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Preface 
 

Navier-Stokes equations are the most fundamental equations in Newtonian fluid mechanics. 

But for the last few decades it has been generally accepted that the Newtonian fluids, which 

have a relationship between the stress and the rate of strain, do not explain several 

phenomena observed for the fluids in industry and other technological applications. 

Rheological properties of non-Newtonian fluids are described by their so- called constitutive 

equations. Due to complexity of fluids, several models mainly based on the empirical 

observations have been proposed. Amongst the several non-Newtonian fluid models, the 

second and third grade fluid models have attracted the attention of many researchers. The 

attraction of such fluid models stems largely due to the fact that their constitutive equations 

have been derived on the basis of first principle and unlike many other ‘phenomenological’ 

models, there are no curve fittings or parameters to adjust. Though in both of these grades, 

there are material parameters that need to be measured. 

The equations of motion for second and third grade fluids are highly non-linear and much 

complicated than the Navier-Stokes equations. There are very few cases in which exact 

analytical solutions of the Navier-Stokes equation can be obtained. These are even rare 

when the governing equations for non-Newtonian fluids are considered. Moreover, the 

equations for second and third grade are of higher order than the Navier-Stokes equations. 

However, there is no corresponding increase in the number of boundary conditions. In these 

methods, solutions can be found by assuming certain physical or geometrical properties of 

the flow field. 

It is necessary here to mention that in chapters through 2-7 (which are all 

published/accepted papers), there are number of contributing authors but the major 

contribution is of the author of this dissertation.  

Keeping all the above motivations in mind, the layout of this thesis is as follows: 

1) Inverse solutions for modeled non-linear equations that govern the steady flows of a 

second grade fluid are discussed in chapter 2. The solution for stream function, 

velocity components and pressure are obtained from the non-linear equation by 

considering two illustrative forms of the stream function. The presented graphical 

results indicate that increasing magnitude of viscoelasticity decreases the velocity. 

2) In chapter 3, the non-linear compatibility equation for the swirling flows of a second 

grade fluid is modeled. The studies of swirling viscoelastic flows have been 



motivated by applications in rheology and tribology. The analytical solutions for the 

steady and unsteady axisymmetric flows of Newtonian and second grade fluids are 

obtained. The analytical solutions are built for the streamlines, velocity and vorticity 

components. Finally, the results are also compared with the corresponding solutions 

for the Newtonian fluid. 

3) Chapter 4 deals with the modeling of equations for the unsteady flow of a second 

grade fluid in plane polar, axisymmetric cylindrical and spherical polar coordinates. 

The expressions for the streamlines and velocity components are given through the 

solution of the involved highly non-linear equations. Inverse methods have been 

employed for the solutions. Several previous results have been deduced from the 

presented analysis. 

4) The work of chapter 5 is concerned with the unsteady flow of a third grade fluid over 

an infinite plate. The velocity field is obtained by solving a non-linear equation. Two 

flows induced by the plate are considered. These flows are generated due to the shear 

stress. Both analytical and numerical solutions of non-linear equation with non-

linear boundary conditions are developed. It is observed that there is a very good 

agreement between the numerical and perturbation solution for small values of t  

( )1<t . For t  greater than 3, there is a sufficient discrepancy in the results that the 

perturbation solution can no longer be accepted and the results from the numerical 

solution should only be used. However, when shear stress has an oscillatory 

character, then perturbation results are acceptable. 

5) The objective of chapter 6 is to discuss the unsteady flow of a third grade fluid       

over an infinite plate with variable suction. The non-linear equation resulting from 

the momentum equation has been solved using similarity transformation and 

perturbation technique. It is noted that for short time ( )4=τ , a strong non-

Newtonian effect is present in the velocity field and velocity behaves as a Newtonain 

case for large time ( ).100=τ  

6) Chapter 7 is devoted to the flow of a third grade fluid over a porous plate, which 

executes oscillations in its own plane with superimposed blowing or suction. The 

modeled non-linear equation has been solved for the velocity field. Moreover, 

increasing or decreasing velocity amplitude of the oscillating porous plate is 

examined. Finally, it is seen that several interesting results of the previous studies 

can be taken as the special cases of the presented analysis.  
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Chapter 0

Introduction

Multicomponent flows whether occurring in nature such us debris flows, avalanches, and mud

slides, or in industrial applications, such as fluidized beds, solids transport and many other

chemical and agricultural processes, present a formidable challenge to engineers and scientists.

To model and study the flow and behavior of such complex fluids, one can use either statistical

theories or continuum theories, in addition to the phenomenological/experimental approaches.

Due to various properties of real fluids there are many models. The simplest model is Navier-

Stokes model which is used for fluids of low molecular weight. However, it is well known that

materials with complex structures such as solutions and melts of polymers, plastic and synthetic

fibers, certain oils and greases, soap and detergents, certain pharmaceutical and biological fluids

fall into the category of non-Newtonian fluids. During the last several years, generalization of

Navier-Stokes model to highly non-linear constitutive laws have been proposed because of their

interest in applications to industry and technology. In order to explain several non-standard

features, such as normal stress effects, rod climbing, shear thinning and shear thickening, Rivlin-

Ericksen fluids [1] of differential type are introduced. These fluids are rather complex from the

point of view of partial differential equation theory. Nevertheless, several authors in fluid

mechanics are now engaged with the equations of motion on non-Newtonian fluids of second

and third grade. In particular, some authors are interested in studying n-grade fluids as self-

consistent models and not as approximating models. Therefore, in studying dynamics they

ask that all the flows meet the Clausius-Duhem inequality and that the specific Helmholtz free

energy of the fluid is a minimum at equilibrium [2]. On the other hand, it is under the same
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hypothesis that the Navier-Stokes model is studied. That is, it is always assumed that some real

fluids exist such that Navier-Stokes or n−grade fluids are exact models, and not truncations of

viscoelastic fluids. Moreover (as noted in refs. [3, 5]), different assumptions could heavily affect

the rest state stability. Under these thermodynamically hypothesis, several results concerning

existence and stability have been obtained [3, 4, 5].

The formulation of shear stress for non-Newtonian fluids is a difficult problem, which has

not progressed very far from a theoretical standpoint. However, there is no single model which

clearly exhibits all the properties of non-Newtonian fluids. For a more fundamental under-

standing, several empirical descriptions have established rheological models. For example, in

most of these models, a significant drag past solid walls has been observed. A discussion of the

various differential, rate-type, and integral models can be found in Schowalter [6], Huilgol [7],

and Rajagopal [8].

