

∂r
+Xv

∂v

∂r

)
×
(
Xu

∂u

∂s
+Xv

∂v

∂s

)

=

(
∂u

∂r

∂v

∂s
− ∂u

∂s

∂v

∂r

)
Xu ×Xv

= det

(
ur us
vr vs

)
Xu ×Xv =

∂(u, v)

∂(r, s)
Xu ×Xv.(3.1.6)

where we denoted the Jacobian determinant of the map (r, s) → (u, v) by ∂(u, v)/∂(r, s).
Then, the relationship between the unit vectors N(u, v) and N(r, s) is

(3.1.7) N(r, s) = N(u, v) sign
∂(u, v)

∂(r, s)
.

We will therefore restrict our attention to changes of variables such that the Jacobian

determinant ∂(u, v)
∂(r, s) is positive.

Notice also that the condition Xu×Xv ̸= 0 is equivalent to the fact that the Jacobian
matrix of the derivative of the map X : D → R3 has rank 2, that is, the derivative
DX(u, v) of X at (u, v) is injective.

Indeed, the Jacobian matrix of the derivative of the map:
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(u, v) → X(u, v) = (x(u, v), y(u, v), z(u, v)) is

 xu xv
yu yv
vu zv

 .

and Xu×Xv ̸= 0 is equivalent to saying that one of the minors of order 2 is invertible.

That is,

(3.1.8) xuyv − xvyu ̸= 0, xuzv − xvvu ̸= 0 and yuzv − yvvu ̸= 0.

Thus, a regular surface is an immersion of an open set of R2 into R3. It is worth
mentioning that an embedding or a smooth embedding is an injective immersion
which is an embedding in the topological sense, that is, homeomorphism onto its
image.

Definition 3.1.3. Let S be an abstract surface. A differentiable map φ : S → Rn

is an embedding if φ is an immersion and a homeomorphism onto its image. For
instance, a regular surface in R3 can be characterized as the image of a surface S by
an embedding φ : S → R3. That means only those abstract surfaces which can be
embedded in R3 could be detected in our study of regular surfaces in R3.

To a great extent, the properties of a surface can be investigated by studying the
properties of curves on the surface. One of the most important properties of a surface
is its curvature. A gentle way to introduce the curvature of a surface is to study the
curvature of a curve on a surface. For this, we will need to compute the norm of
the tangent vector to a curve on a surface. This will lead us to the first fundamental
form.

3.2 The First fundamental form (Riemannian met-
ric)

Given a curve C on a surface X, we first compute the element of arc length of the
curve C. For this, we need to compute the square norm of the tangent vector Ċ(t).

The square norm of the tangent vector Ċ(t) to the curve C at p is

(3.2.1) |Ċ|2 = ⟨(Xuu̇+Xv v̇) , (Xuu̇+Xv v̇)⟩,

where ⟨⋆ , ⋆⟩ is the inner product in R3, and thus

(3.2.2) |Ċ|2 = ⟨Xu , Xu⟩ u̇2 + 2 (⟨Xu , Xv⟩)u̇v̇ + ⟨Xv , Xv⟩ v̇2.

Following the common usage, we let

E = ⟨Xu , Xu⟩, F = ⟨Xu , Xv⟩ and G = ⟨Xv , Xv⟩.



14

therefore

(3.2.3) |Ċ|2 = E u̇2 + 2Fu̇v̇ +Gv̇2.

Euler obtained this formula in 1760. Thus, the map

(x, y) → Ex2 + 2Fxy +Gy2.

is a quadratic form on R2, and since it is equal to |Ċ|2, it is positive definite. This
quadratic form plays a major role in the theory of surfaces, and deserves a formal
definition.

Definition 3.2.1. Given a surface X, for any point p = X(u, v) on X, and letting

E = ⟨Xu , Xu⟩, F = ⟨Xu , Xv⟩ and G = ⟨Xv , Xv⟩.

the positive definite quadratic form (x, y) → Ex2 + 2Fxy + Gy2 is called the First
fundamental form of X at p. It is often denoted as Ip and in matrix form, we have

(3.2.4) Ip (x, y) = (x, y)

(
E F
F G

)(
x
y

)
.

Since the map (x, y) → Ex2 + 2Fxy +Gy2 is a positive definite quadratic form, we
must have E ̸= 0 and G ̸= 0.

Then, we can write

Ex2 + 2Fxy +Gy2 = E

(
x+

F

E
y

)2

+
EG− F 2

E
y2.

Since this quantity must be positive, we must have E > 0, G > 0, and also EG−F 2 >
0.

The symmetric bilinear form ϕI associated with I is an inner product on the tangent
space at p, such that

(3.2.5) ϕI((x1, y1) , (x2, y2)) = (x1, y1)

(
E F
F G

) (
x2
y2

)
.

This inner product is also denoted as ⟨(x1, y1) , (x2, y2)⟩p.

The inner product ϕI can be used to determine the angle of two curves passing through
p, that is, the angle θ of the tangent vectors to these two curves at p. We have

(3.2.6) cos θ =
⟨(u̇1, v̇1), (u̇2, v̇2)⟩√
I(u̇1, v̇1)

√
I(u̇2, v̇2)

.

For example, the angle θ between the u-curve and the v-curve passing through p
(where u or v is constant) is given by

cos θ =
F√
EG

.
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Thus, the u-curves and the v-curves are orthogonal if and only if F (u, v) = 0 on D.

It is pertinent to mention that the coefficients, E = guu, F = guv and G = gvv of
the First Fundamental Form play important roles in many intrinsic properties of a
surface.

In curvilinear coordinates (where F = 0), the quantities hu =
√
guu =

√
E and

hv =
√
gvv =

√
G are called scale factors. They show ”how far” Xu and Xv are from

being unit vectors. Furthermore, I(u̇ , v̇) shows how far the speed on the curve is from
being unit-speed.

Remarks:

(1) Since (
ds

dt

)2

= |Ċ|2 = Eu̇2 + 2Fu̇v̇ +Gv̇2,

represents the square of the ”element of arc length” of the curve C on X, and since
du = u̇dt and dv = v̇dt, one often writes the first fundamental form as

(3.2.7) ds2 = E du2 + 2F du dv +Gdv2.

Thus, the length l(pq) of an arc of curve on the surface joining p = X(u(t0), v(t0))
and q = X(u(t1), v(t1)), is

(3.2.8) l(p, q) =

∫ t1

t0

√
E u̇2 + 2F u̇ v̇ +G v̇2 dt.

One also refers to ds2 = E du2 + 2F du dv + Gdv2 as a Riemannian metric. The
symmetric matrix associated with the first fundamental form is also denoted as(

g11 g12
g21 g22

)
where g12 = g21.

(2) As in the previous chapter, if X is not injective, the first fundamental form Ip will
not be well defined. What is well defined is I(u, v). In some sense, this is even worse,
since one of the main themes of differential geometry is that the metric properties of
a surface (or of a manifold) are captured by a Riemannian metric. We will not be
too bordered about this, since we can always assume that X injective by reducing the
study to a subdomain of D where injectivity holds.

(3) Using the Lagrange identity, |Xu|2 |Xv|2 = (⟨Xu , Xv⟩)2 + |Xu × Xv|2 for any
two vectors Xu, Xv ∈ R3, it can be shown that the element of area dA on a surface
X is given by

(3.2.9) dA = |Xu ×Xv| du dv =
√
EG− F 2 du dv.

We just discovered that, contrary to a flat surface where the inner product is the same
at every point, on a curved surface, the inner product induced by the Riemannian
metric on the tangent space at every point changes as the point moves on the surface.
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This fundamental idea is at the heart of the definition of an abstract Riemannian
manifold. It is also important to observe that the first fundamental form of a surface
does not characterize the surface.

For example, it is easy to see that the first fundamental form of a plane and the first
fundamental form of a cylinder of revolution defined by

(3.2.10) X(u, v) = (cos u, sin u, v),

are identical: (E, F, G) = (1, 0, 1).

Thus ds2 = du2 + dv2, which is not surprising. A more striking example is that of
the helicoid and of the catenoid.

The helicoid is the surface defined over R× R such that

x = u1 cos v1,

y = u1 sin v1,

z = v1.(3.2.11)

This is the surface generated by a line parallel to the xOy plane, touching the z
axis, and also touching an helix of axis Oz. It is easily verified that (E, F, G) =
(1, 0, u21 + 1). Figures 9.1a and 9.1b show a portion of helicoid corresponding to
(0 ≤ v1 ≤ 2π) and (−2 ≤ u1 ≤ 2).

The catenoid is the surface of revolution defined over R× R such that

x = coshu2 cos v2,

y = coshu2 sin v2,

z = u2.(3.2.12)

It is the surface obtained by rotating a catenary around the z-axis. It is easily veri-
fied that (E, F, G) = (cosh2 u2, 0, cosh

2 u2). Figures 9.1c and 9.1d show a catenoid
corresponding to (0 ≤ v2 ≤ 2π) and (−2 ≤ u2 ≤ 2).

We can make the change of variables u1 = sinhu3, v1 = v3, which is bijective and
whose Jacobian determinant is coshu3, which is always positive, obtaining the fol-
lowing parametrization of the helicoid:

x = sinhu3 cos v3,

y = sinhu3 sin v3,

z = v3.(3.2.13)

It is easily verified that (E, F, G) = (cosh2 u3, 0, cosh
2 u3), showing that the helicoid

and the catenoid have the same first fundamental form. What is happening is that
the two surfaces are locally isometric (roughly, this means that there is a smooth map
between the two surfaces that preserves distances locally). Indeed, if we consider the
portions of the two surfaces corresponding to the domain R × (0, 2π), it is possible
to deform isometrically the portion of helicoid into the portion of catenoid (note that
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by excluding 0 and 2π, we made a ”slit” in the catenoid (a portion of meridian), and
thus we can open up the catenoid and deform it into the helicoid). This is illustrated
in Figure 9.2.

An alternative method of deriving the First Fundamental Form is given below

The First fundamental form describes how the surface distorts length from their
usual measurements in R3. If α is a unit speed curve with tangent vector α′, then
|α′|2 = 1 = ⟨α′ , α′⟩ and we have

1 = ⟨α′ , α′⟩, ⟨(Xuu
′ +Xvv

′) , (Xuu
′ +Xvv

′)⟩
= ⟨Xu , Xu⟩u′

2
+ (⟨Xv , Xu⟩+ ⟨Xv , Xu⟩)u′v′ + ⟨Xv , Xv⟩v′

2

= Eu′
2
+ 2Fu′v′ +Gv′

2
.(3.2.14)

where the coefficients E,F and G are called the coefficients of the First fundamental
form and are given by

E = ⟨Xu , Xu⟩, F = ⟨Xu , Xv⟩ and G = ⟨Xv , Xv⟩.

We will now show how the first fundamental form relates to the curvature of curves
on a surface.

3.3 Normal curvature and the second fundamental
form

Since the cross product of two vectors is always perpendicular to each of the vectors
themselves, it follows that we can always find a unit normal vector N to the tangent
plane of a surface M parameterized by X(u, v), such that

(3.3.1) N =
Xu ×Xv

|Xu ×Xv|
.

The normal curvature in some tangent direction w is defined as follows:

Take the plane determined by the chosen unit direction vector w and the unit normal
N, denoted by P = plane(w, N), and intersect this plane with surface M . The
intersection is a curve α(s) (which we can assume is a unit speed curve). For unit
speed curves, the curvature, κ(s) is |α′′(s)|. Therefore the curvature in the normal
direction should just be the projection of the acceleration onto the normal direction.
In order words

Definition 3.3.1. For a unit tangent vector w, the normal curvature in the w-
direction is defined as

k(w) = ⟨α′′(s) , N⟩,

where the derivatives are taken along the curve with respect to s.

Lemma 3.3.1. If α is a curve in M , then ⟨α′′(s) , N⟩ = −⟨α′ , N′⟩.
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Proof. We know that α′ is a tangent vector and N is normal to the tangent plane, so
⟨α′ , N⟩ = 0. On differentiating both sides of this equation, we have

(⟨α′ , N⟩)′ = 0 =⇒ ⟨α′′ , N⟩+ ⟨α′ , N′⟩ = 0 =⇒ ⟨α′′ , N⟩ = −⟨α′ , N′⟩.

�

Remark

Again, the derivatives were taken along the curve with respect to s. To in order to
obtain N′, we again use the chain rule as follows:

N′ = Nuu
′ +Nvv

′ with u′ =
du

ds
, and v′ =

dv

ds
.

We interpret ⟨α′′ , N⟩ as the component of acceleration due to the bending of M .
Recall that we assumed that α has unit speed so that the magnitude of α′ does not
affect our measurement. By Lemma 3.3.1 and Remark 1, we have

k(w) = −⟨α′ , N′⟩,
= −⟨(Xuu

′ +Xvv
′) , (Nuu

′ +Nvv
′)⟩,

= −⟨Xu , Nu⟩u′
2 − (⟨Xv , Nu⟩+ ⟨Xu , Nv⟩)u′v′ − ⟨Xv , Nv⟩v′

2
,

= e u′
2
+ 2fu′v′ + g v′

2
.(3.3.2)

where the coefficients e, f and g are given by

e = −⟨Xu , Nu⟩,
2f = −(⟨Xv , Nu⟩+ ⟨Xu , Nv⟩),
g = −⟨Xv , Nv⟩.(3.3.3)

These are the coefficients of the Second fundamental form.

Recalling that

N =
Xu ×Xv

|Xu ×Xv|
.

and using the Lagrange identity (⟨Xu , Xv⟩)2 + |Xu ×Xv|2 = |Xu|2 |Xv|2,

we see that |Xu ×Xv| =
√
EG− F 2 and e = ⟨N , Xuu⟩ can be written as:

e =
⟨Xu ×Xv, Xuu⟩√

EG− F 2
=

(Xu, Xv, Xuu)√
EG− F 2

,(3.3.4)

where (Xu, Xv, Xuu) is the determinant of the three vectors. Some authors use the
notation

D = (Xu, Xv, Xuu), D′ = (Xu, Xv, Xuv), D′′ = (Xu, Xv, Xvv).

with these notations, we have:
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e =
D√

EG− F 2
, f =

D′
√
EG− F 2

, g =
D′′

√
EG− F 2

.

These expressions were used by Gauss to prove his famous Theorema egregium.

Since the quadratic form (x, y) → e(x2) + 2fxy + g(y2) plays a very important role
in the theory of surfaces, we introduce the following definition

Definition 3.3.2. Given a surface X, for any point p = X(u, v) on X, the quadratic
form (x, y) → e(x)2 + 2fxy + g(y)2 is called the Second Fundamental Form of X at
p.

It is often denoted as IIp. For a curve C on the surface X (parameterized by arc
length), the quantity, k(w) given by the formula

k(w) = e(u′)2 + 2fu′ v′ + g(v′)2,

is called the normal curvature of C at p. Unlike the First Fundamental Form, the
Second Fundamental Form is neither necessarily positive nor definite.

It is worth mentioning that the normal curvature at a point p on X can be shown to
be equal to

k(w) =
e(u̇)2 + 2fu̇ v̇ + g(v̇)2

E(u̇)2 + 2Fu̇ v̇ + 2G(v̇)2
.(3.3.5)

Properties expressible in terms of the First Fundamental Form are called intrinsic
properties of the surface X. Whereas, properties expressible in terms of the Second
Fundamental Form are called extrinsic properties of the surface X. They have to do
with the way the surface is immersed in R3. It is pertinent to mention that certain
notions that appear to be extrinsic turn out to be intrinsic, such as the geodesic and
Gaussian curvatures.

3.4 Principal, Gaussian and Mean curvatures

The results in subsection 3.3 will enable us define various curvatures which are relevant
to the study of minimal surfaces.

We will now study how the normal curvature at a point varies when a unit tangent
vector varies. In general, we will see that the normal curvature has a maximum value
κ1 and a minimum value κ2, and that the corresponding directions are orthogonal.
This was shown by Euler in 1760.

The quantity K = κ1 · κ2 is called the Gaussian curvature and the quantity H =
(κ1+κ2)/2 is called the mean curvature. These quantities play a very important role
in the theory of surfaces.
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We will compute H and K in terms of the first and the second fundamental form. We
will also classify points on a surface according to the value and sign of the Gaussian
curvature.

Recall that given a surface X and some point p on X, the vectors Xu, Xv form a
basis of the tangent space Tp(X).

Given a unit vector t⃗ = Xux+Xvy, the normal curvature is given by

(3.4.1) κN (⃗t) = ex2 + 2fx y + gy2,

since Ex2 + 2Fx y +Gy2 = 1.

Usually, (Xu, Xv) is not an orthonormal frame, and it is useful to replace the frame
(Xu, Xv) with an orthonormal frame. It is easy to verify that the frame (e⃗1, e⃗2)
defined such that

(3.4.2) e⃗1 =
Xu√
E

and e⃗2 =
EXv − F Xu√
E(EG− F 2)

,

is indeed an orthonormal frame. Since ⟨e⃗1, e⃗2⟩ = 0.

With respect to this frame, every unit vector can be written as t⃗ = cos θ e⃗1+sin θ e⃗2,
and expressing (e⃗1, e⃗2) in terms of Xu and Xv, we have

t⃗ =

(
w cos θ − F sin θ

w
√
E

)
Xu +

√
E sin θ

w
Xv, where w =

√
EG− F 2.

We can now compute κN (⃗t), to get
(3.4.3)

κN (⃗t) = e

(
w cos θ − F sin θ

w
√
E

)2

+ 2f

(
(w cos θ − F sin θ) sin θ

w2

)
+ g

E sin2 θ

w2
.

After a lot of trigonometric and algebraic simplifications, Equation (3.4.3) can be
written as

κN (⃗t) = H +A cos 2θ +B sin 2θ,(3.4.4)

where

H =
Ge− 2Ff + Eg

2(EG− F 2)
, A =

e(EG− 2F 2) + 2EFf − E2g

2E(EG− F 2)
and B =

Ef − Fe

E
√
EG− F 2

.

If we let C =
√
A2 +B2, unless A = B = 0, the function

f(θ) = H +A cos 2θ +B sin 2θ.

has a maximum κ1 = H+C for the angles θ0 and θ0+π, and a minimum κ2 = H−C
for angles θ0 + π/2 and θ0 + 3π/2, where cos 2θ0 = A/C and sin 2θ0 = B/C. The
curvatures κ1 and κ2 play a major role in surface theory.
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Definition 3.4.1. Given a surface X, for any point p on X, letting A, B, and H be
as defined above, and C =

√
A2 +B2, unless A = B = 0, the normal curvature κN

at p takes a maximum value κ1 and a minimum value κ2 called principal curvatures
at p, where κ1 = H + C and κ2 = H − C. The directions of the corresponding unit
vectors are called the principal directions at p.

The average H = (κ1+κ2)/2 of the principal curvatures is called the mean curvature,
and the product K = κ1 κ2 of the principal curvatures is called the total curvature,
or Gaussian curvature.

Notice that the principal directions θ0 and θ0 + π/2 corresponding to κ1 and κ2 are
orthogonal. Note that

K = κ1κ2 = (H − C)(H + C) = H2 − C2 = H2 − (A2 +B2).

After some laborious calculations, we get the following formulas for the mean curva-
ture, H and the Gaussian curvature, K:

(3.4.5) H =
Ge− 2Ff + Eg

2(EG− F 2)
,

and

(3.4.6) K =
e g − f2

EG− F 2
.

We have shown that the normal curvature κN can be expressed as

κN (θ) = H +A cos 2θ +B sin 2θ.

over the orthonormal frame (e⃗1, e⃗2). We have also shown that the angle θ0 such that
cos 2θ0 = A/C and sin 2θ0 = B/C, plays a special role. Indeed, it determines one of
the principal directions.

If we rotate the basis (e⃗1, e⃗2) and pick a frame (f⃗1, f⃗2) corresponding to the principal
directions, we obtain a particularly nice formula for κN . Since A = C cos 2θ0 and
B = C sin 2θ0, if we let φ = θ − θ0, we get

κN (θ) = κ1 cos2 φ+ κ2 sin2 φ.

Thus, for any unit vector t⃗ expressed as

t⃗ = cos φ f⃗1 + sin φ f⃗2,

with respect to an orthonormal frame corresponding to the principal directions, the
normal curvature κN (φ) is given by Euler’s formula (1760):

(3.4.7) κN (φ) = κ1 cos
2 φ+ κ2 sin2 φ.
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3.4.1 Classification of the points on the surface

Recalling that EG− F 2 is always strictly positive, we can classify the points on the
surface depending on the value of the Gaussian curvature K, and on the values of the
principal curvatures κ1 and κ2 (or H).

Definition 3.4.2. Given a surface X, a point p on X belongs to one of the following
categories:

1. Elliptic if e g − f2 > 0 or, equivalently, K > 0.

2. Hyperbolic if e g − f2 < 0, or, equivalently, K < 0.

3. Parabolic if e g − f2 = 0 and e2 + f2 + g2 > 0, or, equivalently, K = κ1κ2 = 0
but either κ1 ̸= 0, or κ2 ̸= 0.

4. Planar if e = f = g = 0, or, equivalently, κ1 = κ2 = 0.

5. A point p is an umbilical point (or umbilic) if K > 0 and κ1 = κ2. Note that
some authors allow a planar point to be an umbilical point, which we shall not
- in this report.

Comments

• At an elliptic point, both principal curvatures are non-null and have the same
sign. For example, most points on an ellipsoid are elliptic.

• At a hyperbolic point, the principal curvatures have opposite signs. For example,
all points on the catenoid are hyperbolic.

• At a parabolic point, one of the two principal curvatures is zero, but not both.
This is equivalent to K = 0 and H ̸= 0. Points on a cylinder are parabolic.

• At a planar point, κ1 = κ2 = 0. This is equivalent to K = H = 0. Points on a
plane are all planar points. On a monkey saddle, there is a planar point. The
principal directions at that point are undefined.

• For an umbilical point, we have κ1 = κ2 ̸= 0. This can only happen when
H − C = H + C, which implies that C = 0, and since C =

√
A2 +B2, we have

A = B = 0. Thus, for an umbilical point, K = H2. In this case, the function κN
is constant, and the principal directions are undefined. All points on a sphere
are umbilics. A general ellipsoid (a, b, c pairwise distinct) has four umbilics.
It can be shown that a connected surface consisting only of umbilical points is
contained in a sphere.

• It can also be shown that a connected surface consisting only of planar points
is contained in a plane.