The flow of non-Newtonian fluids has gained considerable importance because of its appli-

cations in various branches of science, engineering, and technology: particularly in material

processing, chemical industries, geophysics, and bio-engineering. The study of non-Newtonian

fluid flow is also of significant interest in oil reservoir engineering. For a variety of reasons,

non-Newtonian fluids are classified on the basis of their behavior in shear. A fluid with a linear

relationship between the shear stress and the shear rate, giving rise to a constant viscosity, is

always characterized to be a Newtonian fluid. As a constant viscosity relation is not always a

Newtonian fluid relation because there are fluids like a second grade fluid, a convected Maxwell

fluid, and an Oldroyd fluid A and B that are certainly non-Newtonian, but also show a constant

viscosity. Second grade fluid model is a subclass of differential type fluids for which one can rea-

sonably hope to obtain analytical solutions. The fluids of differential type have usually higher

order partial differential equations than the Navier-Stokes equations. So the issue of whether

the ‘no-slip’ boundary condition is sufficient to have a well-posed problem is very important.

This question cannot be answered in any generalization for fluids of grade 2 or grade 3, one can

provide some definite answers, while some partial answers are possible for fluids of grade n [9].

In general, for fluids of the differential type of grade n, the equations of motion are of order

(n+ 1). Thus, if n > 1, then the adherence boundary condition is insufficient for determinacy.

The standard method used to overcome this difficulty is to resort the perturbation that lowers
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the order of the equation [10− 16], which is not mathematically rigorous. In fact, the workers

are aware of this, but in the absence of any rational method for generating additional boundary

conditions, they have no other way out of the impasse. It is possible that in flows in unbounded

domains, we can obtain additional conditions based on the asymptotic structure of the flow at

infinity. Mansutti et al. [17] showed that results by perturbation method and of augmenting

the boundary conditions agree remarkably well. Rajagopal and Gupta have also discussed this

issue in the reference [18] and studied the steady flow of a second-grade fluid past a porous

plate. In another paper, Rajagopal [19] studied some unidirectional flows of a second grade

fluid. In [20], Foote et al. studied the problem for the flow of an elastico-viscous fluid on an

oscillating porous plate. Hayat et al. [21− 25] , Asghar et al. [26] and Siddiqui et al. [27− 29]

discussed the flows of differential type fluids in various geometrical configurations.

In many fields, such as food industry, drilling operations and bio-engineering, the fluids,

either synthetic or natural, are mixtures of different constituents such as water, particle, oils,

red cells and other long chain molecules; this combination imparts strong non-Newtonian char-

acteristics to the resulting liquids; the viscosity function varies non-linearly with the shear rate;

elasticity is felt through elongational effects and time-dependent effects. In these cases, the

fluids have been treated as viscoelastic fluids. Because of the difficulty to suggest a single

model which exhibits all properties of viscoelastic fluids, they cannot be described as simply

as Newtonian fluids. For this reason, many models or constitutive equations have been pro-

posed and most of them are empirical or semi-empirical. For more general three-dimensional

representation, the method of continuum mechanics is needed. One of the most popular models

for non-Newtonian fluids is the model that is called the second-grade fluid. Several authors

[30− 36] in fluid mechanics are now engaged with the equations of motion of second grade

fluids.

Exact solutions are very important not only because they are solutions of some fundamental

flows but also because they serve as accuracy checks for experimental, numerical and asymptotic

methods. Navier-Stokes equations are non-linear partial differential equations for viscous fluids.

For this reason, there exist only a limited number of exact solutions in which the non-linear

inertial terms do not disappear automatically. These analytic solutions become even rare if non-

Newtonian constitutive equations are considered in the equations of motion. This is because the
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resulting equations are highly non-linear partial differential equations. While studying second

grade fluid the equations, in general, are one order higher than the Navier-Stokes equations. The

third order equations of the second grade fluid flows, in general, require an additional boundary

and/or initial condition in addition to those required for solving the Navier-Stokes equations.

The necessity of this extra condition can be avoided by the application of the inverse method.

This provides the motivation that, in some specific situations, the inverse method becomes

attractive in studying the non-Newtonian fluids.

Usually, in the inverse method, the boundary conditions are not prescribed and solution

of the differential equations are sought by assuming specific geometrical or physical properties

of the field. Nemenyi [37] has given an excellent survey along with the applications in various

fields of the mechanics of continua. Kaloni and Huschilt [38] used the inverse methods to study

plane steady flow problems of a second grade fluid. Siddiqui and Kaloni [28] employed this

approach to find the exact solutions for steady flows of a second grade fluid in plane polar,

axisymmetric cylindrical and axisymmetric spherical coordinates.

There is a large class of processes which can be considered from the mathematical point of

view as the motion of the fluid (liquid) between two parallel plates, moving towards each other

or in opposite directions with a constant velocity. These include such processes as the motion

of a fluid through a hydraulic pump and the motion of the underground fluid. We can observe

that when the plates are approaching each other in a second grade fluid, the effort required is

smaller than that when the plates are moving apart. When the plates are approaching each

other it is of potential type and when they are moving away then it is of rotational nature.

For such considerations the horizontal components of the velocity u, v, do not depend on the

vertical components z, whereas the vertical velocity w depends linearly on the distance between

the plates. This brings the motivation to model this situation in a second grade fluid and then

to discuss few specific solutions of our interest in chapter 2. The contents of this work has been

published in Archives of Mechanics, 55, 373− 387 (2003).

The swirling flows have great importance in a number of industrial and practical applica-

tions. Spiral galaxies, atmospheric or oceanic circulation, bathtub vortices, or even stirring tea

in a cup, are examples that illustrate the ubiquity of swirling flows at all scales in nature. In

such flows the flow is usually axisymmetric (independent of the meridional angle θ) and second
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component of the velocity Vθ, is expressed in terms of the swirl Ω (angular momentum per

unit mass). The resulting equations arising from the balance of linear momentum, are highly

non-linear partial differential equations whose general solution in closed form is not possible to

obtain. Few specific situations are considered in order to find the analytical solution of these

equations both for Newtonian and non-Newtonian cases. Eleven steady and non-steady flows

are discussed. This work has been published in Nonlinear Dynamics, 35, 229− 248 (2004).