• A surface can contain at the same time elliptic points, parabolic points, and
hyperbolic points. This is the case of a torus. The parabolic points are on two
circles also contained in two tangent planes to the torus (the two horizontal
planes touching the top and the bottom of the torus on the following picture).
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The elliptic points are on the outside part of the torus (with normal facing
outward), delimited by the two parabolic circles. The hyperbolic points are on
the inside part of the torus (with normal facing inward).

The normal curvature

κN (Xux+Xvy) = ex2 + 2fxy + gy2,

will vanish for some tangent vector (x, y) ̸= (0, 0) if and only if f2 − e g ≥ 0.

Since

K =
e g − f2

EG− F 2
,

this can only happen if (K ≤ 0).

If e = g = 0, then there are two directions corresponding to Xu and Xv for which the
normal curvature is zero.

If e ̸= 0 or g ̸= 0, say e ̸= 0 (the other case being similar), then the equation

e

(
x

y

)2

+ 2f

(
x

y

)
+ g = 0,

has two distinct roots if and only if K < 0. The directions corresponding to the
vectors Xux +Xvy associated with these roots are called the asymptotic directions
at p. These are the directions for which the normal curvature is null at p.

3.5 Surfaces of Constant Gauss Curvature

1. There are surfaces of constant Gaussian curvature. For example, a cylinder or
a cone is a surface of Gaussian curvature K = 0.

2. A sphere of radius R has positive constant Gaussian curvature K = 1/R2.

3. There are surfaces of constant negative curvature, say K = −1. A famous
one is the pseudosphere, also known as Beltrami’s pseudosphere. This is the
surface of revolution obtained by rotating a curve known as a tractrix around
its asymptote. One possible parametrization is given by:

x =
2 cos v

eu + e−u
, y =

2 sin v

eu + e−u
, z = u− eu − e−u

eu + e−u
over (0, 2π)× R.

The pseudosphere has a circle of singular points (for u = 0).

The Gaussian curvature at a point (x, y, z) of an ellipsoid of equation

x2

a2
+
y2

b2
+
z2

c2
= 1,
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has the Gaussian curvature given by

K =
p4

a2 b2 c2
,

where p is the distance from the origin (0, 0, 0) to the tangent plane at the point
(x, y, z).

There are also surfaces for which H = (κ1 + κ2)/2 = 0. Such surfaces are called
minimal surfaces, and they show up in nature, engineering and physics. It can be
verified that the helicoid, catenoid and Enneper surfaces are minimal surfaces. The
study of these type of surfaces is the main objective of this report.

Due to its importance to the study of surfaces, we conclude this chapter of the report
by stating the Theorema Egregium of Gauss without proof.

Theorem 3.5.1. Given a surface X and a point p = X(u, v) on X, the Gaussian
curvature, K at (u, v) can be expressed as a function of E, F , G and their partial
derivatives. In fact

K =
1

EG− F 2

∣∣∣∣∣∣
C Fv − 1

2 Gu
1
2 Gv

1
2 Eu E F

Fu − 1
2 Ev F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2 Ev

1
2 Gu

1
2 Ev E F
1
2 Gu F G

∣∣∣∣∣∣ ,(3.5.1)

where C = 1
2 (−Evv + 2Fuv −Guu).

When the surface is isothermally parameterized, E = G and F = 0, then the Gaussian
curvature reduces, as follows

Theorem 3.5.2. The Gauss curvature depends only on the metric E, F = 0 and G,
and has the explicit form:

K = − 1

2
√
EG

(
∂

∂v

(
Ev√
EG

)
+

∂

∂u

(
Gu√
EG

))
,

where

Ev =
∂E

∂v
=

∂

∂v
(⟨Xu , Xu⟩) and Gu =

∂G

∂u
=

∂

∂u
(⟨Xv , Xv⟩).



Chapter 4

Minimal surface equation

There is a general consensus that investigations concerning minimal surfaces started
with Lagrange [25] in 1760. Lagrange considered surfaces immersed in R3 that were
C2-differentiable functions, z = f(x, y). The Monge parametrization for its graph:
X(u, v) = (u, v, f(u, v)). For these type of surfaces, with its Monge parametrization,
the area element is given by:

dA = |Xu ×Xv| du dv =
√
1 + f2u + f2v du dv,

Hence

A =

∫ ∫
(u, v)∈ R2

√
1 + f2u + f2v du dv.(4.0.1)

He studied the problem of determining a surface of this kind with the minimum area
among all surfaces that assume given values on the boundary of an open set D of R2

(with compact closure and smooth boundary).

We can use Green’s theorem to calculate the area enclosed by closed curves in the
plane. Suppose P and Q are two real valued (smooth) functions of two variables x
and y defined on a simply connected region of the plane. Then Green’s theorem says
that; ∫ ∫

(x, y)∈ R2

(
∂P

∂x
+
∂Q

∂y

)
dx dy =

∫
D

(−Qdx+ P dy),

where the right-hand side is the line integral around the boundary D of the region
enclosed by D. Since all the integrals are pulled back to the plane for computation,
we will find Green’s theorem particularly useful.

Now supposeM is the graph of a function of two variables z = f(x, y) and is a surface
of least area with boundary D. Consider the nearby surfaces, which look like slightly
deformed versions of M :

M t : zt(x, y) = f(x, y) + tη(x, y),

25
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where η is a C2-function that vanishes on the boundary of D. Put differently, η is a
function on the domain of f with η|D = 0, where D is the boundary of the domain of
f and f(D) = D. The perturbation t η(x, y) then has the effect of moving points on
M a small bit and leaving D constant. A Monge parametrization for M t is given by

Xt(u, v) = (u, v, f(u, v) + tη(u, v)).

Therefore, the area of M is given by

dA(t) = |Xt
u ×Xt

v| du dv,

=
√
1 + f2u + f2v + 2t(fuηu + fvηv) + t2(η2u + η2v) du dv,

A(t) =

∫ ∫
(u, v)∈ R2

√
1 + f2u + f2v + 2t(fuηu + fvηv) + t2(η2u + η2v) du dv.(4.0.2)

Recall that M is assumed to have least area, so the area function A(t) must have a
minimum at t = 0 (since t = 0 gives us M). We can take the derivative of A(t) and
impose the condition that A′(0) = 0. We were able to take the derivative with respect
to t inside the integral because t has nothing to do with the parameters u and v, and
using chain rule we get

A′(t) =

∫ ∫
(u, v)∈ R2

fuηu + fvηv + t(η2u + η2v)√
1 + f2u + f2v + 2t(fuηu + fvηv) + t2(η2u + η2v)

du dv.(4.0.3)

Since we assumed that z = z0 was a minimum, then A′(0) = 0. Therefore, setting
t = 0 in Equation (4.0.3), we get

(4.0.4)

∫ ∫
(u, v)∈ R2

fuηu + fvηv√
1 + f2u + f2v

du dv = 0.

If we let

P =
fuη√

1 + f2u + f2v
and Q =

fvη√
1 + f2u + f2v

,

then compute ∂P/∂u, ∂Q/∂v and apply Green’s theorem, we get:∫ ∫
(u, v)∈R2

fuηu + fvηv√
1 + f2u + f2v

du dv +

∫ ∫
(u, v)∈R2

η[fuu(1 + f2v ) + fvv(1 + f2u)− 2fufvfuv]√
(1 + f2u + f2v )

3
2

du dv,

=

∫
D

[
fuη dv√

1 + f2u + f2v
− fvη du√

1 + f2u + f2v

]
= 0.(4.0.5)
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Since η|D = 0, the first integral is zero as well, so we end up with∫ ∫
(u, v)∈ R2

η[fuu(1 + f2v ) + fvv(1 + f2u)− 2fufvfuv]√
(1 + f2u + f2v )

3
2

du dv = 0.

Since this is true for all such η, we have,

(4.0.6) fuu(1 + f2v ) + fvv(1 + f2u)− 2fufvfuv = 0.

This is the minimal surface equation and they are given by real analytic functions.
Lagrange observed that a linear function (whose surface is a plane) is clearly a solution
for Equation (4.0.6) and conjectured the existence of solutions containing any given
curve given as a graphic along the boundary of D.

It was in 1776 that Meusnier [25] gave a geometrical interpretation to Equation (4.0.6)
as denoting the mean curvature, H = (κ1 + κ2)/2 of a surface, where κ1 and κ2 are
the principal curvatures introduced earlier by Euler. Meusnier also did more work
trying to find solutions to Equation (4.0.6) which are endowed with special properties.
For example, he solved for level curves whose solutions were straight lines as follows

First he observed that when a curve is given implicitly by the equation f(x, y) = c,
its curvature can be computed as

(4.0.7) k =
(− fxxf

2
y + 2fxfyfxy − fyyf

2
x)

|△ f |3
.

Equation (4.0.6) may be rewritten as,

(4.0.8) k |△ f |3 = fxx + fyy.

If the level curves of f are straight lines, then k ≡ 0, and f is a harmonic function;
that is, f satisfies the equation

(4.0.9) △ f =
∂2f

∂x2
+
∂2f

∂y2
= 0.

The only solutions for Equation (4.0.9) whose level curves are straight lines are given
by

(4.0.10) f(x, y) = A tan−1

(
y − y0
x− x0

)
+B,

where A, B, x0 and y0 are constants. It is easy to check that the graphs of such
functions is either a plane or a piece of helicoid whose equation is given by

x− x0 = u cos v,

y − y0 = u sin v,

z −B = Av.(4.0.11)
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4.1 The Helicoid

In 1842, Catalan proved that the helicoid is the only ruled minimal surface in R3.
From Equation (4.0.11), we see that the helicoid can be described by the mapping
X(u, v) : R2 → R3 given by:

X(u, v) = (u cos av, u sin av, bv),(4.1.1)

where a and b are nonzero constants. Geometrically, the helicoid is generated by a
helicoidal motion of R3 acting on a straight line parallel to the rotation plane of the
motion.

The helicoid is a complete minimal surface. Its Gaussian curvature, K is K =
− b2/(b2 + a2 u2)2 and its total curvature,

∫
A
K dA = ∞, that is, the total curva-

ture is infinite.

The helicoid is also an example of a ruled surface; that is, a surface described geo-
metrically by a straight line sliding smoothly along a curve. A more precise definition
can be found in [2].

Theorem 4.1.1. Any ruled minimal surface of R3 is up to a rigid motion either part
of a helicoid or part of a plane.

Proof. If M ⊂ R3 is a ruled surface, then M can be parameterized locally by:

X(s, t) = α(s) + tβ(s),(4.1.2)

where α(s) is a curve perpendicular to the straight lines of M and β(s) describes a
unit length vector field along α pointing in the direction of the straight line through
α(s). We may assume that s represents the arc-length of α and that α and β are
analytic curves. A unit length normal vector field to X(s, t) is given by:

N =
Xs ×Xt

|Xs ×Xt|
=

(α′ × β + tβ′ × β)√
1 + 2t⟨α,′ β′⟩+ t2|β′|2

.

We can easily verify that M is a minimal surface if and only if,

⟨α′ × β, α′′⟩+ t⟨β′ × β, α′′⟩+ t⟨α′ × β, β′′⟩+ t2⟨β′ × β, β′′⟩ = 0.(4.1.3)

Observe that the left hand side of Equation (4.1.3) is a polynomial in variable t,
therefore,

⟨α′ × β, α′′⟩ = 0,(4.1.4)

⟨β′ × β, α′′⟩+ ⟨α′ × β, β′′⟩ = 0,(4.1.5)

and ⟨β′ × β, β′′⟩ = 0.(4.1.6)

From Equation (4.1.4), it follows that α′′ must belong to the plane generated by α′

and β. But, since α is parameterized by arc-length, then α and α′ are perpendicular.
Hence,

α′′ is parallel to β.(4.1.7)
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It follows that ⟨β′ × β, α′′⟩ = 0 and so, Equation (4.1.5) becomes,

⟨α′ × β, β′′⟩ = 0.(4.1.8)

From Equations (4.1.8) and (4.1.6), we can conclude that:

β′′ belongs, simultaneously, to the planes generated by α′ and β, and by β′ and β.

The intersection of these two planes contains, at least, the subspace generated by the
vector β. If there exists a point where β′′ is not parallel to β, then in the neighborhood
of this point, these two planes coincide and α′ is parallel to β′. Since α and β are real
analytic functions, this occurs everywhere. Hence (β × α′)′ = β′ × α′ + β × α′ = 0.
Thus, the plane generated by β and α′ is constant. Therefore, α is a plane curve and
the surface described by x is a plane.

On the other hand, if β′′ is parallel to β everywhere and α′ and β′ are not parallel
at one point, then this occurs in a neighborhood of this point. In this case, we claim
that

the curvature and the torsion of α are constant.(4.1.9)

In fact, since k = ⟨α′′, β⟩, we have

± dk

ds
= ⟨α′′, β⟩′ = −⟨α′, β′⟩′ = −⟨α′′, β′⟩ − ⟨α′, β′′⟩ = 0.

It is easy to see that ±τ = ⟨α′ × β′, β⟩ and that

± dτ

ds
= ⟨α′ × β′ , β⟩′ = ⟨α′′ × β′, β⟩ + ⟨α′ × β′′, β⟩+ ⟨α′ × β′, β′⟩ = 0.

Hence, k and τ are constants. It follows that, up to a rigid motion of R3, α can be
parameterized by

α(s) = (A cos as, A sin as, bs),(4.1.10)

where A2 a2+b2 = 1. Since β is parallel to α′′, β(s) = ± (cos as, sin as, 0). If we take
u = A± t and v = s, then Equation (4.1.2) becomes

X(u, v) = (u cos as, u sin as, bv).(4.1.11)

Therefore, M is a piece of helicoid. Hence the theorem is proved. The helicoid is
shown in Figures 9.1a and 9.1b. �

4.2 The Catenoid

Meusnier discovered that the catenoid is the only minimal surface of revolution in R3.
The catenoid is a surface of revolution M in R3 obtained by rotating the curve,

α(x) =
(
x, a cosh

(x
a
+ b
))

,(4.2.1)
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x ∈ R around the x-axis. This is an imposition of geometric condition on Equa-
tion (4.0.6). Such a surface is minimal and complete. Its Gaussian curvature, K
is

K = − 1

a2
cosh2

(x
a
+ b
)
and its total curvature, KM =

∫
M

K dM = − 4π.

Theorem 4.2.1. Any minimal surface of revolution in R3 is up to a rigid motion,
part of a catenoid or part of a plane.

Proof. By a rigid motion we may assume that the surface in R3 is such that its ro-
tation axis coincides with the x-axis. The surface will then be generated by a curve
α(t) = (x(t), y(t), 0). If the function x(t) is constant, then the surface will be a piece
of a plane orthogonal to the x-axis.

This can be shown by noticing that the Gaussian curvature corresponding to α is
given by

K =
x′(x′′y′ − y′′x′)

y((x′)2 + (y′)2)2
.(4.2.2)

We can easily see that, if the function x(t) is constant, then the Gauss curvature, K
is identically zero everywhere. It follows that any minimal surface of revolution in R3

is up to a rigid motion, part of a catenoid or part of a plane.

Otherwise, there exists a point t0 such that x′ ̸= 0 in a neighborhood of t0. We may
then represent α by (x, y(x), 0) in neighborhood of the point α(t0). The part of the
surface obtained by rotating this piece of curve can be parameterized by

X(x, y) = (x, y(x) cos v, y(x) sin v).

It is a simple computation to show that

H =
1

2

(
−yy′′ + 1 + (y′)2

y(1 + (y′)2)3/2

)
, is equivalent to

− y y + 1 + (y′)2 = 0 for minimal surfaces, that is, H = 0.(4.2.3)

This equation can be integrated once by using the transformation

p =
dy

dx
, from which we get

d2y

dx2
=
dp

dy

dy

dx
= p

dp

dy
.

Substitution of this into Equation (4.2.3) yields

− y p
dp

dy
+ 1 + p2 = 0,

which can be integrated to give

y = a
√

1 + p2,

where a is the constant of integration. Notice that
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p =
dy

dx
=

√
y2

a2
− 1.

A second integration gives

cosh−1
(y
a

)
=
x

a
+ b.

Therefore,

y = a cosh
(x
a
+ b
)
.(4.2.4)

Since minimal surfaces are real analytic, so is α. It follows that the curve α must
coincide everywhere with the graphic of the function y(x). Hence the theorem is
proved. The catenoid is shown in Figures 9.1c and 9.1d. �

4.3 Scherk’s first surface

In 1835 Scherk discovered another minimal surface by solving Equation (4.0.6) for
functions of the type f(x, y) = g(x) + h(y). This however, seems like a natural alge-
braic condition to impose on a function. It is also one of the standard multiplicative
substitutions for solving partial differential equations.

If we substitute f(x, y) = g(x) + h(y) into Equation (4.0.6), we get

(1 + h′
2
(y)) g′′(x) + (1 + g′2(x))h′′(y) = 0,(4.3.1)

where the primes denote derivatives with respect to the appropriate variables. On
rearranging Equation (4.3.1), we get the following separable ordinary differential equa-
tions

− g′′(x)

1 + g′2(x)
=

h′′(y)

1 + h′2(y)
,(4.3.2)

where x and y are independent variables, each side of Equation (4.3.2) is equal to the
same constant, a. On solving Equation (4.3.2) with this requirement, we get,

g(x) =
1

a
loge (cos ax) and h(y) = − 1

a
loge (cos ay).(4.3.3)

Hence

f(x, y) = g(x) + h(y) =
1

a
loge (cos ax)− 1

a
loge (cos ay),

=
1

a
loge

(
cos ax

cos ay

)
.(4.3.4)

The surface formed by Equation (4.3.4) is known as Scherk’s first minimal surface.

Note that Scherk’s minimal surface is only defined for
(

cos ax
cos ay

)
> 0. If, for example,

we take a = 1 for convenience, a piece of Scherk’s minimal surface will be defined
over the square (−π/2 < x < π/2, −π/2 < y < π/2). The pieces of Scherk’s surface
fit together according to the Schwartz reflection principles. The Scherk’s first surface
is shown in Figure 9.3c.
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Chapter 5

Complex analysis

In this chapter, we shall present some complex number theory that are relevant to
the study of minimal surfaces. Some of the materials in this chapter were adapted
from [4].

Suppose thatD ⊆ C is a domain, where C is the complex plane. A function f : D → C
is said to be differentiable at z0 ∈ D if the limit

lim
z→z0

f(z)− f(z0)

z − z0

exists. Then we write

(5.0.1) f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,

and call f ′(z0) the derivative of f at z0.

If z ̸= z0, then

f(z) =

(
f(z)− f(z0)

z − z0

)
(z − z0) + f(z0).

It follows from Equation (5.0.1) and the arithmetic of limits that if f ′(z0) exists, then
f(z) → f(z0) as z → z0, so that f is continuous at z0. In other words, differentiability
at z0 implies continuity at z0.

Note that the argument here is the same as in the case of a real valued function of a
real variable. In fact, the similarity in argument extends to the arithmetic of limits.
Indeed, if the functions f : D → C and g : D → C are both differentiable at z0 ∈ D,
then both f + g and fg are differentiable at z0, and

(f + g)′(z0) = f ′(z0) + g′(z0) and (fg)′(z0) = f(z0)g
′(z0) + f ′(z0)g(z0).

If the extra condition g′(z0) ̸= 0 holds, then f/g is differentiable at z0, and(
f

g

)′

(z0) =
g(z0)f

′(z0)− f(z0)g
′(z0)

g2(z0)
.

33
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One can also establish the Chain rule for differentiation as in real analysis. More
precisely, suppose that the function f is differentiable at z0 and the function g is
differentiable at w0 = f(z0). Then the function g ◦ f is differentiable at z = z0, and

(g ◦ f)′(z0) = g′(w0)f
′(z0).

Example 4.1 Consider the function f(z) = z̄, where for every z ∈ C, z̄ denotes the
complex conjugate of z. Suppose that z0 ∈ C. Then

(5.0.2)
f(z)− f(z0)

z − z0
=
z̄ − z̄0
z − z0

=
z − z0
z − z0

.

If z − z0 = h is real and non-zero, then Equation (5.0.2) takes the value 1. On the
other hand, if z − z0 = ik is purely imaginary, then Equation (5.0.2) takes the value
−1. It follows that this function is not differentiable anywhere in C, although its real
and imaginary parts are rather well behaved.

5.1 The Cauchy-Riemann equations

If we use the notation

f ′(z) = lim
h→ 0

f(z + h)− f(z)

h
,

and then examine the behavior of the ratio

f(z + h)− f(z)

h
,

first as h→ 0 through real values and then through imaginary values. Indeed, for the
derivative to exist, it is essential that these two limiting processes produce the same
limit f ′(z). Suppose that f(z) = u(x, y)+ iv(x, y), where z = x+ iy, and u and v are
real valued functions. If h is real, then the two limiting processes above correspond
to

lim
h→ 0

f(z + h)− f(z)

h
= lim

h→ 0

u(x+ h, y)− u(x, y)

h
+i lim

h→ 0

v(x+ h, y)− v(x, y)

h
=
∂u

∂x
+i

∂v

∂x

and

lim
h→ 0

f(z + ih)− f(z)

ih
= lim

h→ 0

u(x, y + h)− u(x, y)

ih
+i lim

h→ 0

v(x, y + h)− v(x, y)

ih
=
∂v

∂y
−i ∂u

∂y

respectively. Equating real and imaginary parts, we obtain

(5.1.1)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= − ∂v

∂x
.

Note that while the existence of the derivative in real analysis is a mild smoothness
condition, the existence of the derivative in complex analysis leads to a pair of partial
differential equations.
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Definition 5.1.1. The partial differential equations (5.1.1) are called the Cauchy−Riemann
equations.

With a view to when we shall consider a parametrization X(u, v) with complex co-
ordinates, we write z = u+ i v, and z = u− i v and introduce the following notation
for complex partial differentiation

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

These are motivated by the equations x = (z + z)/2, and y = (z − z)/(2i), which,
if z and z were independent variables, would give ∂x/∂z = 1

2 , and ∂y/∂z = i
2 , etc.

In terms of these, the Cauchy−Riemann equations are exactly equivalent to

∂f

∂z
= 0, which is also equivalent to

∂f

∂z
=
∂f

∂x
.

Thus, if f is analytic on D then the partial derivatives of f exist and are continuous
on D, and the Cauchy−Riemann equations are satisfied there. The converse is true
as well. One of the advantages of this notation is that it provides an easy test for f
to be holomorphic.

Theorem 5.1.1. If the partial derivatives of f exist and are continuous on D and
the Cauchy−Riemann equations are satisfied there, then f is analytic on D.