In chapter 4, the time dependent flow equations are modeled in plane polar, axisymmetric

cylindrical, and axisymmetric spherical coordinates. The obtained equations are coupled by

introducing the stream functions into a single equation. The governing equations thus obtained

are highly non-linear partial differential equations, whose general solution is not possible even

for the Newtonian fluid. The solutions of these equations help to understand the properties and

behavior of the non-linear fluids. Applying the inverse method on the most general equation

we have proposed solutions to that equations, and in return the conditions are obtained on the

fluid, which have the given solutions. Several limiting situations along with their amplifications

are deduced and are compared with the known results already given in the literature (both for

Newtonian and second grade fluids). This attempt is accepted for publication inMathematical

Problems in Engineering.

Although the second-grade fluid model is able to predict the normal stress differences, which

are characteristics of non-Newtonian fluids, it does not take into account the shear thinning

and thickening phenomena that many show. The third-grade fluid model represents a fur-

ther, although inconclusive, attempt toward a comprehensive description of the properties of

viscoelastic fluids. With this in view the flow of an incompressible unidirectional thermody-

namically compatible third grade fluid over an infinite plate is analyzed in chapter 5. The

infinite plate is placed along x−axis and y−axis is perpendicular to it. The plate is under a

variable shear stress depending upon time. Incidentally, the time-dependent shear stress makes

the boundary conditions non-linear. Two different situations are discussed when shear stress is

proportional to eλt and eiωt respectively. In the former case for positive λ, numerical and per-

turbation solutions are obtained whereas in the latter case, only perturbation solution is given.

In the former case, it is observed that there is a very good agreement between the numerical

and perturbation solution for small values of t (t < 1). For t greater than 3, there is a sufficient
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discrepancy in the results that the perturbation solution can no longer be accepted and the

results from the numerical solution only should be used. However, when shear stress has an

oscillatory character, the perturbation results are acceptable. It is found graphically that with

an increase in second and third grade parameter the velocity decreases and the boundary layer

thickness decreases. This analysis has been accepted in Canadian Journal of Physics.

Chapter 6 is devoted to study the unsteady problem of an incompressible third grade fluid

past a porous plate. The infinite porous plate is aligned along the x−axis and flow is planar. The

flow is induced due to sudden motion of a plate. The modeled flow equation is a highly non-linear

partial differential equation with all non-zero third grade material parameters. Also the equation

is of fourth order and there are only two boundary conditions. Here, the partial differential

equation is converted into an ordinary differential equation using similarity transformation,

which has been solved using perturbation in the inverse powers of time. It is observed that with

an increase in suction, the boundary layer thickness decreases and with an increase in blowing,

the boundary layer thickness increases. It is also noted that for short time (τ = 4), a strong

non-Newtonian effect is present in the velocity field and velocity behaves as a Newtonian case

for large time (τ = 100). These observations are published inMathematical and Computer

Modelling 38, 201− 208 (2003).

The flow of a third grade fluid induced due to the oscillations of a porous plate is presented

in chapter 7. We have considered the thermodynamical third grade model and flow is unidirec-

tional with constant suction/blowing. The modeled equation is a third order partial differential

equation which is solved by perturbation method. The porous plate is executing oscillations

in its own plane with superimposed blowing or suction. An increasing or decreasing velocity

amplitude of the oscillating porous plate is also examined. It is found that with the increase

in material parameters of the third-grade fluid the velocity boundary layer thickness decreases

in the case of suction and increases in the case of blowing and the amplitude of oscillation

decreases for acceleration and increases for deceleration. Results for second grade and viscous

fluids are obtained from the present analysis as the special cases. The contents of this chapter

have been published inMathematical Problems in Engineering 2, 133− 143 (2004).

10



Chapter 1

Preliminaries and basic equations

1.1 Introduction

This chapter deals with basic definitions and derivations of the governing equations which will

provide background for the succeeding chapters. The general expression for the nth-Rivlin-

Ericksen tensor is also derived.

1.2 Non-Newtonian fluids

An abundance of literature deals with the solution of various types of fluids. Amongst these

fluids, the Newtonian fluid is the simplest to be solved, not only numerically but also analyti-

cally. The governing equation that describes the flow of a Newtonian fluid is the Navier-Stokes

equation. A literature survey indicated that applications of Newtonian fluid is very limited.

This is due to the fact that many fluids used in the chemical, mechanical and other industries

deviate from the Newtonian fluids. They are non-Newtonian fluids and there has been relatively

scarce information about these. Now, non-Newtonian fluids are increasingly being recognized

as more appropriate in modern technological applications in comparison with Newtonian flu-

ids. Because of the non-linear nature of the dependence of stresses on the rate of strain for

non-Newtonian fluids, the solution of flow problems for these fluids in general are more difficult

to obtain. This is not only true of exact analytical solutions but even of numerical solutions.

The non-Newtonian nature of the fluids also increases the order of the differential equation in

11



general. Due to complexity of fluids, there are several proposed models. In the present thesis

we will consider subclasses of the differential type fluids namely second and third-grade fluids.

The constitutive equation for second-grade fluid is

T = −pI+ μA1 + α1A2 + α2A
2
1, (1.1)

where T is the Cauchy stress, −pI is the spherical part of the stress due to constraint of

incompressibility, p is the scalar pressure, I is the identity tensor, μ, α1 and α2 are measurable

material constants. They denote, respectively, the viscosity, elasticity and cross-viscosity. A1

and A2 are Rivlin-Ericksen kinematical tensors [1] and they denote, respectively, the rate of

strain and acceleration. The Rivlin-Ericksen kinematical tensors An, are described as [1]

A0 = I,

A1 = (gradV) + (gradV)> , (1.2)

An+1 =
dAn

dt
+An (gradV) + (gradV)

>An, n ≥ 1,

in which V denotes the velocity field, grad is the gradient operator, > is the transpose and

d/dt (·) = ∂
∂t (·) + (V·grad) (·) is the material time derivative, where first term describes the

local part and the second term is the convective part. Using Eqs. (1.1) and (1.2) into the

balance of linear momentum

ρ
dV

dt
= ρχ+divT, (1.3)

and making use of some vector identities we get the following equation

grad
∙
1

2
ρ |V|2 + p− α1

µ
V·∇2V+1

4
|A1|2

¶¸
+ ρ [Vt −V× (∇×V)] (1.4)

= μ∇2V+α1
£
∇2Vt +∇2 (∇×V)×V

¤
+ (α1 + α2)divA21 + ρχ.

In above equations ∇2 is the Laplacian operator, ρ is the constant density, χ is the body

force, Vt = ∂V/∂t, and |A1| is the usual norm of matrix A1. We name above equation a

Master equation as it will help us to model the governing equations in Cartesian, plane polar,

axisymmetric cylindrical and axisymmetric spherical coordinates, which will be used in the next

12



chapters.