Remark Theorem 5.1.1 can be weakened to say that if f is continuous on D and
the partial derivatives exist and satisfy the Cauchy-Riemann equations there (with-
out assuming that the partial derivatives are continuous), then the complex deriva-
tive of f exists on D (which is equivalent to f being analytic on D). This is the
Looman−Menchoff Theorem. We do need at least continuity, since otherwise we could
take f to be the characteristic function of the coordinate axes.

Note that
∂

∂z

∂

∂z
=

∂

∂z

∂

∂z
=

1

4
∆, where ∆ =

∂2

∂x2
+

∂2

∂y2
.

This shows that any analytic function is harmonic (equivalently, its real and imaginary
parts are harmonic). It also shows that the conjugate of an analytic function, while
not analytic, is harmonic.

Theorem 5.1.2. Suppose that f(z) = u(x, y)+ iv(x, y), where z = x+ iy, and u and
v are real valued functions. Suppose further that f ′(z) exists. Then the four partial
derivatives in Equations (5.1.1) exist, and the Cauchy-Riemann Equations (5.1.1)
hold. Furthermore, we have

(5.1.2) f ′(z) =
∂u

∂x
+ i

∂v

∂x
and f ′(z) =

∂v

∂y
− i

∂u

∂y
.

A natural question to ask is whether the Cauchy-Riemann equations are sufficient to
guarantee the existence of the derivative. We shall show next that we require also the
continuity of the partial derivatives in Equations (5.1.1).
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Theorem 5.1.3. Suppose that f(z) = u(x, y) + iv(x, y), where z = x + iy, and u
and v are real valued functions. Suppose further that the four partial derivatives in
Equation (5.1.1) are continuous and satisfy the Cauchy-Riemann Equations (5.1.1)
at z0. Then f is differentiable at z0, and the derivative f ′(z0) is given by the Equa-
tions (5.1.2) evaluated at z0.

Proof. Write z0 = x0 + iy0. Then

f(z)− f(z0)

z − z0
=

(u(x, y)− u(x0, y0)) + i(v(x, y)− v(x0, y0))

z − z0
.

We can write

u(x, y)− u(x0, y0) = (x− x0)

(
∂u

∂x

)
z0

+ (y − y0)

(
∂u

∂y

)
z0

+ |z − z0|ϵ1(z),

and

v(x, y)− v(x0, y0) = (x− x0)

(
∂v

∂x

)
z0

+ (y − y0)

(
∂v

∂y

)
z0

+ |z − z0|ϵ2(z).

If the four partial derivatives in Equation (5.1.1) are continuous at z0, then,

lim
z→z0

ϵ1(z) = 0 and lim
z→z0

ϵ2(z) = 0.

In view of the Cauchy-Riemann Equations (5.1.1), we have:

u(x, y)− u(x0, y0) + i (v(x, y)− v(x0, y0))=

= (x− x0)

(
∂u

∂x
+ i

∂v

∂x

)
z0

+ (y − y0)

(
∂u

∂y
+ i

∂v

∂y

)
z0

+ |z − z0|(ϵ1(z) + iϵ2(z)),

= (x− x0)

(
∂u

∂x
+ i

∂v

∂x

)
z0

+ (y − y0)

(
−∂v
∂x

+ i
∂u

∂x

)
z0

+ |z − z0|(ϵ1(z) + iϵ2(z)),

= (x− x0)

(
∂u

∂x
+ i

∂v

∂x

)
z0

+ i(y − y0)

(
∂u

∂x
+ i

∂v

∂x

)
z0

+ |z − z0|(ϵ1(z) + iϵ2(z)),

= (z − z0)

(
∂u

∂x
+ i

∂v

∂x

)
z0

+ |z − z0|(ϵ1(z) + iϵ2(z)).

Hence, as z → z0,, we have

f(z)− f(z0)

z − z0
=

(
∂u

∂x
+ i

∂v

∂x

)
z0

+

(
|z − z0|
z − z0

)
(ϵ1(z) + iϵ2(z)) →

(
∂u

∂x
+ i

∂v

∂x

)
z0

,

which leads to the desired results. �
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5.2 Analytic (Holomorphic) functions

In the previous chapter, we have shown that differentiability in complex analysis leads
to a pair of partial differential equations. Now partial differential equations are seldom
of interest at a single point, but rather in a region. Therefore it seems reasonable to
make the following definition.

Definition 5.2.1. A function f is said to be analytic or holomorphic at a point
z0 ∈ C if it is differentiable at every z in some ϵ-neighborhood of the point z0. The
function f is said to be analytic or holomorphic in a region if it is analytic at every
point in the region. The function f is said to be entire if it is analytic in C.

Example 4.2.1 Consider the function f(z) = |z|2.

In our usual notation, we clearly have; u = x2 + y2 and v = 0.

The Cauchy-Riemann equations are: 2x = 0 and 2y = 0.

We see that they can only be satisfied at z = 0. It follows that the function is
differentiable only at the point z = 0, and is therefore analytic nowhere.

Example 4.2.2 The function f(z) = z2 is entire. Since u = x2 − y2 and v = 2xy.

Theorem 5.2.1. If f is holomorphic, then

(5.2.1)

∫
γ

f ′ = f(b)− f(a).

Proof. Let f(z) = ρ(u, v) + i τ(u, v), so that f ′(z) = ρu + i τu. Furthermore, let
γ(t) = u(t)+ i v(t) be a curve in the complex plane with (a ≤ t ≤ b). Then, using the
Cauchy-Riemann equations ρu = τv, ρv = − τu and the usual Fundamental Theorem
of Calculus, we have �

∫
γ

f ′ =

∫ b

a

f ′(γ(t)) γ′(t) dt ⇒
∫ b

a

(ρu + i τu)(u
′ + i v′) dt,

⇒
∫ b

a

(ρuu
′ − τuv

′) + i (τuu
′ + ρuv

′) dt,

⇒
∫ b

a

ρuu
′ + ρvv

′ + i (τuu
′ + τvv

′) dt,

⇒
∫ b

a

(
dρ

d t
+ i

dτ

d t

)
dt,

⇒ ρ(u(b), v(b))+ i τ(u(b), v(b))− ρ(u(a), v(a))− i τ(u(a), v(a)) ⇒ f(b)− f(a).
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The last line means that f is evaluated at the end points of γ. Since the Fundamental
Theorem of Calculus is valid for complex analysis, many of the properties from real
analysis are applicable to complex analysis as well. This will allow the calculation of
complex integrals in the Weierstrass-Enneper representation later.

Remark 5.2.2. If f is holomorphic with a continuous derivative on and inside a
closed curve γ, we can use Green’s theorem to show that

∫
γ
f ′ = 0. This is a weak

version of Cauchy’s theorem. As shown above, we see that the integrals of holomorphic
functions only depend on the endpoints and not on the paths chosen over which to
integrate.

5.3 Meromorphic functions

A complex meromorphic function g, is a single-valued function that is analytic in all
but possibly a discrete subset of its domain, and at those singularities it must go to
infinity like a polynomial (that is, these exceptional points must be poles and not
essential singularities). A simpler definition states that a meromorphic function is a
function g(z) of the form

g(z) =
P(z)

Q(z)
, where P(z) and Q(z) are entire functions with {z : Q(z) ̸= 0}.

A meromorphic function therefore may only have finite-order, isolated poles and zeros
and no essential singularities in its domain. A meromorphic function with an infinite
number of poles is exemplified by cosecant (1/z) on the punctured disk U = D\{0},
where D is the open unit disk.

An equivalent definition of a meromorphic function is a complex analytic map to
the Riemann sphere. Meromorphic functions play essential roles in the analysis of
minimal surfaces when Weierstrass-Enneper method is employed.

Theorem 5.3.1. If g is meromorphic in C, has an isolated singularity at infinity
(∞), and has a pole or removable singularity at infinity (∞), then g is a rational
function.

This is a type of uniqueness theorem; it describes all solutions to a certain problem.
Liouville’s theorem is the special case where g is assumed to be both differentiable on
C and bounded, hence has a removable singularity at infinity (∞).

Proof. Let {zj} be the locations of the poles of g and {mj} be their orders. Then
f(z) = g(z)

∏
j(z − zj)

mj has no poles. The assumptions concerning the singularity

at ∞ imply that |f(z)| ≤M+M |z|N for some finiteM, N. By the generalized version
of Liouville’s theorem, f is a polynomial and hence g is rational. �

5.4 Laurent series expansion

Let g have an isolated singularity at z0. Let (an) be the coefficients in its Laurent
expansion g(z) =

∑∞
n=−∞ an(z − z0)

n about z0.
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Discussion. Recall that one function can have more than one Laurent expansion.
But by the following theorem

Theorem 5.4.1. If g is differentiable in punctured disk (0 < |z − z0| < δ) then
there is only one Laurent expansion in powers of z − z0 which is valid in this disk.
Moreover, given two different outer radii δ1 < δ2, we get two different Laurent series

representations, with coefficients (a
(1)
n ) and (a

(2)
n ), one for each punctured disk.

However, since the Laurent series expansion in {z : 0 < |z − z0| < δ2} converges
to g in the smaller punctured disk {z : 0 < |z − z0| < δ1}, the uniqueness part of

Laurent’s theorem guarantees that (a
(1)
n ) = (a

(2)
n ) for all n. Thus the coefficients (an)

are unambiguously defined.

Recall that g has a removable singularity at z0 if and only if it has a differentiable
extension to some open set which contains a neighborhood of z0.

Fact. g has a removable singularity at z0 if and only if an = 0 for all n < 0.

Proof. If the singularity is removable then there exists a differentiable extension f
of g to an open disk D = {z : |z − z0| < r} for some r > 0. f has a power series
expansion

∑∞
n=0 bn(z − z0)

n, valid in D. This series converges to g in the punctured
disk D\{z0}. Therefore

∑∞
n=0 bn(z − z0)

n, is the Laurent series expansion for g in D.
There are no negative powers in this expansion.

Conversely, if an = 0 for all n < 0 then the Laurent series
∑∞

n=0 an(z − z0)
n, is a

power series, and it converges to g in {z : 0 < |z − z0| < δ} for some δ > 0. Thus
this power series has positive radius of convergence. Therefore its sum, which is well
defined in the disk D = {z : |z−z0| < δ}, converges to a differentiable function in this
disk. The sum of this series defines the required extension of g to this neighborhood
D of z0. �

Definition 3.1 g has a pole at z0 if there are only finitely many negative n satisfying
an ̸= 0. g has a pole of order m ∈ {1, 2, 3, . . .} at z0 if an = 0 for all n < −m, and
a−m ̸= 0.

Definition 3.2 g has an essential singularity at z0 if there are infinitely many n < 0
for which an ̸= 0.

Proposition 5.4.2. g has a pole of order m at z0 if and only if lim
z→z0

(z − z0)
mf(z)

exists and is ̸= 0.

Proposition 5.4.3. If g has an essential singularity at z0, then for any ω ∈ C and
any ϵ, δ > 0 there exists ζ ∈ C such that 0 < |ζ − z0| < δ and |f(ζ)− ω| < ϵ.

Corollary 5.4.4. If there exists n < 0 such that the coefficient an in the Laurent
series expansion of g about z0 is not zero, then for any δ > 0, no matter how small,
|g| is unbounded in any punctured disk {z : 0 < |z − z0| < δ}.

Finally, the Laurent series expansion of g(z) about z0 is given by

g(z) =
an

(z − z0)n
+ · · · +

a1
(z − z0)

+

∞∑
j=0

bj(z − z0)
j ,
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for some finite n with coefficients determined by g(z).

We shall not go into the proofs of these propositions since they will not impede
our understanding of minimal surfaces. They have been included here only to help
us understand some of the terms that were used in the definition of meromorphic
functions.

5.5 Periodicity and its consequences

One of the fundamental differences between real and complex analysis is that the
exponential function is periodic in C.

Definition 5.5.1. A function f is periodic in C if there is some fixed non-zero ω ∈ C
such that the identity f(z + ω) = f(z) holds for every z ∈ C. Any constant ω ∈ C
with this property is called a period of f .

Theorem 5.5.1. The exponential function ez is periodic in C with period 2πi. Fur-
thermore, any period ω ∈ C of ez is of the form ω = 2πki, where k ∈ N is non-zero.

Proof. The first assertion follows easily from the observation

e2πi = cos 2π + i sin 2π = 1.

Suppose now that ω ∈ C. Clearly ez+ω = ez implies eω = 1.Write ω = α+ i β, where
α, β ∈ C.

Then eα(cos β + i sin β) = 1.

Taking modulus, we conclude that eα = 1, so that α = 0. It then follows that
cos β + i sin β = 1. Equating real and imaginary parts, we conclude that cos β = 1
and sin β = 0, so that β = 2πk, where k ∈ N. The second assertion follows. � �

5.6 Laplace’s equation and harmonic conjugates

We have shown that for any function f = u + iv, the existence of the derivative f ′

leads to the Cauchy-Riemann equations. More precisely, we have

(5.6.1)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= − ∂v

∂x
.

Furthermore,

(5.6.2) f ′(z) =
∂u

∂x
+ i

∂v

∂x
.

Suppose now that the second derivative f ′′ also exists. Then f ′ satisfies the Cauchy-
Riemann equations.

The Cauchy-Riemann equations corresponding to the expression (5.6.2) are

(5.6.3)
∂

∂x

(
∂u

∂x

)
=

∂

∂y

(
∂v

∂x

)
and

∂

∂y

(
∂u

∂x

)
= − ∂

∂x

(
∂v

∂x

)
.
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Substituting Equations 5.6.1 into Equations 5.6.3, we obtain

(5.6.4)
∂2u

∂x2
+
∂2u

∂y2
= 0 and

∂2v

∂x2
+
∂2v

∂y2
= 0.

We also obtain

(5.6.5)
∂2v

∂y∂x
=

∂2v

∂x∂y
and

∂2u

∂y∂x
=

∂2u

∂x∂y
.

Definition 5.6.1. A real-valued continuous function Φ(x, y) that satisfies Laplace’s
equation

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0,

in a domain D ⊆ C is said to be harmonic in D.

Theorem 5.6.1. If f(z) = ϕ(x, y) + i ψ(x, y) is holomorphic, then both ϕ(x, y) and
ψ(x, y) are harmonic.

In practice, we may use Equation (5.6.1) as follows. Suppose that ϕ is a real-valued
harmonic function in a domain D. We could write

(5.6.6) g(z) =
∂ϕ

∂x
− i

∂ϕ

∂y
.

Then Cauchy-Riemann equations for g are

∂

∂x

(
∂ϕ

∂x

)
= − ∂

∂y

(
∂ϕ

∂y

)
and

∂

∂y

(
∂ϕ

∂x

)
=

∂

∂x

(
∂ϕ

∂y

)
,

which clearly hold. It follows that g is analytic in D. Suppose now that ϕ is the real
part of an analytic function f in D. Then f ′(z) agrees with the right hand side of
Equation (5.6.6) in view of Equation (5.1.1) and Equation (5.1.2). Hence f ′ = g in
D. The issue of course is to find this f . If we successfully find f , then the imaginary
part ψ is a harmonic conjugate of the harmonic function ϕ.

In order to show how special harmonic functions are, we state one of their important
properties. Let U ⊆ R2 be a bounded open set with closure U having boundary
∂U = U − U.

Theorem 5.6.2. Let ϕ : U → R be a harmonic function which is continuous on
U and differentiable on U . Then ϕ takes its maximum and minimum values on the
boundary ∂U.

Furthermore, if ϕ is a twice differentiable harmonic function of x and y, then
on some open set there is another harmonic function ψ such that f = ϕ + i ψ is
holomorphic. Harmonic functions ϕ and ψ which give such an f are said to be
harmonic conjugates.
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5.7 Some facts about harmonic functions

Theorem 5.7.1. Mean Value Properties. Suppose u is harmonic in D ⊆ R2.
Then u satisfies the following mean value properties.

If Br(x0) is any ball with Br(x0) ⊆ D, then

u(x0) =
1

2πr

∫
∂Br(x0)

u ds, (a)

and

u(x0) =
1

πr2

∫
Br(x0)

u(x, y) dx dy. (b)

Remark: 1 The integral on the left hand side of (a) is a line integral with respect
to arc length.

Thus if x0 = (a, b),

Then ∫
∂Br(x0)

u ds ≡
∫ 2π

0

u(a+ r cos t, b+ r sin t) r dt.

Remark: 2 The theorem says that the value of a harmonic function at a point is
equal to both the average value of the function over a circle around that point (as in
part (a)) and also to the average value of the function over a disk centered at that
point (as in part (b)).

Proof. Since ∆u = div(Du), we have by Green’s theorem that∫
∂Bρ (x0)

∆u dx dy =

∫
∂Bρ(x0)

−uy dx+ ux dy,

Since ∆u = 0,

0 =

∫
∂Bρ (x0)

−uy dx+ ux dy,

= ρ

∫ 2π

0

[uy(a+ ρ cos t, b+ ρ sin t) sin t+ ux(a+ ρ cos t, b+ ρ sin t) cos t] dt,

=

∫ 2π

0

d

d ρ
u(a+ ρ cos t, b+ ρ sin t) dt,
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=
d

d ρ

∫ 2π

0

u (a+ ρ cos t, b+ ρ sin t) dt.

Integrating this with respect to ρ from 0 to r, we have that

∫ 2π

0

u(a+ r cos t, b+ r sin t) dt = 2πu (x0),

or, equivalently,

u(x0) =
1

2πr

∫
∂Br(x0)

u ds.

This is part (a). To prove part (b), note that by changing variables to polar coordi-
nates we have for any continuous function f that

∫
Br(x0)

f(x, y) dx dy =

∫ r

0

∫ 2π

0

= f(a+ ρ cos t, b+ ρ sin t)ρ dt dρ,

or, equivalently, that

(5.7.1)

∫ r

0

∫
∂Bρ(x0)

f ds dρ =

∫
Bρ(x0)

f(x, y)dx dy.

Now replace r with ρ in the identity of part (a) and multiply the resulting identity by
2πρ and integrate both sides with respect to ρ over [0, r]. In view of Equation (5.7.1),
this gives exactly the identity of part (b). �

Lemma 5.7.2. Gradient estimate for non-negative harmonic functions

Suppose u is non-negative and harmonic in D. If Br(x0) ⊆ D, then

|Du(x0)| ≤
2
√
2

r
u(x0).(5.7.2)

Proof. Note first that if u is harmonic, then each of its partial derivatives ux and uy
is also harmonic. This follows directly by differentiating the equation ∆u = 0. Hence
by the mean value identity (b) of Theorem 5.7.1, we have that

(5.7.3) ux(x0) =
1

πr2

∫
Br(x0)

ux(x, y) dx dy.
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By Green’s theorem∫
Br(x0)

ux dx dy =

∫
Br(x0)

u dy =

∫ 2π

0

u(a+ r cos t, b+ r sin t)r cos t dt.

Using this in Equation (5.7.3) and keeping in mind that u is non-negative, we get,

|ux(x0)| ≤
1

πr2

∫ 2π

0

u(a+ r cos t, b+ r sin t)r dt =
1

πr2

∫
Br(x0)

u ds.

Now using the mean value property (a) of Theorem 5.7.1 we deduce from the above
that

|ux(x0)| ≤
2

r
u(x0).

Similarly, we also have

|uy(x0)| ≤
2

r
u(x0),

and combining these two estimates, we conclude that

|Du(x0)| ≤
2
√
2

r
u(x0).

�

Corollary 5.7.3. Joseph Liouville. If a harmonic function on the entire plane R2

is bounded above or below, then it must be a constant. An alternative way of stating
this, is the following – A bounded complex function f : C → C which is holomorphic
on the entire complex plane is a constant function.

Proof. Suppose u is harmonic everywhere in R2 and that u(x) ≤M for some constant
M and all x ∈ R2. Then v(x) =M −u(x) is harmonic in R2 and non-negative. Thus
for any point x ∈ R2, we have by Lemma 5.7.2 (with v in place of u and x in place of
x0) that

|Du(x)| ≤ 2
√
2

r
(M − u(x)),

for all r > 0. Letting r → ∞, we conclude that Du(x) = 0 for all x ∈ R2, and hence
that u is a constant. �

A similar argument applies to the case when u is bounded below.
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5.8 Harmonic functions and minimal surfaces

When a minimal surface is parameterized by an isothermal parametrization X(u, v),
there is a close relationship between the Laplace operator ∆X = Xuu +Xvv and the
mean curvature, H.

Theorem 5.8.1. If the parametrization X is isothermal, then ∆X = Xuu +Xvv =
(2EH)N.

Proof.

Xuu +Xvv =

(
Eu

2E
Xu − Ev

2G
Xv + eN

)
+

(
− Gu

2E
Xu +

Gv

2G
Xv + gN

)
,

=
Eu

2E
Xu − Ev

2G
Xv + eN− Eu

2E
Xu +

Ev

2G
Xv + gN,

= (e+ g)N = 2E

(
e+ g

2E

)
N.

By examining Equation (3.4.5) for mean curvature, when E = G and F = 0, we see

that

H =
Ee+ Eg

2E2
=
e+ g

2E
.

Therefore,

Xuu +Xvv = (2EH)N.

�

Corollary 5.8.2. A surface M with an isothermal parametrization
X(u, v) = (x1(u, v), x2(u, v), x3(u, v)) is minimal if and only if x1, x2 and x3 are
harmonic functions.

Proof. If M is a minimal surface, then H = 0 and, by Theorem 5.8.1,

Xuu +Xvv = 0.

Therefore, the coordinate functions of X are harmonic.

Conversely, suppose x1, x2 and x3 are harmonic functions, Then

Xuu +Xvv = 0,

and by Theorem 5.8.1, (2EH)N = 0. Therefore, since N is the unit normal and

E = ⟨Xu , Xu⟩ ̸= 0,
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we have H = 0, and M is a minimal surface. �

This result is the bridge between the theory of minimal surface and complex analysis.

Theorem 5.8.3. If M is a minimal surface without boundary (that is, a generalized
minimal surface), then M cannot be compact.

Proof. Suppose M is an isothermal parametrization. According to Corollary 5.8.2,
the coordinate functions of the parametrization are harmonic functions. If M were
compact, then each coordinate function X(u, v) would attain its maximum and min-
imum. According to Theorem 5.6.2, this must take place on the boundary of M .
Furthermore by Corollary 5.7.3 would be constant. Since M has no boundary, this
contradicts compactness. �



Chapter 6

Weierstrass-Enneper
representations I

The Weierstrass-Enneper system has proved to be a very useful and suitable tool in
the study of minimal surfaces in R3. The formulation of Weierstrass and Enneper of
a system inducing minimal surfaces can be briefly presented as follows.

Let D(u, v) ⊂ R2, where u, v ∈ R2 be a simply connected open set and ϕ : D → R3

be an immersion of class Ck (k ≥ 2) or real analytic. The mapping ϕ describes a
parametric surface in R3. If

|ϕu| = |ϕv| and ⟨ϕu , ϕv⟩ = 0,(6.0.1)

then ϕ is a conformal mapping (that is, it preserves angles) which induces the metric

ds2 = λ2 (du2 + dv2),(6.0.2)

where λ = |ϕu| = |ϕv|. We then say that (u, v) are isothermal parameters for the
surface described by ϕ.

Theorem 6.0.1. Existence of isothermal parameters. Let D be a simply con-
nected open set and let ϕ : D → R3 be an immersion of class Ck (k ≥ 2) or real
analytic. Then there exists a diffeomorphism φ : D → D of class Ck (k ≥ 2) or real
analytic such that ϕ̃ = ⟨ϕ , φ⟩ is a conformal mapping.

A proof of this theorem is given in Lemma 8.1.2.

Let M be a surface (that is, a 2-dimensional manifold of class Ck (k ≥ 2)). Suppose
M is connected and orientable and let X(u, v) : M → R3 be an immersion of class
Ck. By Theorem 6.0.1 each point p ∈ M has a neighborhood in which isothermal
parameters (u, v) are defined. The metric induced on M by X will be represented
locally in terms of such parameters by

ds2 = λ2 |dz|2,(6.0.3)

where z = u+ i v. Clearly, a change of coordinates of such parameters is a conformal
mapping.

47
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Since M is orientable, we can restrict ourselves to a family of isothermal parameters
whose change of coordinates preserve the orientation plane. In terms of the variable
z = x+ i y, this means that such changes of coordinates are holomorphic. A surface
M together with such a family of isothermal parameters is called a Riemann surface.

We can extend the notion of holomorphic mapping to such surfaces as follows: if M
and M are Riemann surfaces, we could say that f : M → M is holomorphic when
every of its representation, in terms of local isothermal parameters (in M and M), is
a holomorphic function.

In a Riemann surface we consider, locally the operators

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
and

∂

∂z̄
=

1

2

(
∂

∂u
+ i

∂

∂v

)
,(6.0.4)

the definition of these operators is such that, if f : M → C is a complex valued
differentiable function, then

df =
∂f

∂u
du+

∂f

∂v
dv =

∂f

∂z
dz +

∂f

∂z̄
dz̄.(6.0.5)

The function f is holomorphic if and only if ∂f
dz̄ = 0; and if ∂f

dz = 0, we say that f is
anti-holomorphic.

The evaluation of many quantities in the study of surfaces are simplified when con-
sidered in reference to the Riemann surfaces. For example, the Laplacian operator
becomes

∆ =
1

λ2

(
∂

∂u2
+

∂

∂v2

)
=

4

λ2
∂

∂z

∂

∂z̄
.(6.0.6)

Another example is the Gaussian curvature of M which is then given by

K = −∆loge λ.(6.0.7)

For an immersion X = (X1, X2, X3) :M → R3, and if we define ∆X as the vectored
valued function (∆X1, ∆X2, ∆X3), then,

∆ = 2H N.(6.0.8)

where H is the mean curvature of the immersion and N : M → S2(1) is its Gauss
map.

The proof of Equation (6.0.8) is as follows: Notice that ∆X is normal to M . From
Equation (6.0.1), we have

⟨Xu , Xu⟩ = ⟨Xv , Xv⟩ and ⟨Xu , Xv⟩ = 0.(6.0.9)

On differentiating Equation (6.0.9), with respect to u and v separately, we get

⟨Xuu , Xu⟩ = ⟨Xuv , Xv⟩ and ⟨Xvu , Xv⟩+ ⟨Xu , Xvv⟩ = 0.(6.0.10)
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Hence

⟨(Xuu +Xvv) , Xu⟩ = ⟨Xuv , Xv⟩ − ⟨Xvu , Xv⟩ = 0.(6.0.11)

Similarly, we can show that,

⟨(Xuu +Xvv) , Xv⟩ = 0.(6.0.12)

and from this we conclude that ∆X is normal to the surface M .

Recall that if N is the Gauss mapping of the surface X, and Nu = a11Xu + a12Xv

and Nv = a21Xu + a22Xv, the mean curvature becomes

H = − 1

2
(a11 + a22).(6.0.13)

By using Equation (6.0.6), we get,

λ2⟨∆X , N⟩ = ⟨(Xuu +Xvv) , N⟩ = −⟨Xu , Nu⟩ − ⟨Xv , Nv⟩ −
a11|Xu|2 − a22|Xv|2 = − (a11 + a22)λ

2 = 2HN,(6.0.14)

this proves Equation (6.0.8).

The proposition below is an immediate corollary of Equation (6.0.8).

Proposition 6.0.2. A mapping X : M → R3 is a minimal surface if and only if X
is harmonic.

Lemma 6.0.3. Let us define ϕ = ∂X
∂z . From Equation (6.0.6), we get ∂ϕ

∂z̄ = ∂
∂z̄

∂X
∂z =

λ2

4 ∆X. Therefore, ϕ is holomorphic if and only if X is harmonic.

Note that ϕ is a function defined locally onM with values in C3. Its image is contained
in a quadric Q of C3 and is given by:

Z2
1 + Z2

2 + Z2
3 = 0, (Z1, Z2, Z3) ∈ C3.(6.0.15)

To see this, observe that if ϕ = (ϕ1, ϕ2, ϕ3), then

ϕk =
∂Xk

∂u
− i

∂Xk

∂v
, z = u+ iv.

Hence
∑3

k=1 ϕ
2
k = 0 and

∑3
k=1 |ϕk|2 > 0. Thus |ϕ| > 0. The proofs are given in

Lemma 8.1.5.

Notice that we have a mapping ϕ defined in terms of isothermal parameters, in some
neighborhood of each point of M . If z = x + i y and w = r + i s are isothermal
parameters around some point in M , then the change of coordinates w = w(z) is
holomorphic with ∂w/∂z ̸= 0. It follows that ϕ̃ = ∂x

∂z is related to ϕ by

ϕ =
∂x

∂z
=
∂x

∂w

∂w

∂z
=
∂w

∂z
ϕ̃.
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Therefore, if we consider the vector valued differential forms α = ϕdz and α̃ = ϕ̃ dw,
we get

α = ϕdz = ϕ̃
∂w

∂z
dz = ϕ̃ dw = α̃.

This means that we have a vector valued differential form α globally defined on M ,
whose local expression is α = (α1, α2, α3), with

(6.0.16) αk = ϕk dz, 1 ≤ k ≤ 3.

Equation (6.0.16) together with Proposition 6.0.2 and Lemma 6.0.3 prove the following

Lemma 6.0.4. Let X :M → R3 be an immersion. Then, α = ϕdz is a vector valued
holomorphic form on M if and only if X is a minimal surface. Furthermore,

(6.0.17) Xk(z) = Re

(∫ z

ϕdz

)
, k = 1, 2, 3.

where the integral is taken along any path from a fixed point to z on M .

When the real part of the integral of α along any closed path is zero, we say α has no
real periods. The non-existence of real periods for α is easily seen to be equivalent to

Re

(∫ z

ϕdz

)
be independent of the path on M .

Theorem 6.0.5. Weierstrass-Enneper representation. Let α1, α2, and α3 be
holomorphic differentials on M such that

1.
∑3

k=1 ϕ
2
k = 0 (that is, locally αk = ϕk dz and

∑3
k=1 ϕ

2
k = 0);

2.
∑3

k=1 |ϕk|2 > 0 and

3. each αk has no real periods on M .

Then the mapping X : M → R3 defined by X = (X1, X2, X3), with Xk(z) =

Re
(∫ z

p0
αk dz

)
, k = 1, 2, 3 is a minimal surface.

Condition (3) of the theorem is necessary in order to guarantee that Re
(∫ z

p0
αk dz

)
depends only on the final point z. Therefore, each Xk is well defined independently of
the path from p0 to z. It is obvious that ϕ = ∂X

∂z is holomorphic and so X is harmonic.
Hence X is a minimal surface. Condition (2) guarantees that X is a surface.

It is possible to give a simple description of all solutions of equation α2
1+α

2
2+α

2
3 = 0

on M . In order to do this, assume α1 ̸= i α2. (If α1 = i α2, then α3 = 0 and the
resulting minimal surface is a plane.) Let us define a holomorphic form ω and a
meromorphic function g as follows

ω = α1 − i α2, and,

g =
α3

α1 − i α2
.(6.0.18)
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Locally, if αk = ϕk dz, then ω = f dz, where f is a holomorphic function and we have

f = ϕ1 − i ϕ2, and,

g =
ϕ3

ϕ1 − i ϕ2
.(6.0.19)

In terms of g and ω, α1, α2 and α3 are given by

α1 =
1

2
(1− g2)ω,

α2 =
i

2
(1 + g2)ω, and,

α3 = g ω.(6.0.20)

Therefore, the minimal immersion X of Theorem 6.0.5 is given by

X1 = Re

(∫ z

α1

)
= Re

(∫ z 1

2
(1− g2)ω

)
,

X2 = Re

(∫ z

α2

)
= Re

(∫ z i

2
(1 + g2)ω

)
and,

X3 = Re

(∫ z

α3

)
= Re

(∫ z

g ω

)
.(6.0.21)

If z0 is a point where g has a pole of order m, then from Equation (6.0.20) it is clear
that ω must have a zero of order exactly 2m at z0, in order to have condition (2)
given above satisfied and each αk holomorphic.

Lemma 6.0.6. Conversely, suppose we have defined on M a meromorphic function
g and a holomorphic form ω, whose zeros coincide with the poles of g, in such a way
that each zero of order m of ω corresponds to a pole of order 2m of g. Then the forms
α1, α2 and α3, as defined above are holomorphic on M , satisfy α2

1 +α2
2 +α2

3 = 0 and

(6.0.22) |ϕ|2 |ds|2 =
3∑

k=1

|αk|2 =
1

2
(1 + |g|2)2 |ω|2 > 0.

Furthermore, if such forms αk (1 ≤ k ≤ 3, ) do not have real periods, then we may
apply Equation (6.0.21) to obtain a minimal surface - X :M → R3.

Equations 6.0.21 are called the Weierstrass-Enneper representation formulas for min-
imal surfaces in X. This representation provides us with a useful tool for studying
many types of minimal surfaces. The metric obtained a posteriori by such represen-
tation is given by

(6.0.23) ds2 =
1

2
|f |2 (1 + |g|2)2 |dz|2.

Examples of classical minimal surfaces obtained with this formulation are given in
Figures 9.1 to 9.4.
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6.1 The Gauss map

The Gauss map G, of a surface M with parametrization X(u, v) is a mapping from
the surface M to the unit sphere S2(1) ⊂ R3, denoted by G : M → S2 and given by
G(p) = Np, where Np is the unit normal vector to M at p. In terms of parametriza-
tion, we may write G(X(u, v)) = N(u, v) and, for a small piece of M , think of
N(u, v) as a parametrization of part of the sphere S2. There is also an induced linear
transformation of tangent planes given for the basis {Xu, Xv} by G⋆(Xu) = Nu and
G⋆(Xv) = Nv. To understand this, we note the following. A tangent vector on M
is the velocity vector of some curve on M , so by taking N only along the curve, we
create a new curve on the sphere S2. The tangent vector of the new spherical curve
is then, by definition, the image under G⋆ of the original curve’s tangent vector.

On applying this line of thought to the parameter curves, we see that G⋆(Xu) = Nu

and G⋆(Xv) = Nv.

It is pertinent to mention that the Gauss map of any surface is closely related to the
Gauss curvature. In order to see this, let us proceed thus:

Recall the following acceleration formulas

Nu = − e

E
Xu − f

G
Nv and,

Nv = − f

E
Xu − g

G
Nv.(6.1.1)

Let the quantity T be defined as

T =
|G⋆(Xu) × G⋆(Xv)|

|Xu × Xv|
.(6.1.2)

Now if we substitute for Nu and Nv from Equation (6.1.1) into Equation (6.1.2), and
remembering that for minimal isothermal surfaces E = G and F = 0, and e = − g we
get

T =
e g − f2

EG
=

− e2 − f2

E2
.(6.1.3)

Notice that T is the Gauss curvature K. This shows an example of the close rela-
tionship between Gauss map and Gauss curvature as mentioned above.

Let us investigate another important characteristic of the Gauss map. Before stating
this property, let us recall that a linear transformation T : R2 → R2 is conformal if,
for fixed ρ > 0,

T (x) ·T (y) = ρ2 x· y,

for all vectors x, y ∈ R.

Proposition 6.1.1. T is conformal if and only if, for a basis {v1, v2} of R2, |T (v1)| =
ρ|v1|, |T (v2)| = ρ|v2| and T (v1) ·T (v2) = ρ2 v1 · v2 for ρ > 0.
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Proof. The implication (⇒) is trivial. For (⇐), we let x = av1 + bv2 and y =
cv1 + dv2 with x · y = ac |v1|2 + ( bc + ad )v1 · v2 + bd |v2|2. The linearity of T gives
T (x) = aT (v1) + bT (v2) and T (y) = cT (v1) + dT (v2) with,

T (x) ·T (y) = ac |T (v1)|2 + ( bc+ ad )T (v1) ·T (v2) + bd |T (v2)|2,
= ac ρ2 |v1|2 + ( bc+ ad )ρ2 v1 · v2 + bd ρ2 |v2|2,
= ρ2 x · y.(6.1.4)

�

Lemma 6.1.2. When F :M → N is a mapping of one surface to another, F is said
to be conformal when the induced map on tangent vectors F⋆ is conformal for each
point on M . In this case, the factor ρ varies from point to point and is therefore a
function of the surface parameters u and v. We then write ρ(u, v) and call it the
scaling factor. On each tangent plane, however, ρ is constant.

For example consider the helicoidX(u, v) = (u cos v, u sin v, v). In order to compute
the Gauss map, we first have to calculate G⋆(Xu) = Nu and G⋆(Xv) = Nv, we
therefore proceed as follows

Xu = (cos v, sin v, 0), Xv = (−u sin v, u cos v, 1).

Therefore, ⟨Xu , Xv⟩ = 0 and |Xu| = 1 and |Xv| =
√
1 + u2. The unit normal vector

is given by

N =
Xu × Xv

|Xu × Xv|
=

(sin v, − cos v, u)√
1 + u2

.

On taking partial derivatives of N with respect to u and v, we get

Nu =
(−u sin v, u cos v, 1)

(1 + u2)3/2
and Nv =

(cos v, sin v, 0)√
1 + u2

,

with the moduli of Nu and Nv computed as

|Nu| =
1

1 + u2
=

1

1 + u2
|Xu| and,

|Nv| =
1√

1 + u2
=

1

1 + u2
|Xv|.

Furthermore, ⟨G⋆(Xu) , G⋆(Xv)⟩ = ⟨Nu , Nv⟩ = 0, as required for the Gauss map G
to be conformal with scaling factor ρ(u, v) = 1/(1 + u2).

Proposition 6.1.3. Let M be a minimal surface with isothermal parametrization
X(u, v). Then the Gauss map of M is a conformal map.
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Proof. In order to show that G is conformal, we only have to show that |G⋆(Xu)| =
ρ(u, v)|Xu|, |G⋆(Xv)| = ρ(u, v)|Xv| and ⟨G⋆(Xu) , G⋆(Xv)⟩ = ρ2(u, v)⟨Xu , Xv⟩.
Since isothermal parameters have E = G and F = 0, we have H = (e+ g)/2E as well
as,

G⋆(Xu) = Nu = − e

E
Xu − f

E
Xv, and,

G⋆(Xv) = Nv = − f

E
Xu − g

E
Xv.

Using isothermal coordinates and taking dot products, we have

|Nu|2 =
1

E

[
e2 + f2

]
, |Nv|2 =

1

E

[
f2 + g2

]
, ⟨Nu , Nv⟩ =

f

E
[e+ g] .

Since M is a minimal surface, H = 0 and this implies e = − g by Equation (3.4.5).

It follows that

|Nu|2 =
1

E

[
e2 + f2

]
= |Nv|2 and ⟨Nu , Nv⟩ = 0.

Since |Xu| =
√
E = |Xv| and ⟨Xu , Xv⟩ = 0, we see that the Gauss map G is

conformal with scaling factor
√
e2 + f2/E. �

Proposition 6.1.4. Let M be a surface parameterized by X(u, v) whose Gauss map
G : M → S2 is conformal. Then either M is part of a sphere or M is a minimal
surface.

Proof. Let us assume that the parametrization X(u, v) has the property F = 0. Since
Gauss map is conformal and F = ⟨Xu , Xv⟩ = 0, then ⟨Nu , Nv⟩ = 0 as well.

From the formulas in Equation (6.1.1) the foregoing imply f(Ge+Eg) = 0. Therefore,
either f = 0 or Ge+Eg = 0. Since F = 0, the second condition imply H = 0 and M
is minimal. If this condition does not hold, then f = 0. Let us use f = 0, conformality
and the formulas in Equation (6.1.1), we have:

e2

E
= ⟨Nu , Nu⟩ = ρ2E and

g2

G
= ⟨Nv , Nv⟩ = ρ2G.

On simplifying and rearranging, we have:

e2

E2
= ρ2 =

g2

G2
=⇒ e

E
= ± g

G
.(6.1.5)
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Suppose e/E = − g/G. Then (Ge + Eg)/EG = 0. This shows that H = 0 and M is
a minimal surface.

Suppose that e/E = g/G = k at every point of M . Together with f = 0 and the
formulas in Equation (6.1.1), this implies

(6.1.6) −Nu = kXu and,

(6.1.7) −Nv = kXv.

Equations (6.1.6) and (6.1.7) show that at each point of M , the tangent vectors Xu

and Xv are eigenvectors of the operator called the shape operator, which is defined
by taking the a kind of directional derivative of the unit normal vector, N. The
eigenvalues associated with the eigenvectors of the shape operator are known to be
the maximum and minimum normal curvatures at a point. For the situation above,
both eigenvalues are equal to k, so all normal curvatures at a point are constant.
Such a point on a surface is called an umbilic point. Therefore when we let f = 0 and
e/E = g/G = k, we are saying that every point of the surface is an umbilic point.
Such a non-planar surface is known to be the sphere. Hence the proposition is proved.
�

Proposition 6.1.4 can be restated as follows and the corresponding proof is in [31].

Lemma 6.1.5. R. Osserman [31]. If X(ζ) : D → R3 defines a regular minimal
surface in isothermal coordinates, then the Gauss map G(ζ) defines a complex analytic
map of D into the unit sphere considered as the Riemann sphere.

6.2 Stereographic projection

The Gauss map for a minimal surface has a description directly in terms of the
Weierstrass-Enneper representation. Stereographic projection, St from the North
pole N is denoted by

St : S2 − {N} → R2 or,

St : S2 − {(0, 0, 1)} → R2,

and defined as

(6.2.1) St(cos u cos v, sin u cos v, sin v) =

(
cos u cos v

1− sin v
,
sin u cos v

1− sin v
, 0

)
.

Let us take the induced mapping on tangent vectors by differentiating with respect
to u and v,

St⋆(Xu) =
∂

∂u

(
cos u cos v

1− sin v
,
sin u cos v

1− sin v
, 0

)
=

(
− sin u cos v

1− sin v
,
cos u cos v

1− sin v
, 0

)
,

(6.2.2) St⋆(Xv) =
∂

∂v

(
cos u cos v

1− sin v
,
sin u cos v

1− sin v
, 0

)
=

(
cos u

1− sin v
,

sin u

1− sin v
, 0

)
.
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Therefore on taking dot product in R3, we have

⟨St⋆(Xu) , St⋆(Xu)⟩ =
cos2 v

(1− sin v)2
,

=
1

(1− sin v)2
⟨Xu , Xu⟩,(6.2.3)

⟨St⋆(Xv) , St⋆(Xv)⟩ =
1

(1− sin v)2
,

=
1

(1− sin v)2
⟨Xv , Xv⟩,(6.2.4)

⟨St⋆(Xu) , St⋆(Xv)⟩ = 0.(6.2.5)

The factor 1/(1− sin v) shows that stereographic projection is a conformal map with
a scaling factor 1/(1 − sin v). That is, stereographic projection preserves angles. In
Cartesian coordinate system, stereographic projection is given by

(6.2.6) St(x, y, z) =

(
x

1− z
,

y

1− z
, 0

)
.

The real plane R2 can be identified with the complex plane C and extend St to a
one-to-one onto mapping St : S2 → C∪{∞} with the North pole mapping to infinity.

6.3 Meromorphic function

The meromorphic function g : M → C ∪ {∞} which appears in the Weierstrass
representation of a minimal surface X : M → R3 has an important geometrical
meaning. In order to see this let us derive an expression for the Gauss mapping
G : M → S2(1) in terms of the Weierstrass representation for X. Locally, at each
point of M , αk = ϕk dz define the functions ϕk.

Theorem 6.3.1. LetM be a minimal surface with isothermal parametrization X(u, v)
and Weierstrass-Enneper representation (f, g). Then the Gauss map of M , G :M →
C ∪ {∞}, may be identified with the meromorphic function g.

Proof. Recall that ϕ = ∂X
dz , ϕ̄ = ∂X

dz̄ and

ϕ1 =
1

2
f(1− g2), ϕ2 =

i

2
f(1 + g2), ϕ3 = f g.

First let us describe the Gauss map in terms of ϕ1, ϕ2 and ϕ3. Next, we write

Xu × Xv =
(
(Xu × Xv)

1, (Xu × Xv)
2, (Xu × Xv)

3
)
,

=
(
X2

uX
3
v −X3

uX
2
v , X

3
uX

1
v −X1

uX
3
v , X

1
uX

2
v −X2

uX
1
v

)
,
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and let us consider the first component of (Xu × Xv)
1 = X2

uX
3
v −X3

uX
2
v . We have

X2
uX

3
v −X3

uX
2
v = Im[(X2

u − iX2
v )(X

3
u + iX3

v )],

= Im[2(∂X2/∂z · 2(∂X3/∂z̄)],

= 4 Im(ϕ2 ϕ̄3).