Second order fluids are dilute polymeric solutions (e.g. polyisobutylene, methyl-methacrylate

in n butyl acetate, polyethylene oxide in water, etc.). The equation is frame invariant and ap-

plicable for low shear rates. A detailed account on the characteristics of second grade fluids

is well documented by Dunn and Rajagopal [3] . Theoretical investigations by Dunn and Fos-

dick [39] and Fosdick and Rajagopal [2] have indicated that for an exact model, satisfying the

Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy be a

minimum in equilibrium, the following conditions must hold:

μ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (1.5)

A detailed discussion regarding the signs of the material parameter has been given in Dunn and

Rajagopal [3] . For third grade fluid , the expression for T is

T =− pI+ μA1 + α1A2 + α2A
2
1 + β1A3 + β2 (A1A2 +A2A1) + β3

¡
trA21

¢
A1, (1.6)

where β1, β2, and β3 are additional material constants. Fosdick and Rajagopal [2] has dis-

cussed the thermodynamics of fluids modeled exactly through Eq. (1.6) . The Clausius-Duhem

inequality and the assumption that the specific Helmholtz free energy is minimum at equilibrium

provide the following restrictions

μ ≥ 0, α1 ≥ 0, | α1 + α2 |≤
p
24μβ3, β1 = β2 = 0, β3 ≥ 0. (1.7)

1.3 Equation of continuity

The conservation of mass for compressible fluid is

∂ρ

∂t
+ (∇ · ρV) = 0. (1.8)
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For incompressible fluid above equation simplifies to

∇ ·V = 0. (1.9)

1.4 Strain rate and vorticity tensors

The velocity gradient tensor ∇V can be decomposed into a symmetric part D and antisym-

metric partW

D =
1

2
(∇V+∇V|) =

1

2

·
γ, W =

1

2
(∇V −∇V|) =

1

2
ω, (1.10)

where
·
γ is called the rate of strain tensor and ω is called the vorticity tensor. Also it is noted

that
·
γ = (∇V+∇V|) is equal to the first Rivlin-Ericksen kinematic tensor. The vorticity is

defined by

ω =∇V−∇V| = ∇×V. (1.11)

The reason for this is two fold. First, the rules governing the evaluation of vorticity are some-

what simpler than those governing the velocity field. For example, pressure gradient appear

as a source of linear momentum in Eq. (1.3) , yet the pressure itself depends on the instanta-

neous distribution of V. By focusing on vorticity, on the other hand, we may dispense with

the pressure field entirely. The second reason for studying vorticity is that many flows are

characterized by localized regions of intense rotation (i.e. vorticity). Smoke rings, dust whirls

in the street, trailing vortices on aircraft wings, whirlpools, tidal vortices, tornadoes, hurricanes

and the great red spot of Jupiter represent just a few examples.

1.5 Gradient operator

The gradient operator is defined as

∇ = ej
∂

∂xj
= e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
, (1.12)

in which ej (j = 1, 2, 3) are unit vectors.
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1.6 Gradient of a scalar

The gradient of a scalar point function can be calculated as

∇φ = ej
∂φ

∂xj
= e1

∂φ

∂x1
+ e2

∂φ

∂x2
+ e3

∂φ

∂x3
. (1.13)

1.7 Gradient of velocity

The gradient of velocity V is defined as

∇V =

µ
ei

∂

∂xi

¶
(Vjej) = eiej

∂Vj
∂xi

, (1.14)

where a matrix representation is given by

⎡⎢⎢⎢⎣
∂V1
∂x1

∂V2
∂x1

∂V3
∂x1

∂V1
∂x2

∂V2
∂x2

∂V3
∂x2

∂V1
∂x3

∂V2
∂x3

∂V3
∂x3

⎤⎥⎥⎥⎦
and Vi (i = 1, 2, 3) are the velocity components.

1.8 Divergence of a vector

The divergence of a vector is defined by

∇ ·V =

µ
ei

∂

∂xi

¶
· (Vjej) = ei · ej

∂Vj
∂xi

= δij
∂Vj
∂xi

(1.15)

=
∂Vi
∂xi

=
∂V1
∂x1

+
∂V2
∂x2

+
∂V3
∂x3

.
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1.9 Curl of a vector

The curl of a vector is

∇×V =

µ
ei

∂

∂xi

¶
× (Vjej) = ei × ej

∂Vj
∂xi

(1.16)

= e1

µ
∂V3
∂x2
− ∂V2

∂x3

¶
+ e2

µ
∂V1
∂x3
− ∂V3

∂x1

¶
+ e3

µ
∂V2
∂x1
− ∂V1

∂x2

¶
.

1.10 Divergence of a tensor

The divergence of a tensor is defined by

∇ · S =
µ
ek

∂

∂xk

¶
· (Sijeiej) = ej

∂Sij
∂xi

. (1.17)

1.11 Non-Cartesian frames

All the definitions for gradient and divergence of a tensor remain valid in a non-Cartesian frame,

provided that the derivative operation is also applied to the basis vectors as well. We illustrate

this process in two important frames, cylindrical and spherical coordinate systems.

Fig. 1.1. Cylindrical coordinate system
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1.11.1 Cylindrical coordinates

In cylindrical coordinate system, points are located by giving them values to {r, θ, z}, which

are related to {x = x1, y = x2, z = x3} by (see Fig. 1.1)

x = r cos θ, y = r sin θ, z = z,

r =
¡
x2 + y2

¢ 1
2 , θ = tan−1

³y
x

´
, z = z.

The basis vectors in this frame are related to the Cartesian ones by

er = cos θ ex + sin θ ey, ex = cos θ er − sin θ eθ,

eθ = − sin θ ex + cos θ ey, ey = sin θ er + cos θ eθ.

The velocityV, a tensor S, gradient operator, gradV and divV in terms of these coordinates

are respectively given by

V =Vrer + Vθeθ + Vzez = (Vr, Vθ,Vz) , (1.18)

S = Srrerer + Srθereθ + Srzerez + Sθreθer + Sθθeθeθ + Sθzeθez + Szrezer

+Szθezeθ + Szzezez,

where a matrix representation is given by

⎡⎢⎢⎢⎣
Srr Srθ Srz

Sθr Sθθ Sθz

Szr Szθ Szz

⎤⎥⎥⎥⎦ ,
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∇ = (cos θ er − sin θ eθ)
µ
cos θ

∂

∂r
− sin θ

r

∂

∂θ

¶
+(sin θ er + cos θ eθ)

µ
sin θ

∂

∂r
+
cos θ

r

∂

∂θ

¶
+ ez

∂

∂z

= er
∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z
=

µ
∂

∂r
,
1

r

∂

∂θ
,
∂

∂z

¶
,

∇V =

µ
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ ez

∂

∂z

¶
(Vrer + Vθeθ + Vzez)

= erer
∂Vr
∂r

+ ereθ
∂Vθ
∂r

+ erez
∂Vz
∂r

+ eθer

µ
1

r

∂Vr
∂θ
− Vθ

r

¶
+eθeθ

µ
1

r

∂Vθ
∂θ

+
Vr
r

¶
+ eθez

1

r

∂Vz
∂θ

+ ezer
∂Vr
∂z

+ ezeθ
∂Vθ
∂z

+ ezez
∂Vz
∂z

, (1.20)

where a matrix representation is given by

⎡⎢⎢⎢⎣
∂Vr
∂r

∂Vθ
∂r

∂Vz
∂r

1
r
∂Vr
∂θ −

Vθ
r

1
r
∂Vθ
∂θ +

Vr
r

1
r
∂Vz
∂θ

∂Vr
∂z

∂Vθ
∂z

∂Vz
∂z

⎤⎥⎥⎥⎦ ,

∇ ·V =
∂Vr
∂r

+
1

r

∂Vθ
∂θ

+
Vr
r
+

∂Vz
∂z

, (1.21)

where we have used the following relations

∂

∂r
er = 0,

∂

∂r
eθ = 0,

∂

∂r
er = 0,

∂

∂θ
er = eθ,

∂

∂θ
eθ = −er,

∂

∂θ
ez = 0,

∂

∂z
er = 0,

∂

∂z
eθ = 0,

∂

∂z
ez = 0.
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1.11.2 Spherical coordinates

In a spherical coordinate system, points are located by giving them values to {r, θ, φ}, which

are related to {x = x1, y = x2, z = x3} by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

r =
p
x2 + y2 + z2, θ = tan−1

Ãp
x2 + y2

z

!
, φ = tan−1

³y
x

´
.

Fig. 1.2. Spherical frame of reference

The basis vectors are related by

er = e1 sin θ cosφ+ e2 sin θ sinφ+ e3 cos θ,

eθ = e1 cos θ cosφ+ e2 cos θ sinφ− e3 sin θ,

eφ = −e1 sinφ+ e2 cosφ,
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and

e1 = er sin θ cosφ+ eθ cos θ cosφ− eφ sinφ,

e2 = er sin θ sinφ+ eθ cos θ sinφ+ eφ cosφ,

e3 = er cos θ − eθ sinφ.

In spherical coordinates we have the following:

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
, (1.22)

∇V =

µ
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ

¶
(Vrer + Vθeθ + Vφeφ)

= er
∂

∂r
(Vrer + Vθeθ + Vφeφ) + eθ

1

r

∂

∂θ
(Vrer + Vθeθ + Vφeφ)

+eφ
1

r sin θ

∂

∂φ
(Vrer + Vθeθ + Vφeφ) (1.23)

erer
∂Vr
∂r

+ ereθ
∂Vθ
∂r

+ ereφ
∂Vφ
∂r

+ eθer

µ
1

r

∂Vr
∂θ
− Vθ

r

¶
+ eθeθ

µ
1

r

∂Vθ
∂θ

+
Vr
r

¶
+eφer

µ
1

r sin θ

∂Vr
∂φ
− Vφ

r

¶
+ eθeφ

1

r

∂Vφ
∂θ

+ eφeθ

µ
1

r sin θ

∂Vθ
∂φ
− Vφ

r
cot θ

¶
+eφeφ

µ
1

r sin θ

∂Vφ
∂φ

+
Vr
r
+

Vθ
r
cot θ

¶

=

⎡⎢⎢⎢⎣
∂Vr
∂r

∂Vθ
∂r

∂Vφ
∂r

1
r
∂Vr
∂θ −

Vθ
r

1
r
∂Vθ
∂θ +

Vr
r

1
r
∂Vφ
∂θ

1
r sin θ

∂Vr
∂φ −

Vφ
r

1
r sin θ

∂Vθ
∂φ −

Vφ
r cot θ

1
r sin θ

∂Vφ
∂φ +

Vr
r +

Vθ
r cot θ

⎤⎥⎥⎥⎦ ,
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∇ ·V =

µ
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ

¶
· (Vrer + Vθeθ + Vφeφ) (1.24)

=

µ
er

∂

∂r

¶
· (Vrer + Vθeθ + Vφeφ) +

µ
eθ
1

r

∂

∂θ

¶
· (Vrer + Vθeθ + Vφeφ)

+

µ
eφ

1

r sin θ

∂

∂φ

¶
· (Vrer + Vθeθ + Vφeφ)

=
∂ur
∂r

+
ur
r
+
1

r

∂uθ
∂θ

+
ur
r
+

uθ cos θ

r sin θ
+

1

r sin θ

∂uφ
∂φ

=
1

r2
∂

∂r

¡
r2ur

¢
+
1

r

∂

∂θ
(uθ sin θ) +

1

r sin θ

∂uφ
∂φ

.

In deriving above expressions we have used the following relations

∂

∂r
er = 0,

∂

∂r
eθ = 0,

∂

∂r
eφ = 0,

∂

∂θ
er = eθ,

∂

∂θ
eθ = −er,

∂

∂θ
eφ = 0,

∂

∂φ
er = eφ sin θ,

∂

∂φ
eθ = eφ cos θ,

∂

∂φ
eφ = −er sin θ − eθ cos θ.

1.12 Symmetric and antisymmetric part of the velocity gradi-

ent

Eulerian description of acceleration is given by

a =
∂V

∂t
+ (V ·∇)V =

dV

dt
. (1.25)

Since L =∇V =Lij is a second rank tensor and as every tensor of rank 2 can be written as a

sum of symmetric and antisymmetric tensors, therefore

L =
1

2

³
L+ L>

´
+
1

2

³
L− L>

´
= D+W, (1.26)

where the symmetric part D is called the rate of strain tensor and antisymmetric part W is

called the vorticity tensor. We know that the strain tensor is defined by

εij =
1

2
(ui,j + uj,i) =

1

2

³
L+ L>

´
.
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Hence

D =
1

2
(ui,j + uj,i) = εij , (1.27)

W =
1

2
(ui,j − uj,i) = wij . (1.28)

1.13 Rivlin-Ericksen tensor

The n−th Rivlin Ericksen tensor is defined as

An (t) =
dn

dτn
Ct (τ) |τ=t, n = 1, 2, ... (1.29)

At start we assume that there is no deformations at τ = t

∴ A0 = Ct (τ) |τ=t= I (1.30)

and

A1 (t) =
d

dτ
[Ct (τ)] =

d

dτ

h
{Ft (τ)}>Ft (τ)

i
. (1.31)

In above equation we have used C = F>F as the right Cauchy-Green tensor.