Similarly, (Xu × Xv)
2 = 4 Im(ϕ3 ϕ̄1) and (Xu × Xv)

3 = 4 Im(ϕ1 ϕ̄2) when these three
components of Xu × Xv are taken together, we get

Xu × Xv = 4 Im(ϕ2 ϕ̄3, ϕ3 ϕ̄1, ϕ1 ϕ̄2) = 2(ϕ × ϕ̄) =
1
4 |f |

2
(
|g|2 + 1)(2Re(g), 2 Im(g), (|g|2 − 1)

)
,

where 2(ϕ × ϕ̄) follows from z − z̄ = 2 Im z.

Since X(u, v) is isothermal, |Xu × Xv| = |Xu| · |Xv| = |Xu|2 = E = 2|ϕ|2 by
Lemma 8.1.5.

Therefore, we have

(6.3.1) N =
Xu × Xv

|Xu × Xv|
=

2(ϕ × ϕ̄)

2|ϕ|2
=
ϕ × ϕ̄

|ϕ|2
=

(
2Re (g)

|g|2 + 1
,
2 Im (g)

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)
.

The Gauss map G :M → C ∪ {∞} may now be given in terms of the ϕi

G(X(u, v)) = St (N(u, v)) = St

(
ϕ × ϕ̄

|ϕ|2

)
,

= St

(
2 Im(ϕ2 ϕ̄3, ϕ3 ϕ̄1, ϕ1 ϕ̄2)

|ϕ|2

)
,

=

(
2 Im(ϕ2 ϕ̄3)

|ϕ|2 − 2 Im (ϕ1 ϕ̄2)
,

2 Im(ϕ3 ϕ̄1)

|ϕ|2 − 2 Im (ϕ1ϕ̄2)
, 0

)
.(6.3.2)

�

Equation (6.3.2) follows because

x

1− z
=

2 Im (ϕ2 ϕ̄3)

|ϕ|2
· 1

1− 2 Im (ϕ2 ϕ̄3)
|ϕ|2

,

=
2 Im (ϕ2 ϕ̄3)

|ϕ|2
· |ϕ|2

|ϕ|2 − 2 Im (ϕ1 ϕ̄2)
,

=
2 Im(ϕ2 ϕ̄3)

|ϕ|2 − 2 Im(ϕ1 ϕ̄2)
,(6.3.3)

and similarly for y/(1− z). Identifying (x, y) ∈ R2 with x+ i y ∈ C allows us to write

(6.3.4) G(X(u, v)) =
2 Im(ϕ2 ϕ̄3) + 2 i Im(ϕ3 ϕ̄1)

|ϕ|2 − 2 Im(ϕ1 ϕ̄2)
.
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Now let us consider the numerator, N of Equation (6.3.4)

N = 2 Im(ϕ2 ϕ̄3) + 2 i Im(ϕ3 ϕ̄1),

=
1

i

[
ϕ2 ϕ̄3 − ϕ̄2 ϕ3 + i ϕ3 ϕ̄1 − i ϕ̄3 ϕ1

]
,

= ϕ3 (ϕ̄1 + i ϕ̄2)− ϕ̄3 (ϕ1 + i ϕ2).(6.3.5)

Recall that (ϕ)2 = (ϕ1)
2 + (ϕ2)

2 + (ϕ3)
2 = (ϕ1 − i ϕ2)(ϕ1 + i ϕ2) + (ϕ3)

2 = 0.

Therefore

N = 2 Im(ϕ2ϕ̄3) + 2 i Im(ϕ3 ϕ1 + i ϕ2) =
−(ϕ3)

2

ϕ1 − i ϕ2
,(6.3.6)

N can be simplified further as follows:

N = ϕ3(ϕ̄1 − i ϕ2) + ϕ̄3
(ϕ3)

2

ϕ1 − i ϕ2
,

=
ϕ3
[(
(ϕ1 − i ϕ2)(ϕ̄1 + i ϕ̄2) + |ϕ3|2

)]
ϕ1 − i ϕ2

,

=
ϕ3

ϕ1 − i ϕ2

[
|ϕ1|2 + |ϕ2|2 + |ϕ3|2 + i (ϕ̄2 ϕ1 − ϕ2 ϕ̄1)

]
,

=
ϕ3
[
|ϕ|2 − 2 Im(ϕ1 ϕ̄2)

]
ϕ1 − i ϕ2

.(6.3.7)

The second factor in the numerator of Equation (6.3.7) cancels out the denominator
of Equation (6.3.4), and we end up with

(6.3.8) G(X(u, v)) =
ϕ3

ϕ1 − i ϕ2
.

As will be shown below, the Gauss map, G(X(u, v)) is the meromorphic function g.

6.4 Parametric surfaces in R3 and the Gauss map

Let us start with important observation that for the case n = 3, we can describe
explicitly all solutions of the equation

ϕ21 + ϕ22 + ϕ23 = 0.(6.4.1)

Now let us consider the following lemmas

Lemma 6.4.1. Every simply-connected minimal surface M has a reparametrization
in the form X(z) : D → Rn, where D is either the unit disk, |z| < 1, or the entire
z-plane.
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Lemma 6.4.2. Let D be a domain in the complex z-plane, g(z) an arbitrary mero-
morphic function in D and f(z) analytic function in D having the property that each
point where g(z) has a pole of order m, f(z) has a zero of order at least 2m. Then
the functions

(6.4.2) ϕ1 =
1

2
f(1− g2), ϕ2 =

i

2
f(1 + g2), and ϕ3 = fg,

will be analytic in D and satisfy Equation (6.4.1). Conversely, every triple of an-
alytic functions in D satisfying Equation (6.4.1) may be represented in the form of
Equations 6.4.2, except for ϕ1 ≡ i ϕ2 and ϕ3 ≡ 0.

Proof. By substituting Equations (6.4.2) into Equation (6.4.1), verifies that Equa-
tions (6.4.2) satisfy Equation (6.4.1). Conversely, given any solution of Equation (6.4.1),
we set

(6.4.3) f = ϕ1 − i ϕ2, and g =
ϕ3

ϕ1 − i ϕ2
.

If we write Equation (6.4.1) in the form

(6.4.4) (ϕ1 − i ϕ2)(ϕ1 + i ϕ2) = −ϕ23,

we find that

(6.4.5) ϕ1 + i ϕ2 = − ϕ23
ϕ1 − i ϕ3

= − fg2.

Combining Equations (6.4.3) and (6.4.5) gives Equation (6.4.2). It is pertinent to
mention that the conditions relating the zeros of f and the poles of g must obviously
be satisfied, since otherwise by Equation (6.4.5), (ϕ1 + i ϕ2) would fail to be analytic.
This representation can fail only if the denominator in the expression for for g in
Equation (6.4.3) vanishes identically. In this case we have by Equation (6.4.4) that
ϕ3 ≡ 0, which is the exceptional case mentioned.

Therefore the Gauss map of M , G :M → C∪ {∞}, can be identified with the mero-
morphic function g of X. In particular, G is a conformal map as already mentioned
above, and this property characterizes minimal surfaces (besides the sphere). This
concludes the proof of the theorem. �

6.4.1 More on stereographic projection

Let us write the stereographic projection, St again for quick and easy reference
(6.4.6)

St : C → S2, St(z) =


1

|z|2+1

(
2Re z, 2 Im z, |z|2 − 1

)
for z ∈ C,

(0, 0, 1) for z = ∞.

To derive Equation (6.4.6), let N = (0, 0, 1) be the north pole. A projection by
straight line means St(z) = λz + (1− λ)N with λ ̸= 0. It maps to S2 if and only if

1 = |St(z)|2 = λ2|z|2 + (1− λ)2 = 1− 2λ+ λ2(|z|2 + 1).
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Thus

(6.4.7) 0 = −2 + λ(|z|2 + 1) =⇒ λ =
2

|z|2 + 1
,

so that indeed Equation (6.4.6) follows. It has been shown above that St is a diffeo-
morphism, and St is conformal.

We can now explain the geometric meaning of g and f .

Proposition 6.4.3. Let X(z) : D → R3 be a minimal surface with Weierstrass data
g and f .

Then:

(i) Np is stereographic projection of the Gauss map g of X(z), that is,

Np = St(g) =
1

|g|2 + 1

(
2Re g, 2 Im g, |g|2 − 1

)
.

Moreover, Np is conformal.

(ii) The function Re X(z) is the derivative of the height function X3 = ϕ3, that is,
X ′

3 = ϕ′3 = Re f.

Proof. (i) It remains to show that St(g) is perpendicular to the tangent space. Recall
that X(z) = Re

∫ z

z0
Φ(ω) dω.

Therefore

(6.4.8)
∂X(z)

∂x
− i

∂X(z)

∂y
=
∂X(z)

∂z
= Φ = Re Φ + i Im Φ; z = x+ i y

we conclude that

(6.4.9)
∂X(z)

∂x
= Re Φ and

∂X(z)

∂y
= Im Φ,

meaning that real and imaginary parts of Φ span the tangent space. Noting that
St(g) is a real vector, we compute

⟨Re Φ , St(g)⟩+ i ⟨Im Φ , St(g)⟩ = ⟨Φ , St(g)⟩ =

=

⟨
f

(
1

2

(
1

g
− g

)
,
i

2

(
1

g
+ g

)
, 1

)
,

1

|g|2 + 1

(
2Re g, 2 Im g, |g|2 − 1

)⟩
,

=
f

|g|2 + 1

(
(Re g)

(
1

g
− g

)
+ i (Im g)

(
1

g
+ g

)
+ |g|2 − 1

)
,

(6.4.10)
f

|g|2 + 1

(
g

g
− g g + |g|2 − 1

)
= 0.
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Thus ∂X(z)/∂x and ∂X(z)/∂y are perpendicular to St(g). Conformality follows from
the fact that g is conformal and St is conformal.

(ii) is immediate from ∂X(z)
∂z = Re Φ. �

Example. The catenoid and Enneper surface have g(z) = z, so that N(z) = St(z).
Thus they are parameterized by (the stereographic projection of) the Gauss map. In
particular, their Gauss image is −S2 up to sets of measure zero, and so the total
curvature is −A(S2) = −4π.

6.5 Weierstrass-Enneper representation II

We can simplify Weierstrass-Enneper representations I even further so that we only
have to choose one function instead of two. Suppose in Equation (6.0.21), g is holo-
morphic and has an inverse function g−1 (in a domain D) which is holomorphic as
well. Then we can consider g as a new complex variable τ = g, with dτ = g′ dz. let
us define F (τ) = f/g′ and obtain F (τ) d τ = f dz.

Therefore, if we replace g by τ and f dz by F (τ) dτ, we obtain

Theorem 6.5.1. For any holomorphic function F (τ), a minimal surface is defined
by the parametrization X(z) = (x1(z), x2(z), x3(z)), where

x1(z) = Re

[∫ z (
1− τ2

)
F (τ) dτ

]
,

x2(z) = Re

[∫ z

i
(
1 + τ2

)
F (τ) dτ

]
,

x3(z) = Re 2

[∫ z

τF (τ) dτ

]
.

Notice that the corresponding ϕ components are

ϕ1 =
1

2
(1− τ2)F (τ), ϕ2 =

i

2
(1 + τ2)F (τ), ϕ3 = τF (τ).

This representation tells us that any holomorphic function F (τ) defines a minimal
surface. However, it is pertinent to mention that not every function will give a
complex integral which evaluates nicely (in closed form). For example, if we choose
F (τ) = i/2τ2 and the substitute τ = ez after integration, we get a form of helicoid.

From the foregoing, we see that the Weierstrass-Enneper representations enable us
to analyze many aspects of a minimal surface directly from representing functions
(f, g) and F (τ). Surface whose Weierstrass-Enneper integrals can not be expressed
in closed-form can also be analyzed using this method. For illustration purposes, let
us use the Weierstrass-Enneper representations to compute the Gauss curvature, K
of a minimal surface in terms of F (τ).
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Recall from Theorem 3.5.2, that if we use isothermal parameters, we have

K = − 1

2
√
EG

(
∂

∂v

(
Ev√
EG

)
+

∂

∂u

(
Gu√
EG

))
,

= − 1

2E

(
∂

∂v

(
Ev

E

)
+

∂

∂u

(
Eu

E

))
,

= − 1

2E

(
∂2

∂v2
lnE +

∂2

∂u2
lnE

)
,

= − 1

2E
∆(lnE),

where ∆ is the Laplace operator ∂2

∂u2 +
∂2

∂v2 . Recall that E = 2|ϕ|2 – we shall formally
show this in Equation (8.1.21). We can solve for E by substituting ϕ1, ϕ2 and ϕ3
into E = 2|ϕ|2.

It follows that

E = 2

[∣∣∣∣12(1− τ2)F (τ)

∣∣∣∣2 + ∣∣∣∣ i2(1 + τ2)F (τ)

∣∣∣∣2 + |τF (τ)|2
]
,

=
1

2
|F |2

[
|τ2 − 1|2 + |τ2 + 1|2 + 4|τ |2

]
.(6.5.1)

Therefore, τ2 = u2 − v2 + 2iuv, |τ2 − 1|2 = (u2 − v2 − 1)2 + 4u2v2,

|τ2 + 1|2 = (u2 − v2 + 1)2 + 4u2v2, 4|τ |2 = 4(u2 + v2).

On substituting these quantities into Equation (6.5.1), we get:

E =
1

2
|F |2 2[(u2 − v2)2 + 1 + 4u2v2 + 2u2 + 2v2],

= |F |2 [u4 + 2u2v2 + v4 + 1 + 2u2 + 2v2],

= |F |2 [1 + u2 + v2]2.(6.5.2)

Recall that,

E

2
= |ϕ|2 =

1

4
|f |2 ((1− g2)(1− ḡ2) + (1 + g2)(1 + ḡ2) + 4gḡ) ⇒ E = |f |2 [1 + |g|2]2,

lnE = ln |F |2 + 2 ln(1 + u2 + v2) ⇒ ∆(2 ln(1 + u2 + v2)) =
8

(1 + u2 + v2)
,

∆(ln|F |2) = ∆(lnF F̄ ) = ∆(lnF + lnF̄ ),
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Recall from Equation (5.1.2) that ∆ = 4 ∂2/∂z̄∂z. Since F is holomorphic, F̄ cannot
be, therefore

∂F̄ /∂z = 0 ⇒ ∂(lnF̄ )/∂z = 0,

∆(lnF ) = 4
∂2(lnF )

∂z̄∂z
= 4

∂(F ′/F )

∂z̄
= 0.

Since F , F̄ and hence F ′/F are holomorphic.

Therefore, ∆(ln|F |2) = 0 and ∆(lnE) = 8/(1 + u2 + v2)2.

Theorem 6.5.2. The Gauss curvature of the minimal surface determined by the
Weierstrass-Enneper representation II is

K = − 4

|f |2(1 + u2 + v2)4
.(6.5.3)

Proof. From the foregoing,

K = − 1

2E
∆(lnE),

= − 8

2|F |2(1 + u2 + v2)4
,

= − 4

|F |2(1 + u2 + v2)4
.(6.5.4)

�

Notice that if substitute F = f/g′ in Equation (6.5.3), we get

(6.5.5) K = − 4|g′|2

|f |2(1 + |g|2)4
.

Equation (6.5.3) gives the value of Gauss curvature, K in terms of Weierstrass-
Enneper representation II, while Equation (6.5.5) gives K in terms of Weierstrass-
Enneper representation I.

Corollary 6.5.3. The Gauss curvature of a minimal surface is non-positive and
unless the surface is a plane, it can have only isolated zeros.

Proof. From Equation (6.5.5), we see that K is zero only when g′ is zero. Since g is
meromorphic, g′ is also meromorphic. This means that unless g′ is identically zero
everywhere, g′ has a finite number of poles. g′ is not identically zero everywhere for
that would meanM is a part of the plane, which is contrary to our initial assumption,
which is; M is not a plane. As mentioned in Theorem 5.3.1, meromorphic function
have the property that their zeros are isolated, so g′ has isolated zeros which implies
that K does as well. � �
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6.5.1 Comments

1. We noticed that the values of Gauss curvature, K given by Equations (6.5.3)
and (6.5.5) are different. The first formula never allows K = 0 while the second
allows K = 0 at points where g′ = 0. This discrepancy is due to assumption we
made in transforming fromWeierstrass-Enneper representation I to Weierstrass-
Enneper representation II by allowing g to be holomorphic and to have an
inverse g−1 which is holomorphic in a domain D as well. Refer to the proof of
Corollary 6.5.3 for more details.

2. A minimal surface which is described by (f, g) or F (τ) has an associated family
of minimal surfaces given by (eitf, g) or (eitF (τ)) respectively. Two surfaces of
such family described by t0 and t1 are said to be adjoint if t1 − t0 = π/2. It is
pertinent to mention that E = Xu ·Xu remains the same no matter what t is
taken. Since we have isothermal parameters, this is enough to show that all the
surfaces of an associated family are locally isometric, Oprea [29].

6.6 Classical complete embedded minimal surfaces
using Weierstrass - Enneper data

In this chapter, we present the construction of classical complete embedded minimal
surfaces (helicoid, catenoid, Scherk’s, Enneper’s and the Henneberg’s surfaces) using
Weierstrass - Enneper data. The first four surfaces are complete in the induced metric,
only the Henneberg’s surface is not complete.

6.6.1 The Helicoid

Take M = C, g(z) = − iez and ω = e−z dz. Observe that g has no poles and ω has
no zeros in C. From Equation (6.0.20), we have

α1 =
1

2
(1− g2)ω = cosh (z) dz,

α2 =
1

2
(1 + g2)ω = −i sinh (z) dz,

α3 = g ω = − i dz.(6.6.1)

Since cosh(z), sinh(z) and multiplication by a constant are holomorphic functions in
C, then we have

∫
γ
αk = 0, for every closed path γ in C and k = 1, 2, 3. That is, the

forms αk do not have periods. From Equation (6.0.21), we get

X1 = Re

∫ z

0

cosh(z) dz = Re (sinh(z)) = cos (v) sinh (u),

X2 = Re

∫ z

0

− i sinh(z) dz = Re (− i cosh(z) + i) = sin (v) sinh (u),

X3 = Re

∫ z

0

− i dz = Re (−i z) = v.(6.6.2)

Therefore, X(u, v) = (cos (v) sin (v) sinh (u), v) describes a minimal surface – The
helicoid. Figures 9.1a and 9.1b show such a helicoid.
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6.6.2 The Catenoid

Take M = C, g(z) = − ez and ω = − e−z dz. Observe that g has no poles and ω
has no zeros in C. From Equation (6.0.20), we have

α1 =
1

2
(1− g2)ω = sinh (z) dz,

α2 =
1

2
(1 + g2)ω = −i cosh (z) dz,

α3 = dz.(6.6.3)

Since cosh(z), sinh(z) and multiplication by a constant are holomorphic functions
in C, then we have

∫
γ
αk = 0, for every closed path γ in C and k = 1, 2, 3. That is,

the forms αk do not have periods. From Equation (6.0.21), we get

X1 = Re

∫ z

0

sinh(z) dz = Re (cosh(z)− 1) = cos (v)− 1,

X2 = Re

∫ z

0

− i cosh(z) dz = Re (− i sinh(z)) = sin (v) cosh (u),

X3 = Re

∫ z

0

dz = Re (z) = u.(6.6.4)

Therefore, X(u, v) = (cos (v) cosh (u), sin (v) cosh (u), u)− (1, 0, 0). This is up to a
translation, the parametrization of the catenoid shown in Figures 9.1c and 9.1d. Such
a parametrization wraps the plane C around the catenoid infinitely many times.

Another way of obtaining the catenoid is the following: TakeM = C−{0}, g(z) = z
and ω = dz/z2. Then

α1 =
1

2
(1− z2)

dz

z2
=

1

2

(
1

z2
− 1

)
dz,

α2 =
i

2
(1 + z2)

dz

z2
=

1

2

(
1

z2
+ 1

)
dz,

α3 =
1

z
dz.(6.6.5)

The forms α1 and α2 do not have periods, but α3 has only a purely imaginary period,
which can be calculated thus∮

1

z
d z =

∫ 2π

0

1

r
e−θ i d(r eθ i) = 2πi,

where z = u+ i v, r =
√
u2 + v2 and tan θ =

v

u
.
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From Equation (6.0.21), we get,

X1 = − u

2

(
1 +

1

u2 + v2

)
+ 1,

X2 = − v

2

(
1 +

1

u2 + v2

)
,

X3 =
1

2
loge (u

2 + v2).(6.6.6)

Equations 6.6.6 describe the catenoid, up to a translation. In order to see this, set:

ρ =
1

2
loge (u

2 + v2) and θ = tan−1
(u
v

)
− π.

6.6.3 The Enneper’s surface

The simplest choice that one can make for M , g and ω is to take M = C , g(z) = z
and ω = dz. This choice results in a minimal surface X : C → R3 given by

X(u, v) =
1

2

(
u− u3

3
+ u v2, −v + v3

3
− u2 v, u2 − v2

)
,(6.6.7)

which describes the Enneper’s surface shown in Figures 9.3a and 9.3b. This is a
complete minimal surface. Its Gauss curvature is

K = − 16

(1 + |z|2)4
, where z = u+ i v.(6.6.8)

We note however, that Enneper’s surface, within a certain radius boundary curve, is
minimal but not area minimizing. This is illustrated in Figure 9.4.

6.6.4 The Scherk’s surface

Consider the unit disk D = {z ∈ C; |z| < 1}. Take M = D, g(z) = z and
ω = 4 dz

(1−z4) . From Equation (6.0.20), we have,

α1 =
2 dz

1 + z2
=

(
i

z + i
− i

z − i
dz

)
dz,

α2 =
2 i dz

1− z2
=

(
i

z + 1
− i

z − 1
dz

)
dz,

α3 =
4z dz

1− z4
=

(
2z

z2 + 1
− 2z

z2 − 1

)
dz.(6.6.9)
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It is obvious that α1, α2, and α3 have no periods in D. From Equation (6.0.21), we
get

X1 = Re

(
i loge

(
z + i

z − i

))
= − arg

(
z + i

z − i

)
,

X2 = Re

(
i loge

(
z + 1

z − 1

))
= − arg

(
z + 1

z − 1

)
,

X3 = Re

(
loge

(
z2 + 1

z2 − 1

))
= loge

∣∣∣∣z2 + 1

z2 − 1

∣∣∣∣ .(6.6.10)

It is easy to see that
z + i

z − i
=

|z|2 − 1

|z − i|2
+ i

z + z̄

|z − i|2
,

and
z + 1

z − 1
=

|z|2 − 1

|z − 1|2
+

z − z̄

|z − 1|2
.

Since |z|2 − 1 < 1 in D, we have

− 3π

2
≤ xj ≤ − π

2
, j = 1, 2, z = x1 + i x2.

From the expressions given above, we have

cos x1 =
|z|2 − 1

z2 + 1
and cos x2 =

|z|2 − 1

z2 − 1
,

which gives,

x3 = loge

(
cos x2
cos x1

)
, where (x1, x2) is restricted to

(
− 3π

2
, − π

2

) (
− 3π

2
, − π

2

)
.

Thus the the surface X : D → R3 describes a piece of Scherk’s minimal surface, which
is shown in Figure 9.3c.

For us to obtain the whole surface, we consider g and ω defined in M = C −
{1, −1, i, −i}. In this case, the resulting forms α1 and α2 have real periods.

Let
∏

:M →M be the universal covering of M and define

x̃k = Re

∫ z ∏⋆
αk, k = 1, 2, 3(6.6.11)

SinceM is simply connected, the forms
∏⋆

αk have no periods and therefore, the func-
tions x̄k :M → R are well defined, k = 1, 2, 3. The image x̃(M̃) can be obtained from

the previous functions xk if we now allow x1 = − arg
(

z+i
z−i

)
and x2 = − arg

(
z+1
z−1

)
to

assume all possible values under the only restriction that

cos x2
cos x1

> 0.

This is equivalent to considering the entire graphic of the real function

x3 = loge

(
cos x2
cos x1

)
.
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6.6.5 The Henneberg’s surface

M = C− {0} , g(z) = z and ω = 2
(
1− 1

z4

)
dz. This gives

α1 =

(
− 1

z4
+

1

z2
+ 1− z2

)
dz,

α2 = i

(
− 1

z4
− 1

z2
+ 1− z2

)
dz,

α3 = 2

(
z − 1

z3

)
dz.(6.6.12)

Notice that α1, α2 and α3 have no periods in M . We then substitute for the α’s in
Equation (6.0.21), to get

X1 = Re

∫ z

1

α1 dz = Re

(∫ z

1

(1− z2)3

3z3

)
dz = Re

(
(z̄ − |z|2)3

3|z|6

)
,

X2 = Re

∫ z

1

α2 dz = Re

(∫ z

1

i (1 + z2)3

3z3
− 8 i

3

)
dz = − Im

(
(z̄ + |z|2z)3

3|z|6

)
,

(6.6.13) X3 = Re

∫ z

1

α3 dz = Re

(∫ z

1

(z2 − 1)2

z2

)
dz = Re

(
(z |z|2 − z̄)2

|z|4

)
,

resulting in the following

X1 =
u3 (1− u2 − v2)3 − 3u v2(1− u2 − v2)(1 + u2 + v2)2

3(u2 + v2)3
,

X2 =
3u2 v(1 + u2 + v2)2 (1− u2 − v2)− v3(1− u2 − v2)3

3(u2 + v2)3
,

X3 =
(1− u2 − v2)2 u2 − (1 + u2 + v2) v2

(u2 + v2)2
.(6.6.14)

Now let φ(z) = (1− z2)/z and ψ(z) = (1 + z2)/z. It is easy to verify that

φ

(
− 1

z

)
= φ(z) and ψ =

(
− 1

z

)
= ψ(z).(6.6.15)

Since X1 = 1
3 Re (φ(z)

3), x2 = 1
3 Re i (ψ(z)3) and X3 = Re (φ(z)2), we have

that xk(−1/z̄) = xk(z), k = 1, 2, 3. If we identify M with the unit sphere minus two
points through the stereographic projection, then z and −1/z̄ correspond to antipodal
points on the sphere.

From Equation (6.6.15) we conclude that X = (X1, X2, X3) can be thought of as a
mapping from the projective plane into R3. Therefore X(M) is a Möbius strip in R3.

It is pertinent to mention that X is not regular at every point; in fact, we have∑
|αk|2 = 0 at the points ± 1 and ± i, which are the only singular points of X. Since
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these represent two pairs of antipodal points, we then have that X, considered as a
mapping on the projective plane, is singular at exactly two points.

Therefore, X restricted to C − {0, 1, −1, i, −i} represents a minimal surface which
is not complete and whose image is a Mobius strip minus two points. Since g(z) = z,
its Gauss mapping covers each point of S2(1) just once, with exception of six points.
Therefore, its total curvature is−4π. The Henneberg’s surface is shown in Figure 9.3d.

6.6.6 The Costa’s surface

The Weierstrass-Enneper representation for Costa’s surface can be achieved by choos-
ing the relevant parameters as follows:

g =
2
√
2π ℘( 12 )

℘′(ζ)
and η = ℘(ζ) dζ.

The Weierstrass elliptic functions (or Weierstrass ℘-functions), are elliptic functions
which, unlike the Jacobi elliptic functions, have a second-order pole at z = 0. To
specify ℘(z) completely, its half-periods ω1 and ω2 or elliptic invariants g2 and g3
must be specified. These two cases are denoted by ℘(z | ω1, ω2) and ℘(z; g2, g3)
respectively.

The domain used was the unit square torus with points at 0, 1
2 ,

i
2 removed.

With the Weierstrass-Enneper representation, Ferguson and Gray [14, 17], discovered
that the Costa surface can be represented parametrically and explicitly by:

X1 =
1

2
Re

{
−ζ (u+ iv) + π u+

π2

4 e1
+

π

2 e1

[
ζ

(
u+ iv − 1

2

)
− ζ

(
u+ iv − 1

2
i

)]}
,

X2 =
1

2
Re

{
−iζ (u+ iv) + π v +

π2

4 e1
− π

2 e1

[
i ζ

(
u+ iv − 1

2

)
− i ζ

(
u+ iv − 1

2
i

)]}
,

(6.6.16) X3 =
1

4

√
2π ln

∣∣∣∣℘(u+ iv)− e1
℘(u+ iv) + e1

∣∣∣∣ ,
where ζ(z) is the Weierstrass zeta function, ℘(g2, g3; z) is the Weierstrass elliptic
function with (g2, g3) = (189.072772 . . . , 0), the invariants correspond to the half-
periods 1/2 and i/2, and first root:

e1 = ℘

(
1

2
; 0, g3

)
= ℘

(
1

2

∣∣∣∣∣ 12 , 12 i
)

≈ 6.87519,

where ℘(z; g2, g3) = ℘(z | ω1, ω2) is the Weierstrass elliptic function.

The Costa surface (torus) [9] is probably the most celebrated complete minimal surface
in R3 since the classical examples from the nineteenth century. It is a thrice punctured
torus with total curvature −12π, two catenoidal ends and one planar middle end.
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Costa [9] demonstrated the existence of this surface but only proved its embeddedness
outside a ball in R3. Hoffman and Meeks [18] demonstrated its global embeddedness,
thereby disproving the widely accepted erroneous conjecture that the only complete,
embedded minimal surfaces in R3 of finite topological type were the plane, catenoid
and helicoid. The Costa surface contains two horizontal straight lines that intersect
orthogonally, and has vertical planes of symmetry bisecting the right angles made by
these two line. The complete Costa’s surface is shown in Figure 9.5a. Whereas its
depiction as been the union of a catenoid with a plane through its waist circle, with
two pairs of ”tunnels” reminiscent of Scherk’s Second Surface passing between the
plane and the catenoid ends is shown in Figures 9.5b, 9.5c and 9.5d.



Chapter 7

Minimal surfaces – area
minimizing or not area
minimizing

It is a well known fact that minimal surfaces do not always minimize area. This has
been demonstrated by forming a catenoid between two rings (boundaries) whose axis
are offset by a certain amount from one another. In this chapter of the survey an
approach due to Schwartz which tells us when we have minimal non-area-minimizing
surfaces [29] is presented. Before showing this, it would be instructive to use one
simple example to illustrate where areas compared using the usual tools of vector
analysis.

Let z = f(x, y) be a function of two variables which satisfy the minimal surface
equation given in Equation (4.0.6). Let the graph of f be parameterized by X(x, y) =
(x, y, f(x, y)) over a closed disc for example, in the xy-plane with boundary curve
C. Take any other function z = g(x, y) on the disc with g|C = f |C, and suppose
for convenience that the union of the two graphs along the common boundary C
forms a surface with no self-intersections. That is, if Y(x, y) = (x, y, g(x, y)) is a
parametrization for the graph of g, then the surface S = X ∪C Y encloses a volume
in R3. Let N be the unit normal vector field for X

N =
(− fx,− fy, 1)√
1 + f2x + f2y

.

Although we normally think of N as a vector field on X, there is no reason not to
consider it at every point in R3 above the disc where f is defined. Notice that N does
not depend on z. Without loss of generality, we assume the graph of f lies above that
of g, then N is the outer normal of X and is pointed inside M on Y.

71
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Let us compute the divergence of the vector field N

⟨∇ , N⟩ = − ∂

∂x

 fx√
1 + f2x + f2y

− ∂

∂y

 fy√
1 + f2x + f2y

+
∂

∂z

 1√
1 + f2x + f2y

 ,

= −
fxx(1 + f2x + f2y )− f2xfxx − fxfyfxy

(1 + f2x + f2y )
3/2

−
fyy(1 + f2x + f2y )− fyfxfxy − f2y fyy

(1 + f2x + f2y )
3/2

,

(7.0.1) =⇒ −
fxx(1 + f2y )− 2 fxfyfxy + fyy(1 + f2x)

(1 + f2x + f2y )
3/2

= 0,

since f satisfies the minimal surface equation. Recall that the divergence theorem
states that ∫ ∫ ∫

Ω

⟨∇ , V ⟩ dΩ =

∫ ∫
M

⟨V , N⟩ ,

for a surface M enclosing a volume Ω. The divergence vector V = (V1, V2, V3) is
defined as ⟨∇ , V ⟩ = ∂V1/∂x1+∂V2/∂x2+∂V3/∂x3 and N is the unit outward normal
ofM . Using the directions of the vector field mentioned above and the downward unit
normal N of Y (corresponding to the outer normal on M), the divergence theorem
together with the computation of ⟨∇ , N⟩ gives,

0 =

∫ ∫ ∫
⟨∇ , N⟩ dx dy dz =

∫ ∫
S

⟨N , dAS⟩ =
∫ ∫

X

⟨N , dAX⟩+
∫ ∫

Y
⟨N , dAY⟩,

=

∫ ∫
X

⟨N , N⟩
√
1 + f2x + f2y dx dy +

∫ ∫
Y
⟨N , N⟩

√
1 + g2x + g2y dx dy,

=

∫ ∫
X

√
1 + f2x + f2y dx dy +

∫ ∫
Y
cos (θ)

√
1 + g2x + g2y dx dy,

where θ is the angle between the unit normal vectors N and N .

Recall that

Area (X) =

∣∣∣∣ ∫ ∫ √
1 + f2x + f2y dx dy

∣∣∣∣ =

∣∣∣∣ ∫ ∫ cos (θ)
√
1 + g2x + g2y dx dy

∣∣∣∣ ,
≤

∫ ∫
| cos (θ)|

√
1 + g2x + g2y dx dy ≤

∫ ∫ √
1 + g2x + g2y dx dy,(7.0.2)

= Area (Y).

Therefore satisfying the minimal surface equation can guarantee minimum surface
area when compared to the right other surface.

We have done enough groundwork to prepare us for the general case. Let us consider a
minimal surfaceM bounded by a curveC and by Lemma 8.1.2, let the parametrization
X(u, v) of M be isothermal. Therefore, all the consequences of having isothermal
parameters follow; that is,
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E = G, F = 0, e = − g, K = − (e2 + f2)/E2, ⟨Xu , Xu⟩ = ⟨Xv , Xv⟩ = (e2 + f2)/E,
⟨Xu , Xv⟩ = 0.

Furthermore, from the results of Equation (6.5.2) and Theorem 6.5.2, we have

K = − 4

|F |2(1 + u2 + v2)4
and E = |F |2 [1 + u2 + v2]2 = G.(7.0.3)

Now let us take a variation Yt(u, v) = X(u, v)+t V (u, v), where V (u, v) = ρ(u, v)N(u, v)
is a normal vector field onM of varying length ρ(u, v) with ρ(C) = 0. ρ(C) = 0 means
that ρ vanishes on the curve in the uv-plane which is carried to C by X(u, v). Note
that V (u, v) = ρ(u, v)N(u, v) is an infinitesimal displacement of X(u, v) by a factor
of t in the direction of N(u, v).

Next we need to calculate:

Yt
u = Xu + t Vu,

Yt
v = Xv + t Vv and,

Yt
u × Yt

v = Xu × Xv + t[Xu × Vv + Vu × Xv] + t2(Vu × Vv).

In what follows, let

W = ⟨(Xu × Xv) , (Xu × Vv + Vu × Xv)⟩,

WW = 2⟨(Xu × Xv) , (Vu × Vv)⟩+ ⟨(Xu × Vv) , (Xu × Vv)⟩
+ 2⟨(Xu × Vv) , (Vu × Xv)⟩+ ⟨(Vu × Xv) , (Vu × Xv)⟩,

S =
√
|Xu × Xv|2 + 2tW + t2 WW +O(t3),

where O(t3) denote terms involving powers of t greater than or equal to three. With
these notations, we see that the surface area A(t) is given by

A(t) =

∫ ∫
|Yt

u × Yt
v| du dv =

∫ ∫
S du dv.(7.0.4)

Let us assume that at t = 0 (corresponding to M) is a critical point for the area;

Therefore, A′(0) = 0.

Recall the Lagrange identity

⟨(v ×w) , (a× b)⟩ = (⟨v , a⟩)(⟨w , b⟩)− (⟨v , b⟩)(⟨w , a⟩).

Lemma 7.0.1. If M is minimal, then W = 0.

Proof. Notice that

W = ⟨(Xu × Xv) , ⟨(Xu × Vv)⟩+ ⟨(Xu × Xv) , (Vu × Xv)⟩,
= E ⟨Xv , Vv⟩+ E ⟨Xu , Vu⟩,
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by Lagrange identity and using isothermal parameters.

Now, Vu = ρu N+ ρNu and Vv = ρv N+ ρNv,

so we have

⟨Xu , Vu⟩ = ⟨Xu , (ρu N+ ρNu)⟩,
= ⟨ρXu , Nu⟩ = − ρ e, since ⟨Xu , N⟩ = 0,

by the definition of e. Similarly, ⟨Xu , Vv⟩ = − ρ f, ⟨Xv , Vu⟩ = − ρ f, and ⟨Xv , Vv⟩ =
− ρ g = ρ e.

Then we have; W = ρE e− ρE e = 0. �

Next, let us consider WW. Employing Lagrange identity and the calculations stated
above and recalling that:

Vu = ρu N+ ρNu,

Vv = ρv N+ ρNv,

⟨Nu , Nu⟩ = ⟨Nv , Nv⟩ =
e2 + f2

E
,

⟨Nu , Nv⟩ = 0.

From the foregoing, we have,

WW = 2⟨(Xu × Xv) , (Vu × Vv)⟩+ ⟨(Xu × Vv) , (Xu × Vv)⟩
+ 2⟨(Xu × Vv) , (Vu × Xv)⟩+ ⟨(Vu × Xv) , (Vu × Xv)⟩,

= 2[(⟨Xu , Vu⟩)(⟨Xv , Vv⟩)− (⟨Xu , Vv⟩)(⟨Xv , Vu⟩)]
+ (⟨Xu , Xu⟩)(⟨Vv , Vv⟩)− (⟨Xu , Vv⟩)(⟨Vv , Xu⟩) + 2[(⟨Xu , Vu⟩)(⟨Vv , Xv⟩)

− (⟨Xu , Xv⟩)(⟨Vv , Vu⟩)] + (⟨Vu , Vu⟩)(⟨Xv , Xv⟩)− (⟨Vu , Xv⟩)(⟨Xv , Vu⟩),

= 2[(− ρe)(ρe)− (− ρf)(− ρf)] + E(ρ2v + ρ2(e2 + f2)/E)

− ρ2f2 + 2(− ρe)(ρe) + E(ρ2u + ρ2(e2 + f2)/E)− ρ2f2,

= 4ρ2[− e2 − f2] + ρ2[e2 + f2 + e2 + f2] + E(ρ2v + ρ2u),

= 2ρ2[− e2 − f2] + E(ρ2v + ρ2u) = 2ρ2E2K + E(ρ2u + ρ2v).

Therefore, S simplifies to

S =
√

|Xu × Xv|2 + t2 WW +O(t3).

On differentiating A(t) =
∫ ∫

S du dv, we have

A′(t) =

∫ ∫
t(2ρ2E2K + E(ρ2u + ρ2v)) +O(t2)

S
du dv,
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and

A′′(t) =

∫ ∫
(2ρ2E2K + E(ρ2u + ρ2v) +O(t))S − t(2ρ2E2K + E(ρ2u + ρ2v))S ′

S2
du dv.

Notice that S ′ = tWW +O(t2)
S by Lemma 7.0.1.

Therefore, S|t=0 = |Xu × Xv| =
√
E2 = E and S ′|t=0 = 0.

Hence

A′′(0) =

∫ ∫ [
2ρ2E2K + E(ρ2u + ρ2v)

E

]
du dv,

=

∫ ∫ [
2ρ2EK + ρ2u + ρ2v

]
du dv.(7.0.5)

On substituting for K and E from Equations 7.0.3 into Equation (7.0.5), we get

A′′(0) =

∫ ∫ [
(2ρ2|F |2(1 + u2 + v2)2)(−4)

|F |2(1 + u2 + v2)4
+ ρ2u + ρ2v

]
du dv,

=

∫ ∫ [
−8ρ2

(1 + u2 + v2)2
+ ρ2u + ρ2v

]
du dv.(7.0.6)

The evaluation of A′′(0) is carried out over a region R in the u v-parameter plane, and
the expression for A′′(0) does not depend on the Weierstrass-Enneper representation,
but only on R and the choice of ρ on that region. As in calculus, if t = 0 gives a
minimum, then the second derivative must be non-negative there. Therefore, if we
can find a function ρ (with ρ(C) = 0) defined on R such that A′′(0) < 0, then the
minimal surfaceM cannot have minimum area among surfaces spanningC. Therefore,
we have,

Theorem 7.0.2. Schwartz. Let M be a minimal surface spanning a curve C. if the
closed unit disk D = {(u, v)|u2 + v2 ≤ 1} is contained in the interior of R, then a
function ρ exists for which A′′(0) < 0. Hence, M does not have minimum area among
surfaces spanning C.

Proof. Let D = {(u, v, r) |u2 + v2 ≤ r2} be a domain bounded by the cone r =√
u2 + v2. Let us define a function on D, which is given by

ρ(u, v, r) =
u2 + v2 − r2

u2 + v2 + r2
,(7.0.7)

and let us consider

A(r) =

∫ ∫
D(r)

[
−8ρ2

(1 + u2 + v2)2
+ ρ2u + ρ2v

]
du dv,

where D(r) = {(u, v) |u2 + v2 < r2} is the open r-disk. This is A′′(0) when we are
in R, so our aim is to show that the choice of ρ above leads to A(r) < 0 for certain
values of r. Let us split the integral into two pieces and consider the integral of the
last two terms of the integrand. If we let



76

P = − ρρv and Q = ρρu,

and apply Green’s theorem, we get∫
u2+v2=r2

− ρρv du+− ρρu dv =

∫ ∫
D(r)

(ρ2u + ρ2v) du dv +

∫ ∫
D(r)

ρ(ρuu + ρvv) du dv.

The left hand side is zero because ρ(u, v, r) = 0 whenever u2 + v2 = r2, therefore∫ ∫
D(r)

(ρ2u + ρ2v) du dv = −
∫ ∫

D(r)

ρ∆ρ du dv,

where ∆ ρ = ρuu + ρvv is the Laplacian of ρ. Therefore

A(r) =

∫ ∫
D(r)

− ρ

[
−8ρ2

(1 + u2 + v2)2
+∆ρ

]
du dv.

It is easy to see that for

ρ = ρ(u, v, 1) =
u2 + v2 − 1

u2 + v2 + 1
=⇒ 8ρ2

(1 + u2 + v2)2
+∆ρ = 0,(7.0.8)

since u2 + v2 = 1. We see from Equation (7.0.8) that A(1) = 0. Recall that r = 1

corresponds to the unit disk, we would like A(1) < 0 for r’s slightly larger than 1. In
order to show that this is true, we need to look at A′(1). In order to proceed, let us
make the following change of variables

s =
u

r
and t =

v

r
with du = rds and dv = rdt.

Then

A(r) = −
∫ ∫

ρ

[
8ρ2

(1 + r2(s2 + t2))2
+∆ρ

]
r2 ds dt,(7.0.9)

ρ(s, t, r) =
r2s2 + r2t2 − r2

r2s2 + r2t2 + r2
=
s2 + t2 − 1

s2 + t2 + 1
= ρ(s, t).(7.0.10)

Therefore, in (s, t) coordinates, ρ does not depend on r. Also, ρu = ρs/r and ρuu =
ρss/r

2 by chain rule, and similarly for v. Hence, ∆u, v (ρ) = ∆s, t ρ/r
2. Now if we

multiply by r2 and replace the u v-Laplace operator in Equation (7.0.9) we get

A(r) = −
∫ ∫

ρ

[
8r2ρ2

(1 + r2(s2 + t2))2
+∆s, t ρ

]
r2 ds dt.(7.0.11)

The fact that ρ and ∆s, t ρ are independent of r allows us to easily take the derivative
of A(r) with respect to r to obtain

A′(r) = −
∫ ∫

16ρ2r(1 + r2(s2 + t2))2 − 32ρ2r3(1 + r2(s2 + t2))(s2 + t2)

(1 + r2(s2 + t2))4
ds dt.
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At r = 1, s2 + t2 < 1, therefore if we replace ρ by its definition in terms of s and t,
we get:

A′(1) = −
∫ ∫

16ρ2(1 + s2 + t2)− 32ρ2(s2 + t2)

(1 + s2 + t2)3
ds dt,

= −
∫ ∫

s2+t2<1

16ρ2(1 + s2 + t2 − 2s2 − 2t2)

(1 + s2 + t2)3
ds dt,

= −
∫ ∫

s2+t2<1

16(s2 + t2 − 1)2(1− s2 − t2)

(1 + s2 + t2)5
ds dt,

= −
∫ ∫

s2+t2<1

− 16(s2 + t2 − 1)2(s2 + t2 − 1)

(1 + s2 + t2)5
ds dt,

= 16

∫ ∫
s2+t2<1

(s2 + t2 − 1)3

(1 + s2 + t2)5
ds dt.(7.0.12)

The numerator of Equation (7.0.12) is always negative, since (s2 + t2 < 1), therefore
A′(1) < 0. Since this means that A(r) is decreasing at r = 1 and we have seen
previously that A(1) = 0, it must be the case that A(r) < 0 for 1 < r < r̄ (some r̄).