Consider
d

dτ
(Ft (τ)) =

d

dτ

∂ξi
∂xj

=
∂

∂xj

µ
dξi
dτ

¶
=

∂ui
∂xj

= L, (1.32)

where the position of the particle is ξi and

d

dτ
[Ft (τ)]

> =

∙
d

dτ
Ft (τ)

>
¸
= L>. (1.33)

Therefore

d

dτ
[Ct (τ)] =

d

dτ

h
Ft (τ)

>Ft (τ)
i
= Ft (τ)

> d

dτ
Ft (τ) +Ft (τ)

d

dτ
Ft (τ)

> (1.34)

= Ft (τ)
>L+ L>Ft (τ) .

At τ = t, Ft (τ) = I, and thus

A = L+ L>. (1.35)
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Similarly from the definition (1.29) for n = 2 we have

A2 (t) =
d2

dτ2
[Ct (τ)] |τ=t=

d

dτ
{ d

dτ
[Ct (τ)] |τ=t}

=
d

dτ

h
Ft (τ)

>L+ LFt (τ)
i

(1.36)

=

∙
d

dτ
(Ft (τ))

> L+Ft (τ)
> dL

dτ
+

dL>

dτ
Ft (τ) + L

> d

dτ
Ft (τ)

¸
= L>L+Ft (τ)

> dL

dτ
+

dL>

dτ
Ft (τ) + L

>L.

Consider

dL

dτ
=

d

dτ

µ
∂Vi
∂xj

¶
=

∂

∂xj

µ
dVi
dτ

¶
=

∂

∂xj

∙
∂V

∂τ
+ (V ·∇)V

¸
=

∂

∂τ

∂Vi
∂xj

+
∂

∂xj
Vi ·∇Vi + Vi ·

∂

∂xj
∇Vi =

∂L

∂τ
+∇V ·∇V +V ·∇∂Vi

∂xj

=
∂L

∂τ
+ L · L+V ·∇L. (1.37)

Similarly
dL>

dτ
=

∂L>

∂τ
+ L>·L> +V ·∇L>, (1.38)

and thus, Eq. (1.36) becomes

A2 (t) = L
>L+Ft (τ)

>
∙
∂L

∂τ
+ LL+V ·∇L+

µ
∂L>

∂τ
+ L>·L> +V ·∇L>

¶
Ft (τ) + L

>L

¸
.

Again at τ = t, Ft (τ) = I and, therefore

A2 (t) = L>L+
∂L

∂τ
+ L>L+V ·∇L+∂L>

∂τ
+ L>L> +V ·∇L> + L>L

=
∂

∂τ

³
L+ L>

´
+ L>

³
L+ L>

´
+
³
L+ L>

´
L+V ·∇L+V ·∇L> (1.39)

=
∂

∂τ
A1 + L

>A1 +A1L+V ·∇
³
L+ L>

´
=

∂A1
∂τ

+ L>A1 +A1L+V ·∇A1

=

µ
∂

∂τ
+V ·∇

¶
A1 +A1L+ L

>A1 =
d

dt
A1 +A1L+ L

>A1.

Similarly

A3 (t) =
d

dt
A2 +A2L+ L

>A2. (1.40)
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We use a different procedure to find a recurrence relation. We know that the strain in the fluid

is measured by looking at the length of a fluid element t = 0 to t. Let dX be the fluid element

at X and dx at x then the length at time t is

dx2 (t) = C (t) : dXdX. (1.41)

Also

dξ2 (τ) = C (τ) : dXdX. (1.42)

We know that

C (τ) = F>t (τ)Ft (τ) =
h
Ft (τ)Ft (τ)

−1
i>
Ft (τ)Ft (τ)

−1

=
¡
F−1 (τ)

¢>
F>t (τ) · Ft (τ)F

−1 (τ) =
¡
F−1 (τ)

¢>
C (τ)F−1t (τ)

and
dn

dτn
(C (τ)) =

¡
F−1 (τ)

¢> dn

dτn
C (τ)F−1 (τ)

F> (τ)

∙
dn

dτn
(Ct (τ))

¸
F (τ) =

dn

dτn
(C (τ))

at τ = t

F> (τ)AnF (τ) =
dn

dτn
(C (τ))

dX>F> (τ)AnF (τ) dX =
dn

dτn
C (τ) : dXdX

An : dxdx =
dn

dτn
dξ2 (τ) |τ=t .

For n = n+ 1

An+1 : dxdx =
d

dτ

µ
dn

dτn
dξ2 (τ)

¶
=

d

dτ
(An : dxdx) =

dAn

dτ
: dxdx+An :

d

dτ
(dx) dx+An : dx

d

dτ
(dx) .

As
d

dτ
(dx) =

d

dτ
(Fdx) = LFdx = Ldx
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so

An+1 : dxdx =
dAn

dτ
: dxdx+An : Ldxdx+An : dxLdx

=

µ
dAn

dτ
+AnL+ L

>An

¶
: dxdx

and thus

An+1 =
dAn

dτ
+AnL+ L

>An, (1.43)

where (:) indicates the product of two tensors.
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Chapter 2

Few inverse solutions involving

second grade fluid

2.1 Introduction

In general the second grade flow equations are more complicated because of the addition of

non-linearities in the stress function. As a result the solutions are smaller in number. As the

non-linearities grow the complexities in solving these equations and their interpretation also

grow. As a result the solutions are further restricted in comparison to viscous fluids in terms

of the methods available. One such attempt has been made in this chapter, where we have

considered the two dimensional flow equations and then introduced the stream function to

obtain the compatibility equation. Solutions then are found by assuming specific forms of the

stream function giving way to a large class of exact solutions. In each case, the expressions are

constructed for the streamlines, velocity components and pressure distributions. Finally, the

obtained expressions are compared with the known results in the literature.