Now suppose that the unit disk D is contained in the interior of the parameter domain
R. Then there is an r such that 1 < r < r̄ and {(u, v) |u2 + v2 ≤ r2} ⊆ R. Let us
define

ρ(u, v) =

{
ρ(u, v, r) for u2 + v2 ≤ r2,

0 for u2 + v2 > r2.

Note that ρ|∂R = 0 and from the foregoing, A′′(0) < 0. Note that the partial deriva-
tives ρu and ρv are not continuous on the boundary circle {(u, v) |u2 + v2 = r2}, but
may be rounded-off suitably there while keeping A′′(0) < 0. Therefore, the minimal
surface given by the Weierstrass-Enneper representation which spans R is not area
minimizing. This proofs the theorem. �

7.1 Geometric interpretation of Theorem 7.0.2

The point of emphasis here is that the Weierstrass-Enneper representation is not just
a bunch of equations, rather it is a way to directly obtain geometrical information
about the minimal surface from its representation. The parameters u and v are
identified with the real and imaginary parts of the complex variable τ the moment
M is described with the Weierstrass-Enneper II representation. Recall that τ itself
is identified with the function g of the Weierstrass-Enneper I representation, and g
is the Gauss map followed by stereographic projection (Theorem 5.3.1). Therefore
since the stereographic projection from the North pole projects the lower hemisphere
of S2 onto the unit disk D, R contains D in its interior precisely when the image of
the Gauss map of M contains the lower hemisphere of S2 in its interior.
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There is nothing special about implementing stereographic projection from the North
pole. Because it can be done from any point on the sphere, we have the following
geometrical version of the Schwartz theorem [29].

Theorem 7.1.1. Let M be a minimal surface spanning a curve C. If the image of
the Gauss map of M contains a hemisphere of S2 in its interior, then M does not
have minimum area among surfaces spanning C.

Enneper’s surface X(u, v) = (u− u3/3 + uv2, −v + v3/3− vu2, u2 − v2) has no self-
intersections for u2 + v2 < 3, and its Gauss map (restricted to the disk u2 + v2 < 3)
covers more than a hemisphere of S2 see Figure 9.4d. By Theorem 7.1.1, it can
therefore be inferred that Enneper’s surface does not minimize area among all surfaces
spanning the curveC given by applying the parametrizationX to the parameter circle
u2 + v2 = R2, where 1 < R <

√
3. However, by the theorem of Douglas and Rado,

there exists a least area [29] and hence a minimal surface spanning C. This imply
that there are at least two minimal surfaces spanning C. This point goes to highlight
the issues surrounding the uniqueness of the solution to Plateau’s problem. The
following theorem which we shall state without proof, provides some relief regarding
the uniqueness of the solution to Plateau’s problem.

Theorem 7.1.2. Ruchert [29] For 0 < r ≤ 1, Enneper’s surface is the unique solu-
tion to Plateau’s problem for the curve given by applying the Enneper parametrization
to a parameter circle of radius r.

Although the result of Douglas and Rado shows that there are at least two minimal
surfaces spanning the curve C, only one of these is known explicitly, the Enneper’s
surface. Presently, there are no example(s) of two or more explicit minimal surfaces
spanning a given curve, however, for two curves there is, Figures 9.1c and 9.1d.

General Comment It is pertinent to state again that the name minimal surface is
sort of misleading. It is really not the surface with least area for the given boundary.
The variation formula shown above only shows that A′(0) = 0, where A(t) is the area
of any surface for the given boundary and A(0) is the surface area of the original
surface. The only inference we can make from this is either A(0) is maximum or
minimum. It could be the case that a minimal surface has the largest area among
those surfaces with the given boundary. The minimal surface with least area is called
the stable minimal surfaces.



Chapter 8

S.N. Bernstein’s and R.
Osserman’s theorems for
minimal surfaces

The famous Bernstein’s theorem (1915) is global in nature and it was one of the earliest
theorems concerning solutions of the minimal surface equations (MSEs). The theorem
states that only the trivial affine solutions f(x, y) ≡ ax+by+c where (a, b, c are constants)
can satisfy the minimal surface equation over the entire R2-plane. Bernstein proved
this as a special consequence of his remarkable geometric theorem which states that
any bounded C2 function on R2 with graph z = f(x, y) having non-negative Gauss
curvature (that is, with f satisfying fxx fyy − f2xy ≤ 0) must necessarily have Gauss
curvature identically zero. In particular bounded solutions f ∈ C2 (R2) of any equa-
tion of the form afxx + 2bfxy + cfyy = 0, where aζ2 + 2bζη + cη2 ≥ ζ2 + η2,
sup{|a|, |b|, |c|} < ∞, and where the coefficients a, b, c may depend on f and its
derivatives, are necessarily constant [42].

8.1 Proof of S. N. Bernstein’s theorem for minimal
graphs

The main objective of this chapter is to present a proof of Bernstein’s theorem for
minimal surfaces. The proof presented here was adapted from [31]. The proof of the
theorem, will be carried out with the help of several independent lemmas, which are
also very important in their own rights.

Theorem 8.1.1. Bernstein. Suppose M is a surface given by the graph of a smooth
function defined on all of R2. If M is minimal, then it is a plane.

Remark 1: The theorem in fact holds under weaker regularity hypothesis but for
simplicity we will assume that the graph is smooth.
Remark 2: LetM=graph f where f : R2 → R is smooth. ThusM = {(x, y, f(x, y)) :
(x, y) ∈ R2}. In Section 4, we derived the conditions necessary for the surface M

79
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to be minimal (that is, the mean curvature of M is zero everywhere). The minimal
surface equation is recast below for easy reference.

(8.1.1) (1 + f2y ) fxx − 2fx fy fxy + (1 + f2x) fyy = 0.

In order to prove Bernstein’s theorem, we have to prove that if f is a (smooth) solution
of Equation (8.1.1) on R2, then f(x, y) = ax+ by + c for some constants a, b and c.

The following series of independent lemmas which are also very important will help
accomplish this.

Lemma 8.1.2. Existence of isothermal parameters on a minimal surface.
Suppose M is a regular minimal surface in R3. (Not necessarily a graph.) If p ∈ M
is any point, there exists a parametrization X : D → M with p ∈ X(D) such that X
is isothermal; that is, ⟨Xu , Xu⟩ = ⟨Xv , Xv⟩ and ⟨Xu , Xv⟩ = 0.

Remark 8.1.1. The lemma is actually true without the minimality assumption.
The proof for arbitrary regular surfaces however is much more involved than the
proof given below for minimal surfaces. As is clear from the proof below, in case M
is minimal, we can exploit the structure of the minimal surface Equation (8.1.1) to
construct an isothermal parametrization.

Proof. Recall that in a neighborhood of any point of a regular surface, we may express
the surface as a graph of a function defined over a domain in x y, y z or z x plane. Let
us assume without loss of generality that we can do this over the x y plane for some
neighborhood of p. Thus, we can find a neighborhood V ⊆ M with p ∈ V, an open
ball Br(a) ⊂ R2 and a smooth function f : Br(a) → R such that V = graph f.

Since M is minimal, f must be a solution of Equation (8.1.1) in Br(a). Now recall
the First Fundamental Form with the usual notation, namely;

E(x, y) = 1 + f2x(x, y), F (x, y) = fx(x, y) fy(x, y),

and

G(x, y) = 1 + f2y (x, y) for (x, y) ∈ Br(a).

Let

W =
√
EG− F 2 =

√
1 + f2x + f2y .

We claim that since f solves Equation (8.1.1), the following identities must hold in
Br(a):

(8.1.2)
∂

∂x

(
F

W

)
=

∂

∂y

(
E

W

)
,

and

(8.1.3)
∂

∂x

(
G

W

)
=

∂

∂y

(
F

W

)
.
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These can easily be checked by direct computation. For example to check Equa-
tion (8.1.2), we proceed as follows:

∂

∂x

 fx fy√
1 + f2x + f2y

 − ∂

∂y

 1 + f2x√
1 + f2x + f2y

 ,

=
(1 + f2x + f2y )(fxxfy + fxfxy)− fxfy(fxfxx + fyfyx)

(1 + f2x + f2y )
3/2

,

−
2(1 + f2x + f2y )fxfxy − (1 + f2x)(fxfxy + fyfyy)

(1 + f2x + f2y )
3/2

,

=
fy((1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy)

(1 + f2x + f2y )
3/2

= 0,

by Equation (8.1.1).

The identity 8.1.3 can easily be checked by a similar computation.

Now recall the general fact that if, ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) is a smooth vector
field in a ball Br(a) satisfying ∂ϕ2/∂x = ∂ϕ1/∂y, then ϕ is the gradient of a smooth
function; that is, there exists a smooth function ψ on Br(a) such that Dψ = (ϕ1, ϕ2).

In order to see this, simply define ψ(x, y) to be the line integral of ϕ along the line
segment from a to (x, y) ∈ Br(a).

Thus

ψ(x, y) =
∫ 1

0
xϕ1((1− t)a+ tx) + yϕ2((1− t)a+ tx) dt.

Hence, the identity 8.1.2 implies that there exists a smooth function P on Br(a) such
that

(8.1.4) Px =
E

W
and Py =

F

W
.

Similarly, the identity 8.1.3 implies the existence of a smooth function Q on Br(a)
with

(8.1.5) Qx =
F

W
and Qy =

G

W
.

Set

(8.1.6) u(x, y) = x+ P (x, y) and v(x, y) = y +Q(x, y).
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Then

∂(u, v)

∂(x, y)
= (1 + Px)(1 +Qy)− PyQx,

=

(
1 +

E

W

) (
(1 +

G

W

)
− F 2

W 2
,

= 2 +
e+G

W
> 0.(8.1.7)

Hence by the inverse function theorem, the transformation η : (x, y) 7→ (u(x, y), v(x, y))
given by Equation (8.1.6) has a smooth local inverse µ = η−1 : (u, v) 7→ (x(u, v), y(u, v))
with dµ(u, v) = (dη|µ(u, v))−1 . Computing the inverse matrix on the right hand side
of this, we see that

xu =
W +G

2W + E +G
,

xv = yu = − F

2W + E +G
,

and

yv =
W + E

2W + E +G
.(8.1.8)

Thus, there exists a neighborhood D of = η(a) such that the map X : D →
M, given by X(u, v) = (x(u, v), y(u, v), z(u, v)), where z(u, v) = f ◦ µ(u, v) =
f(x(u, v), y(u, v)) is a reparametrization of M near p.

We claim that X is isothermal. To see this we compute as follows:

First we have:

(8.1.9) zu = fxxu + fyyu =
fx(W +G)− fyF

2W + E +G
,

and,

(8.1.10) zv = fxxv + fyyv =
fy(W + E)− fxF

2W + E +G
.

Hence

⟨Xu,Xu⟩ = x2u + y2u + z2u,

=
E(W +G)2 +GF 2 − 2(W +G)F 2

(2W + E +G)2
,

=
W 2

2W + E +G
.(8.1.11)

⟨Xv , Xv⟩ = x2v + y2v + z2v ,

=
G(W + E)2 + EF 2 − 2(W + E)F 2

(2W + E +G)2
,

=
W 2

2W + E +G
,(8.1.12)
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and,

⟨Xu , Xv⟩ = xuxv + yuyv + zuzv,

=
−F (W +G)− F (W + E) + F (W +G)(W + E) + F 3 − f2xF (W +G)− f2yF (W + E)

(2W + E +G)2
,

(8.1.13) =
−EF (W +G)−GF (W + E) + F (W +G)(W + E) + F 3

(2W + E +G)2
= 0.

�

Lemma 8.1.3. A fact of linear algebra. Suppose A = (aij)1≤ i, j≤2 is a (real)
symmetric matrix. Then a11 > 0 and detA > 0 if and only if

2∑
i, j=1

aij ξi ξj > 0,

for every vector ξ = (ξ1, ξ2) ̸= 0. (A is called positive definite if these equivalent
conditions hold.)

Proof. Note first that if ξ = (ξ1, ξ2), then
∑2

i, j=1 aij ξi ξj = ⟨Aξ, ξ⟩. Since A is sym-

metric, ⟨Aξ, ζ⟩ = ⟨ξ, Aζ⟩ for any two vectors ξ, ζ ∈ R2. That is, A as a linear map
is self-adjoint. Recall the spectral theorem - that λ1 ≡ max{|ξ|=1}⟨Aξ, ξ⟩ and λ2 ≡
min{|ξ|=1}⟨Aξ, ξ⟩ are the two eigenvalues of A. Thus

∑2
i, j=1 aij ξi ξj > 0 for each

ξ ̸= 0 if and only if λ2 > 0. Since detA = λ1λ2 and a11 = ⟨Ae1, e1⟩, it follows that
λ2 > 0 if and only if detA > 0 and a11 > 0. �

Lemma 8.1.4. Suppose f is a smooth function satisfying the minimal surface Equa-
tion (8.1.1) on the entire R2 plane. Then the map η : (x, y) 7→ (u(x, y), v(x, y))
defined by Equation (8.1.6) is a diffeomorphism of the xy plane onto the uv plane.

Proof. By Equation (8.1.7) we have that ∂(u, v)
∂(x, y) > 1 everywhere, and hence η is a

local diffeomorphism. We need to show that η is one-to-one and onto.

Since Py = Qx by Equations 8.1.4 and 8.1.5, there exists a smooth function R : R2 →
R such that P = Rx and Q = Ry. (See the paragraph preceding (Equations 8.1.4.))

Note then that Rxx = Px = E
W > 0 and RxxRyy − R2

xy = PxQy − P 2
y = EG−F 2

W 2 ≡ 1,
and hence by Lemma 8.1.3, we have that, writing (x, y) = (ν1, ν2) for notational
convenience,

(8.1.14)
2∑

i, j=1

Rνiνjξi ξj > 0,

for every vector (ξ1, ξ2) ̸= 0. Now let (x1, x2) and (y1, y2) be any two distinct points
of R2, and let α(t) = R((1− t)x1 + ty1, (1− t)x2 + ty2) for t ∈ [0, 1].
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Then

(8.1.15) α′(t) = (y1−x1)Rx(rt)+(y2−x2)Ry(rt) = (y1−x1)P (rt)+(y2−x2)Q(rt),

where rt = ((1− t)x1 + ty1, (1− t)x2 + ty2),

and

α′′(t) =
2∑

i, j=1

Rνiνj (rt)(yi − xi)(yj − xj).

Since α′′(t) > 0 by Equation (8.1.14), it follows that α′(1) > α′(0). Thus, we have
shown that for any two distinct points p = (x1, x2) and q = (y1, y2) satisfies:

(8.1.16) (y1 − x1)(P (q)− P (p)) + (y2 − x2)(Q(q)−Q(p)) > 0,

or, equivalently, that

(8.1.17) ⟨(η(q)− η(p)) , (q− p)⟩ > |q− p|2.

Since ⟨a , b⟩ ≤ |a||b| this implies that

(8.1.18) q− p < |η(q)− η(p)|,

for any two distinct points p, q ∈ R2. It follows immediately from this that η is
one-to-one. Hence, since η is a local diffeomorphism, it follows that η is a global
diffeomorphism of R2 (thought of as the xy plane) onto some open subset D =
η (R2) of R2 (thought of as the uv plane.)

It remains only to show that D = R2. If this is not true, then there exists a point b ∈
D \D. Let bj be a sequence of points in D converging to b. Let aj = η−1(bj). Taking
p = 0 and q = aj in Equation (8.1.18), it follows that |aj | < |bj−η(0)| ≤ 2|b|+ |η(0)|
for all sufficiently large j. Thus the sequence {aj} is bounded. Hence it must have
a limit point a. But this implies by continuity of η that b = η(a), contradicting the
fact that b ̸∈ η(R2). �

8.1.1 Alternative proof of existence of isothermal parameters
on minimal surfaces

We shall present an alternative proof of the existence of isothermal parameters on
minimal surfaces. The proof given below is adapted from Dogamo [2]. Let C denote
the complex plane, which is, as usual, identified with R2 by setting ζ = u + iv, ζ ∈
C, (u, v) ∈ R2. We recall that a function f : D ⊂ C → C is analytic when, by writing

f(ζ) = f1(u, v) + if2(u, v),

the real functions f1 and f2 have continuous partial derivatives of first order which
satisfy the so-called Cauchy-Riemann equations

∂f1
∂u

=
∂f2
∂v

and
∂f1
∂v

= − ∂f2
∂u

.
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Now let X : D ⊂ R2 → R3 be a regular parameterized surface and define complex
functions ϕ1, ϕ2, ϕ3 by

ϕ1(ζ) =
∂x

∂u
− i

∂x

∂v
, ϕ2(ζ) =

∂y

∂u
− i

∂y

∂v
and ϕ3(ζ) =

∂z

∂u
− i

∂z

∂v
,

where x, y and z are the components functions of X. The three complex functions
ϕ1, ϕ2 and ϕ3 can be written in the following shorthand form thus

(8.1.19) ϕk(ζ) =
∂xk
∂u

− i
∂xk
∂v

; k = 1, 2, 3; ζ = u+ i v.

Lemma 8.1.5. Let X(u, v) = (x(u, v), y(u, v), z(u, v) : D ⊆ R2 → M) be a
parametrization of a regular surface. Define complex valued functions ϕ1 = xu −
ixv, ϕ2 = yu−iyv, ϕ3 = zu−izv. Then X is isothermal if and only if ϕ21+ϕ

2
2+ϕ

2
3 ≡ 0.

Furthermore, if X is isothermal, then X(D) is minimal if and only if ϕ1, ϕ2, ϕ3 are
analytic. Additionally, if u, v are isothermal parameters, then X is regular if and
only if |ϕ21|+ |ϕ22|+ |ϕ23| ̸= 0.

Proof. From Equation (8.1.19), we have

3∑
k=1

ϕ2k (ζ) =
1

4

[
3∑

k=1

(
∂xk
∂u

)2

−
3∑

k=1

(
∂xk
∂v

)2

− 2 i
3∑

k=1

∂xk
∂u

∂xk
∂v

]
,

=
1

4

3∑
k=1

[∣∣∣∣∂X∂u
∣∣∣∣2 − ∣∣∣∣∂X∂v

∣∣∣∣2 − 2i
∂X

∂u
· ∂X
∂v

]
,

=
1

4

3∑
k=1

[⟨Xu , Xu⟩ − ⟨Xv , Xv⟩ − 2i ⟨Xu , Xv⟩] ,

3∑
k=1

ϕ2k (ζ) =
1

4

[
ϕ21 + ϕ22 + ϕ23

]
=

1

4
[E −G− 2i F ] = 0.(8.1.20)

This proves the first part of Lemma 8.1.5, since E = G, and F = 0 for isothermal
surfaces.

Moreover, Xuu +Xvv = 0 if and only if:

∂

∂u

(
∂x

∂u

)
= − ∂

∂v

(
∂x

∂v

)
and

∂

∂v

(
∂x

∂u

)
=

∂

∂u

(
∂x

∂v

)
,

∂

∂u

(
∂y

∂u

)
= − ∂

∂v

(
∂y

∂v

)
and

∂

∂v

(
∂y

∂u

)
=

∂

∂u

(
∂y

∂v

)
,

∂

∂u

(
∂z

∂u

)
= − ∂

∂v

(
∂z

∂v

)
and

∂

∂v

(
∂z

∂u

)
=

∂

∂u

(
∂z

∂v

)
.
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Since the three complex functions ϕ1, ϕ2 and ϕ3 satisfy the Cauchy-Riemann con-
ditions, we conclude that Xuu +Xvv = 0 if and only if ϕ1, ϕ2 and ϕ3 are analytic.
This proves the second portion of Lemma 8.1.5.

We now prove the last portion of Lemma 8.1.5, which states that if, u, v are isothermal
parameters, then X is regular if and only if |ϕ21|+ |ϕ22|+ |ϕ23| ̸= 0.

3∑
k=1

|ϕk (ζ)|2 =
1

4

[
3∑

k=1

(
∂xk
∂u

− i
∂xk
∂v

)(
∂xk
∂u

+ i
∂xk
∂v

)]
,

=
1

4

[
3∑

k=1

(
∂xk
∂u

)2

+

3∑
k=1

(
∂xk
∂v

)2
]
,

=
1

4

3∑
k=1

[∣∣∣∣∂X∂u
∣∣∣∣2 + ∣∣∣∣∂X∂v

∣∣∣∣2
]
=

1

4

3∑
k=1

[⟨Xu , Xu⟩+ ⟨Xv , Xv⟩] ,

(8.1.21)
3∑

k=1

|ϕk (ζ)|2 =
1

4

[
|ϕ1|2 + |ϕ2|2 + |ϕ3|2

]
=
E +G

4
=
E

2
̸= 0.

�

This concludes the proof of Lemma 8.1.5.

Proof. Having done all the preliminary work, we now give a proof of Bernstein’s global
theorem.

Suppose f is a smooth function satisfying the minimal surface Equation (8.1.1) on
all of R2. By Lemma 8.1.4, the map η defined by Equation (8.1.6) is a diffeomor-
phism of the xy-plane onto the entire uv-plane. Hence by the argument in the
proof of Lemma 8.1.2, the map X(u, v) = (x(u, v), y(u, v), z(u, v)) : R2 → M =
graph f,where z(u, v) = f ◦ η−1(u, v) is a global isothermal parametrization of M .

Identifying the u v-plane with the complex plane C, define complex valued functions
ϕ1, ϕ2 and ϕ3 by:

ϕ1(u+ iv) = xu − ixv,

ϕ2(u+ iv) = yu − iyv,

ϕ3(u+ iv) = zu − izv.
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Since X is an isothermal parametrization of a minimal surface, by Lemma 8.1.5, the
functions ϕ1, ϕ2 and ϕ3 are analytic.

Now observe that

(8.1.22) Im (ϕ1 ϕ2) = −xuyv + xvyu = − ∂(x, y)

∂(u, v)
< 0,

where the last inequality follows from Equation (8.1.7). Hence ϕ1 ̸= 0, so that the
function ϕ = ϕ2/ϕ1 is analytic. Furthermore,

(8.1.23) Imϕ =
1

|ϕ1|2
Im (ϕ1 ϕ2) < 0.

Thus ϕ is a complex analytic function on the entire complex plane with imaginary
part bounded above, and hence by Corollary 5.7.3, ϕ = a + ib for some constants
a, b ∈ R. Note then that b ̸= 0 by Equation (8.1.23).

Therefore,

yu − iyv = (a+ ib)(xu − ixv),

or, equivalently,

(8.1.24) yu = axu + bxv and yv = axv − bxu,

where b ̸= 0. Now introduce the linear transformation:

(8.1.25) s = bx, t = ax− y.

Note that since b ̸= 0, this transformation is non-singular. By Equation (8.1.24),

su = bxu, sv = bxv, tu = axu − yu = − bxv and tv = axv − yv = bxu,

so that

∂(s, t)

∂(u, v)
= sutv − svtu = b2(x2u + x2v) ̸= 0.

We claim that (s, t) are also isothermal parameters on M . That is, that

Y(s, t) = X(u(s, t), v(s, t)),

is also a (global) isothermal parametrization of M . This can be verified directly by
computing Ys, Yt in terms of Xu, Xv, us, ut, vs and vt, and checking that
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⟨Ys , Ys⟩ = ⟨Yt , Yt⟩ and ⟨Ys , Yt⟩ = 0.

In summary, we have shown the following. Given thatM ≡ {(x, y, f(x, y)) : (x, y) ∈
R2} is a minimal graph over the entire plane, there exists a linear change of variables
(s, t) 7→ (x, y) (given by Equation (8.1.25)) so that (s, t) are isothermal parameters
on M .

Now if we let

ϕ̃1 = xs − ixt, ϕ̃2 = ys − iyt and ϕ̃3 = zs − izt,

where z(s, t) = f(x(s, t), y(s, t)), then, since (x(s, t), y(s, t), z(s, t)) is isothermal,
we have by Lemma 8.1.5 that

(8.1.26) (ϕ̃1)
2 + (ϕ̃2)

2 + (ϕ̃3)
2 ≡ 0.

However, by Equation (8.1.25), ϕ̃1 and ϕ̃2 are constant. Hence by Equation (8.1.26),
ϕ̃3 is also constant. This means that z is a linear function of s and t, and hence f is
a linear function of x and y. �

8.1.2 An alternative proof of Bernstein’s theorem, Chern [5]

In this chapter, we present an alternative proof of Bernstein’s Theorem which was
given by Chern [5]. Recall that the classical Bernstein’s theorem states that

Theorem 8.1.6. If f : R2 → R is a function whose graph is a minimal surface, then
f is linear; that is, M is planar.

Remark 8.1.2. The theorem stated above fails in the higher codimension case in
thatM does not have to be planar. For example, given any entire function w = w(z) :
C → C, M = {(z, w(z)) : z ∈ C} ⊂ C2 = R4 is a minimal surface. Where C is the
complex plane.

We now give an alternative proof of Bernstein theorem due to Chern [5].

Suppose M = {(u, v, f(u, v) ∈ R3; (u, v) ∈ R2} is a minimal surface. Given local
isothermal coordinates (x, y) on M , we have

∆ = − 1

h

(
∂2

∂x2
+

∂2

∂y2

)
, K =

1

2
∆ loge h,(8.1.27)

where ds2 = h(dx2 + dy2) is the induced metric onM ⊂ R3,∆ is the Laplace-Beltrami
operator of (M,ds2), and K is the Gaussian curvature of (M,ds2).

Let us put

J =
√
EG− F 2 =

√
1 + f2u + f2v .

Then a standard calculation gives

K = ∆ loge
J

J + 1
.(8.1.28)



89

On M introduce a new metric ds̃2 =
(
J+1
J

)2
ds2. ds̃2 is conformally equivalent to

ds2 and its Gaussian curvature is identically zero. Since 1 ≤
(
J+1
J

)
≤ 2 and ds2 are

complete, we see that ds̃2 is also complete. It follows that (M, ds̃2) is isometric to the
uv-plane with the flat metric du2 + dv2. Since K ≤ 0, (that is, for minimal surfaces),
we obtain

−
(
∂2

∂u2
+

∂2

∂v2

)
loge

(
J

J + 1

)
≤ 0.(8.1.29)

Note that the Laplace-Beltrami operator of (M, ds2) is a multiple of
(

∂2

∂u2 + ∂2

∂v2

)
since ds2 and ds̃2 are multiples of each other. Equation (8.1.29) says the function

loge

(
J

J+1

)
is a subharmonic negative function on the uv-plane. The parabolicity

of uv-plane then implies that loge

(
J

J+1

)
must be a constant. Hence by Equa-

tion (8.1.28), K ≡ 0 and therefore M is planar. This concludes Chern’s method
of proving Bernstein’s theorem.

8.2 Osserman’s theorem

One of the fundamental problems in the classical theory of minimal surfaces is to
obtain Liouville type results for complete minimal surfaces. Robert Osserman started
the systematic development of this theory, and in 1961 he proved that the Gauss
map of a complete non-planar orientable minimal surface misses at most a set of
logarithmic capacity zero. In 1981 F. Xavier [44] proved that the image of the Gauss
map covers the sphere except at most six values, and finally in 1988 H. Fujimoto [16]
discovered the best theorem yet, and proved that the number of points omitted by the
Gauss map is at most four. An interesting extension of Fujimoto’s results was proved
in 1990 by X. Mo and R. Osserman [27]. They showed that if the Gauss map of a
complete orientable minimal surface takes on five distinct values only a finite number
of times, then the surface has finite total curvature.

There are many kinds of complete orientable minimal surfaces whose Gauss map
omits four points of the sphere. Among these examples is the classical Scherk’s
doubly periodic. Under the additional hypothesis of finite total curvature, Osserman
[32] proved that the number of exceptional values is at most three.

All the works cited above had two common objectives and they are, to find a gener-
alization to Bernstein’s theorem which had an essential flaw and to devise a method
of characterizing minimal surfaces. Bernstein had stated that every solution of the
minimal surface equation defined and regular for all finite values of z = f(x, y) is a
linear function. Notice that Bernstein’s theorem had no constraints whatsoever im-
posed on such linear solutions. However, for harmonic functions the same conclusion
would hold only under the additional assumption that φ2

x+φ
2
y is uniformly bounded.

The flaw in Bernstein’s theorem was first solved in 1950 and ever since more proofs
which removed the flaw have been provided.

In the following chapter, we shall provide three (Osserman [31], Xavier [44] and Fuji-
moto [16]) of the most recent generalizations to Bernstein’s theorem. For its ground-
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breaking value, we shall give the proof of the classical theorem by Osserman [31].
The proof is adapted from [25] and Osserman [30]. On completion of the proof of
Osserman, we will state, F. Xavier’s [44] and H. Fujimoto’s theorems [16] without
proofs. We will then conclude this chapter by quoting several theorems on complete
surface of finite total curvature in R3.

Theorem 8.2.1. Robert Osserman [31]. Let M be a complete regular minimal
surface in R3. Then either M is a plane, or else the set E omitted by the image of
M under the Gauss map has logarithmic capacity zero.

In order to present Osserman’s proof, we shall restate Bernstein’s theorem in a
slightly different way, as follows

Theorem 8.2.2. If M is a complete minimal surface in R3 whose normals form an
acute angle with a fixed direction, then M is a plane.

This reformulation of Bernstein’s theorem was generalized by Osserman [31] and later
by Xavier [44]. Osserman’s result as well as Xavier were based on Weierstrass repre-
sentation and a theorem in complex analysis known as Koebe Uniformization theorem.
The definition of this theorem that will be useful to our proof is the following

Theorem 8.2.3. Koebe Uniformization Theorem. Let M be a Riemann surface
endowed with a complete metric ds2. Let ∆ represent any one of the following sur-
faces: the unit sphere or the complex plane C, or the unit disk D. Then, there exists
a locally invertible conformal mapping F from ∆ onto M .

If X :M → R3 is a complete minimal surface, then if we use Theorem 8.2.3, we could
consider the mapping X ◦ F : ∆ → R3, which would still remain a complete minimal
surface in the induced metric.

Since minimal surfaces in R3 can not be compact (because K ≤ 0), ∆ can never be
a sphere. Therefore, we eliminate the case of ∆ being a sphere and restrict ourselves
to the cases where ∆ = C or ∆ = D. Therefore, for X ◦ F , we will have a global
Weierstrass representation on C or D.

Lemma 8.2.4. Osserman [31]. Let X(ζ) : D → R3 define a generalized minimal
surface M , where D is the entire ζ-plane. Then either X(ζ) lies on a plane, or else
the normals to M take on all directions with at most two exceptions.

Proof. To the surface M we associate the function g(ζ) which fails to be defined
only if ϕ1 = i ϕ2, ϕ3 = 0. But in this case X3 is constant and the surface lies in a
plane. Otherwise g(ζ) is meromorphic in the entire ζ-plane, and by Picard’s theorem
it either takes on all values with at most two exceptions, or else is constant. But by
Equation (6.3.1) the same alternative applies to the normal N, and in the latter case
M lies on a plane. �

Lemma 8.2.5. Let f(z) be an analytic function in the unit disk D which has at most
a finite number of zeros. Then there exists a divergent path C in D such that∫

C

|f(z)| |dz| <∞.(8.2.1)
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Proof. Suppose first that f(z) ̸= 0 in D. Define w = F (z) =
∫ z

0
f(ζ)dζ.

Then F (z) maps |z| < 1 onto a Riemann surface which has no branch points. If we
let z = G(w) be that branch of the inverse function satisfying G(0) = 0, then since
|G(w)| < 1, there is a largest disk |w| < R < ∞ in which G(w) is defined. There
must then be a point w0 with |w0| = R such that G(w) cannot be extended to a
neighborhood of w0.

Let ℓ be the line segment w = tw0, 0 ≤ t < 1, and let C be the image of ℓ under
G(w). Then C must be a divergent path, since otherwise there would be a sequence
tn → 1, such that the corresponding sequence of points zn on C would converge to
a point z0 in D. But then F (z0) = w0, and since F ′(z0) = f(z0) ̸= 0, the function
G(w) would be extendable to a neighborhood of w0. Thus the path C is divergent,
and we have: ∫

C

|f(z)||dz| =
∫ 1

0

|f(z)|
∣∣∣∣dzdt

∣∣∣∣ dt = R <∞.

This proves the lemma if f(z) has no zeros. But if it has a finite number of zeros, say
of order νk, at the points zk, then the function

f1(z) = f(z)
∏(

1− z̄kz

z − zk

)νk

,

never vanishes, and by the above argument there exists a divergent path C such that∫
C
|f1(z)||dz| <∞. But |f(z)| < |f1(z)| throughout D, and Equation (8.2.1) follows.

�

One application of this, is the proof of a generalization of Theorem 8.2.2, which can
be restated as follows

Theorem 8.2.6. Osserman [30]. If X : M → R3 is a complete minimal surface,
then the image of the Gauss map N of X is dense in S2(1), unless X(M) is a plane.

Proof. From the foregoing, we may assume that X : ∆ → R3, where ∆ = C or ∆ = D.
Suppose the normals to M are not everywhere dense, then there exist an open set
on the unit sphere which is not intersected by the image of M under the Gauss map.
That is, if N(∆) is not dense in S2(1) there exists P ∈ S2(1) and g, 1 > g > 0, such
that:

⟨N , P ⟩ ≤ 1− g.(8.2.2)

By rotating coordinates in R3, we may assume that P = (0, 0, 1).

Consider the Weierstrass representation of the surface. By using the expression for
N given in Equation (6.3.1), we have,

(8.2.3) ⟨N , P⟩ =
⟨(

2Re (g)

1 + |g|2
,
2 Im (g)

1 + |g|2
,
1− |g|2

1 + |g|2

)
, (0, 0, 1)

⟩
=

1− |g|2

|g|2 + 1
≤ 1− g.

From Equation (8.2.3), we conclude that |g(z)| ≤ A <∞. If ∆ = C, by Corollary 5.7.3
(Liouville’s theorem), g is constant. Hence, the Gauss map N is constant and X(M)
describes a plane. The same is true for the universal covering surface M̂ of M .
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If ∆ = D, we can only conclude that g has no poles and by Lemma 6.0.6, f has no
zeros. If α is a curve in D starting at the origin and going to the boundary of D, we
have

Length (α) =

∫
α

ds =
1

2

∫
α

|f |(1 + |g|2) |dz| < 1 +A2

2

∫
α

|f | |dz|.(8.2.4)

We will now show that there exists α of finite length, thus contradicting the hypothesis
of completeness of M . Let us proceed by considering the function

X =

∫ z

0

f(ζ) dζ.(8.2.5)

Since f ̸= 0 in D, w : D → C is locally invertible. Let z = G(w) be a local inverse
function for w in a small disk around w = 0. Let R be the radius of the largest disk
where G can be defined. Clearly, R <∞ since the image of G lies in the disk |z| < 1.
Therefore, there exists a point w0 with |w0| = R such that G can not be extended to
a neighborhood of w0.

Set ℓ = {t w0 : 0 ≤ t < 1} and α = G(ℓ). The curve α so defined is divergent. If it were
not, there would exist a sequence {tn} converging to 1 such that the corresponding
sequence {zn} along α would converge to a point z0 in D. By continuity, G(w0) =
z0. But then, since the function w is invertible at z0, G would be extendable to a
neighborhood of w0, a contraction. Therefore, α is divergent and we have∫

α

|f(z)| |dz| =
∫ 1

0

|f(z)|
∣∣∣∣dzdt

∣∣∣∣ dt = ∫ 1

0

∣∣∣∣dwdt
∣∣∣∣ dt = ∫

ℓ

|dw| = R <∞.(8.2.6)

Therefore, length(α) < ∞ and so, with the induced metric, D is not complete, a
contradiction. But if f(z) has a finite number of zeros, say νk, at the points zk, then
the function

f1(z) = f(z)
∏(

1− zk z

z − zk

)νk

,(8.2.7)

never vanishes, and by the argument above there exist a divergent path C such that∫
C

|f1(z)| |dz| <∞. But |f(z)| < |f1(z)| throughout D, and Equation (8.2.1) follows.

Thus D is the entire plane, and since normals omit more than two points, it follows
from Lemma 8.2.4 that M̂ must lie on a plane. The same is true of M , and since it
is complete, M must be the whole plane. This completes the proof of Theorem 8.2.6.
�

8.2.1 Remarks

Osserman’s proof of Bernstein’s theorem provided the answers to Nirenberg’s conjec-
tures. These conjectures are

1. A complete simply-connected minimal surface M must be a plane if the Gauss
map, G(M) of the surface omits a neighborhood of a point of a unit sphere
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2. A complete simply-connected minimal surface M must be a plane if the Gauss
map, G(M) of the surface omits three (3) points of a unit sphere

From Theorem 8.2.6, under the condition of Nirenberg first conjecture, the surface
M can not be conformally a disk or a sphere, hence it must be the conformed image
of the whole plane, hence g is constant and M is a plane.

The next issue we need to address is, does a similar argument work for Nirenberg’s
second conjecture? The categoric answer is no and in fact, the conjecture is false,
Osserman [33]. Using the Weierstrass-Enneper representations with suitable choice of
functions f and g, we can give explicit examples of complete minimal surfaces whose
normals omit not only three (3) but four (4) values.

After a lot of research work, the issue (Nirenberg’s second conjecture) was finally
resolved in 1988 by H. Fujimoto [16], who proved that if a complete minimal surface
in R3 has a Gauss map that omits more than four values, thenM is a plane. Fujimoto
reasoned that even though the function, g will not be bounded, it may be possible to
get some kind of growth condition that will guarantee the convergence of

∫
C

|f |(1 +
|g|2) |dz| along some path C. In deed, by using the metric on the plane minus a finite
number of points, with K ≡ −1, and applying Ahlfor’s Lemma, Fujimoto obtained an
upper bound on |g′(z)| that yield the result [33]. A sharp form of Fujimoto’s theorem
was obtained by Xiaokang Mo [27].

We will now state F. Xavier [44], H. Fujimoto [16] and X. Mo and R. Osserman [27]
theorems; but we will not be proving them, since the omission of their proofs would
not detract from the fundamental objective of this project.

Theorem 8.2.7. F. Xavier [44]. Let M be a complete regular minimal surface in
R3, and N :M → S2(1) be its Gauss mapping. If N(M) omits seven or more points,
then M is a plane.

Theorem 8.2.8. H. Fujimoto [16]. The plane is the only complete orientable
minimal surface in R3 whose Gauss map omits at least five points of the sphere.

Theorem 8.2.9. X. Mo and R. Osserman [27]. If M is a complete minimal
surface, not a plane, and if G(M) omits four (4) values, then G(M) not only takes
on every other value, but does so infinitely often.

Corollary 8.2.10. Under the hypothesis,M has infinite total curvature,
∫
M

|K| dA =
∞.

By Gauss definition of K,
∫
M

|K| dA is precisely the area of the image under the
Gauss map G. If the Gauss map covers the whole sphere infinitely often, omitting 4
values, then the area of the image is clearly infinite.The corollary was known much
earlier.

8.2.2 Surfaces of finite total curvature

A great deal was known about the characteristics of surfaces of finite total curvature.
Some of the characteristics are stated below
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Theorem 8.2.11. Let M be a complete surface of finite total curvature in R3. Then

1. Osserman [31] proved that G(M) can omit at most 3 values in the unit sphere
unlessM is a plane. However, there is an example of a complete surface of finite
total curvature in R3 whose Gauss map, G(M) omit 2 points Ru [45]. In view
of this, the following question, namely, ”under what circumstance(s) can the
Gauss map, G(M) of a complete surface of finite total curvature in R3 omit at
most 2 points?”, still remain unanswered. Researchers in this field have found
out that it is a very difficult issue to resolve. It is the desire of Geometers to
either prove it or find a complete surface of finite total curvature in R3 whose
Gauss map, G(M) omit 3 points.

2. M is conformally equivalent to a compact surface M with a finite number of
points, p1, . . . , pk removed.

3. The normals to M approach a limit at each ”end” corresponding to each pj ; in
fact the function g extends to be meromorphic on M .

4.
∫
M

|K| dA = 4πm, m = 0, 1, 3, . . .

5. m = 0, if and only if, M is a plane. m = 1, if and only if M is a catenoid or a
certain simply-connected surface called the Enneper’s surface.

6. With χ = Euler characteristic of M , and k=number of ends,
∫
M

|K| dA ≤
2π (χ− k).

The last inequality is interesting in view of a theorem by Cohn-Voss that
∫
M

|K| dA ≤
2πχ for all surfaces. According to item number (4) equality never holds in Cohn-Voss’s
inequality if M is a minimal surface.

Finally, we may want to ask whether among complete minimal surfaces of finite total
curvature, if there were embedded ones, that is, those without self-intersections other
than the plane and the catenoid. Jorge and Meeks [22] showed that if there were, they
would have to satisfy certain conditions, namely, the normals at the ends, p1, . . . , pk
would be limited to two antipodal points on the sphere and inequality (4) would have
to become an equality. Costa’s work [9] resulted in an example with genus one and
three ends and it satisfied these necessary conditions. Furthermore, Hoffman and
Meeks [18] showed that Costa’s surface was indeed embedded. They also showed that
there were a lot of one-parameter family of deformations of Costa’s surface that were
also embedded, and that there were analogous surfaces with higher genus, or more
ends or both.
It is pertinent to mention that, for generalized Gauss map of minimal surfaces in Rn,
where n > 3, one does not have a unique unit normal N anymore, [38, 39, 40, 34, 20,
21].



Chapter 9

Conclusions

A brief history of the development of the theory of minimal surfaces was presented.
Some areas where the theory of minimal surfaces could be applied were also high-
lighted. A review of Differential Geometry of surfaces, Variational Calculus and
Complex Number theory were presented. It was shown that the use of the Weierstrass
equations provided a convenient artifice for computing minimal surfaces because these
equations guarantee that the resulting surface(s) has/have zero mean curvature. Fur-
thermore, once we know the relevant Weierstrass functions we can calculate important
parameters for characterising the surface, namely, the metric, the normal vectors and
the Gaussian curvature. In addition, the Weierstrass parametrization allow us to
apply the Bonnet transformation for generating a variety of minimal surfaces which
preserves the metric and the Gaussian curvature. However, a disadvantage of the
Weierstrass equations in the computation of minimal surfaces is that in some surfaces,
for example, in triply periodic minimal surfaces, we have to integrate very close to
the singularities because important parts of the surface resides in the neighbourhood
of these points. From the foregoing, it is highly recommended that the Weierstrass
equations be considered as a method for finding new minimal surfaces which could be
useful in describing the properties of biological, metallurgical, chemical, mechanical,
architectural systems, etc.

The proofs of Bernstein’s and Osserman’s theorems were presented. In concluding
the discussions on Bernstein’s and Osserman’s theorems, several theorems which are
improved versions of the original Bernstein’s and Osserman’s theorems were stated.
Finally, we concluded this report by presenting the characteristics of surfaces of finite
total curvature. It was also pointed out that for generalized Gauss map of minimal
surfaces in Rn, where n > 3, one does not have a unique unit normal N anymore.
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(a) Helicoid

(b) Helicoid (c) Catenoid

(d) Catenoid

Figure 9.1: Diagrams of the helicoid and the catenoid
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(a) Helicoid deformed through θ = 0 rad

(b) Helicoid deformed through θ =
2π
7

rad
(c) Helicoid deformed through θ =
5π
14

rad

(d) Helicoid deformed through θ =
7π
14

rad

Figure 9.2: Continuous deformation of a helicoid into a catenoid
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(a) Enneper’s Surface

(b) Enneper’s Surface (c) Scherk’s Surface

(d) Henneberg’s Surface

Figure 9.3: Diagrams of Enneper, Scherk’s and Henneberg Surfaces
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Cylinder and Boundary R=1.5

(a) Cylinder and boundary, R = 1.5,
Area = 31.66

Enneper and Boundary R=1.5

(b) Enneper and boundary, R = 1.5,
Area = 34.90

(c) The Jordan curve which is the bound-
ary curve for both Enneper’s surface with
R = 1.5 and the cylinder

(d) Comparison of Gauss map of En-
neper’s Surface to unit sphere

Figure 9.4: Diagrams illustrating Schwarz Theorem
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(a) Costa’s Surface (b) Top Section - Catenoid

(c) Mid Section - Plane (d) Bottom Section - Catenoid

Figure 9.5: Costa Surface and its Disassembled Parts [43]
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