Thus the problem at hand is the two-dimensional flow of a second-grade fluid near a stag-

nation point which has been discussed over the last few years. Actually, in 1911, one of the

Prandtl’s students, Hiemenz, found the stagnation point flow which are analyzed exactly by the

Navier-Stokes equations. With this motivation we extend the work for the second grade fluid.

In stagnation point flow, a rigid wall occupies the entire x−axis, the fluid domain is y > 0 and

the flow impinges on the wall orthogonally. The y−axis behaves as an imaginary wall and fluid
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flows on both sides of this wall. Thus, the flow near y−axis needs to be analyzed. The dividing

streamline is given by ψ (x, y) = xF (y) +G (y) .

2.2 Governing non-linear equation

Let us consider two parallel plates (see Figs. 2a,b,c) in some incompressible fluid (liquid) whose

size is much larger than the distance between them h << l (where h is the distance between the

plates and l is the length of the plates) and suppose that they are moving towards each other or

in opposite directions. We note that when the plates are moving towards each other (see Fig.

2a.) the force required is lesser as compared to that when they are moving against each other

(see Fig. 2b.). Of course it varies with the different character or grade of the fluid (liquid).

For Newtonian fluids (liquids) like water these experiments are much easier to perform than

the non-Newtonian fluids (liquids). For general analysis since we are dealing with viscoelastic

fluid in this chapter, so that the fluid considered between the impermeable or permeable plates

is having the viscous as well as elastic properties, and one will have to put extra stress while

approaching the plates towards each other or in opposite directions.

We also assume that the horizontal velocity does not depend on the vertical coordinate

(u 6= u (z) , v 6= v (z)) whereas the vertical velocity depends linearly on the distance between

the plates (w ∝ z). Thus, the velocity field become [40]

u = u (x, y, t) , v = v (x, y, t) , w = −2φz, (2.1)

where φ is the relative velocity of the plates (assumed constant).
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Fig. 2a. Fig. 2b.

Fig. 2c.

Fig. 2. Geometry of the problem: (a) moving impermeable plates (b) fixed permeable plates

and (c) horizontal and vertical coordinates

Using the velocity components defined in Eq. (2.1) , the continuity equation (1.9) and Eq.

(1.4) in component form give
∂u

∂x
+

∂v

∂y
= 2φ. (2.2)

∂p1
∂x

+ ρ

∙
∂u

∂t
− vω

¸
=

µ
μ+ α1

∂

∂t

¶
∇2u− α1v∇2ω + ρχ1, (2.3)

∂p1
∂y

+ ρ

∙
∂v

∂t
+ uω

¸
=

µ
μ+ α1

∂

∂t

¶
∇2v + α1u∇2ω ++ρχ2, (2.4)

∂p1
∂z

= ρχ3, (2.5)

where χ = (χ1, χ2, χ3) is the body force, and the modified pressure and the strength of the

vorticity are defined as

p1 = p+
1

2
ρ
¡
u2 + v2 + 4φ2z2

¢
− α1

∙
u∇2u+ v∇2v + 1

4

¯̄
A21
¯̄¸
, (2.6)
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ω =

µ
∂v

∂x
− ∂u

∂y

¶
, (2.7)

in which

|V|2 = V ·V =u2 + v2 + 4φ2z2,

| A21 |= tr
³
A1 ·A>1

´
= tr

¡
A21
¢
= 4

µ
∂u

∂x

¶2
+ 4

µ
∂v

∂y

¶2
+ 16φ2 + 2

µ
∂u

∂y
+

∂v

∂x

¶2
.

Differentiating Eq. (2.3) with respect to y and Eq. (2.4) with respect to x and using

integrability condition p1xy = p1yx we obtain the following compatibility equation

ρ

∙
∂ω

∂t
+ 2φω +

µ
u
∂

∂x
+ v

∂

∂y

¶
ω

¸
=

µ
μ+ α1

∂

∂t

¶
∇2ω + ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
(2.8)

+α1

∙µ
u
∂

∂x
+ v

∂

∂y

¶
∇2ω + 2φ∇2ω

¸
.

Defining the velocity component in terms of the Stokes’ stream function ψ through the

following relations

u = φx+
∂ψ

∂y
, v = φy − ∂ψ

∂x
(2.9)

we see that the Eq. (2.2) is satisfied identically and Eq. (2.8) become

ρ

∙µ
2φ+

∂

∂t

¶
∇2ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇2ψ −

©
ψ,∇2ψ

ª¸
(2.10)

=

µ
μ+ α1

∂

∂t

¶
∇4ψ + α1

∙
2φ∇4ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇4ψ −

©
ψ,∇4ψ

ª¸
+ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
,

in which

∇4 = ∇2 ·∇2

and ©
ψ,∇2ψ

ª
=

∂ψ

∂x

∂
¡
∇2ψ

¢
∂y

− ∂ψ

∂y

∂
¡
∇2ψ

¢
∂x

.

Remark 1 The solution ψ = 0 of Eq. (2.10) , corresponds to liquid potential motion, known

as the motion near the stagnation point.

We now consider the following special cases:
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• For steady case ∂/∂t = 0 and Eq. (2.10) becomes

ρ

∙
2φ∇2ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇2ψ −

©
ψ,∇2ψ

ª¸
(2.11)

= μ∇4ψ + α1

∙
2φ∇4ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇4ψ −

©
ψ,∇4ψ

ª¸
− ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
.

Note that for steady cases, the continuity equation, the modified pressure fields, the

velocity components in terms of stream function and the vorticity vector remains the

same whereas the velocity field becomes independent of time.

• For φ = 0 Eq. (2.10) gives

ρ

∙
∂

∂t
∇2ψ −

©
ψ,∇2ψ

ª¸
=

µ
μ+ α1

∂

∂t

¶
∇4ψ − α1

©
ψ,∇4ψ

ª
− ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.12)

Here it is stated that the Eq. (2.12) is obtained when the velocity field, modified pressure,

velocity components in terms of stream function and the continuity equation are

V (x, y, t) = [u (x, y, t) , v (x, y, t) , 0] ,

p1 = p+
1

2
ρ
¡
u2 + v2

¢
− α1

∙
u∇2u+ v∇2v + 1

4

¯̄
A21
¯̄¸
,

¯̄
A21
¯̄
= 4

µ
∂u

∂x

¶2
+ 4

µ
∂v

∂y

¶2
+ 2

µ
∂u

∂y
+

∂v

∂x

¶2
, (2.13)

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

∂u

∂x
+

∂v

∂y
= 0.

• For steady case Eqs. (2.12) reduces

−ρ
©
ψ,∇2ψ

ª
= μ∇4ψ − α1

©
ψ,∇4ψ

ª
− ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.14)

• Eq. (2.10) for unsteady viscous case is (see ref. [40])

ρ

∙µ
2φ+

∂

∂t

¶
∇2ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇2ψ −

©
ψ,∇2ψ

ª¸
= μ∇4ψ − ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
.

(2.15)
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• When φ = 0 Eq. (2.15) reads as

ρ

∙
∂

∂t
∇2ψ −

©
ψ,∇2ψ

ª¸
= μ∇4ψ − ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.16)

• When φ = 0 and the flow is steady then Eq. (2.15) gives (see ref. [41])

−ρ
©
ψ,∇2ψ

ª
= μ∇4ψ − ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.17)

• For creeping unsteady flow of second grade fluid when u = φx+ ∂ψ
∂y , v = φy− ∂ψ

∂x we haveµ
μ+ α1

∂

∂t

¶
∇4ψ+α1

∙
2φ∇4ψ + φ

µ
x
∂

∂x
+ y

∂

∂y

¶
∇4ψ −

©
ψ,∇4ψ

ª¸
= ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
.

(2.18)

• For φ = 0 Eq. (2.18) is

µ
μ+ α1

∂

∂t

¶
∇4ψ − α1

©
ψ,∇4ψ

ª
= ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.19)

• For steady flow above expression is

μ∇4ψ − α1
©
ψ,∇4ψ

ª
= ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.20)

• For viscous fluid Eq. (2.18) is (see ref. [41])

μ∇4ψ = ρ

µ
∂

∂x
χ2 −

∂

∂y
χ1

¶
. (2.21)

Note that the creeping flow for unsteady and steady viscous cases is the same. Also the

velocity components, continuity equation, vorticity function and velocity components remain

the same as in non-creeping flows but the modified pressure is slightly changed, that is, for

second-grade fluid

p1 = p− α1

∙
u∇2u+ v∇2v + 1

4

¯̄
A21
¯̄¸

(2.22)
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and for viscous fluid the modified pressure is

p1 = p. (2.23)

2.3 Solutions of some special types

Here we note that the compatibility equation (2.10) is highly nonlinear differential equation

and it is not possible to find its analytic solution in closed form. Even, Eq. (2.10) has no closed

form analytic solution for the Newtonian fluid. In order to obtain the solution various workers

[24, 26, 38, 41, 42] assumed particular form of the stream function. Our interest in this chapter

lies in finding the analytic solutions for the following two forms of the stream function: that is,

flow where the stream function is linear with respect to x or y

ψ (x, y) = yξ (x) , (2.24)

ψ (x, y) = yξ (x) + η (x) . (2.25)

These type of flows are called the plane stagnation flows. Equation (2.24) represents the flow

of a fluid in the neighbourhood of a stagnation point; the motion can be joined at a distance

with a potential flow about a stagnation point. Here, the stream function is linear in y and

once it strikes the boundary it becomes stagnant and then moves towards horizontally. Then

it does not remain linear in y rather purely becomes a function of x.

2.3.1 Solution when ψ (x, y) = yξ (x)

Substituting the value of ψ given in Eq. (2.24) into Eq. (2.10) we obtain

ρ
£
φ
¡
3ξ00 + xξ000

¢
−
¡
ξ0ξ00 − ξξ000

¢¤
= μξIV + α1

£
φ
¡
3ξIV + xξV

¢
−
¡
ξ0ξIV − ξξV

¢¤
, (2.26)

where ξ (x) is an arbitrary function of x and primes denote the derivative with respect to x.

The above equation can also be written as

d

dx

£
μξ000 + ρ

©¡
ξ02 − ξξ00

¢
− φ

¡
2ξ0 + xξ00

¢ª¤
= α1

d

dx

©¡
−ξξIV + 2ξ0ξ000 − ξ002

¢
− φ

¡
2ξ000 + xξIV

¢ª
.
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Integration of above equation yields

μξ000+ ρ
£¡
ξ02 − ξξ00

¢
− φ

¡
2ξ0 + xξ00

¢¤
= α1

£¡
−ξξIV + 2ξ0ξ000 − ξ002

¢
− φ

¡
2ξ000 + xξIV

¢¤
. (2.27)

Let us assume a particular choice for the function ξ as:

ξ (x) = δ (1 + λeσ5x)− φx (2.28)

in which δ, σ5 and λ are arbitrary real constants. Making use of Eq. (2.28) into Eq. (2.27) we

easily find

δ =
μσ5

ρ− α1σ25
− 4φ

σ5
. (2.29)

Putting the value of δ in Eq. (2.28) we get

ξ (x) =

µ
μσ5

ρ− α1σ25
− 4φ

σ5

¶
(1 + λeσ5x)− φx (2.30)

and the stream function ψ given by Eq. (2.24) become

ψ (x, y) =

∙
μσ5

ρ− α1σ25
− 4φ

σ5

¸
y (1 + λeσ5x)− φxy. (2.31)

It is remarked here that the stream function (2.31) for α1 = φ = 0 gives the results as

discussed by Berker [41] , and for α1 = φ = 0, λ = −1, μσ5
ρ = −U (U > 0) we recover the

solution of Riabouchinsky [42].

Using Eq. (2.9) the velocity components are

u =

∙
μσ5

ρ− α1σ25
− 4φ

σ5

¸
(1 + λeσ5x) , (2.32)

v = 2φy −
∙

μσ5
ρ− α1σ25

− 4φ
σ5

¸
yλσ5e

σ5x. (2.33)

In order to find the pressure field we substitute Eqs. (2.32) and (2.33) into Eqs. (2.3) and

(2.4) , and then integrating the resulting equations we obtain
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p1 = p0 + μaλσ5

µ
1− σ25y

2

2

¶
eσ5x − 1

2
ρ
£
a2 + 4φ2

¡
y2 + z2

¢
− a2λ2e2σ5x

¤
(2.34)

+α1

∙
aλσ5

¡
aσ5 − 2φσ25y2 − 4φ

¢
eσ5x + a2λ2σ25

µ
3 +

σ25y
2

2

¶
e2σ5x + 8φ2

¸
,

where p0 is an arbitrary constant, known as the reference pressure.

In order to understand the streamline flow pattern we keep the stream function fixed i.e.,

ψ (x, y) = Ω11 (say) and solve the resulting expression for y in terms of the variable x. This

particular procedure in two-dimensional flow in which one variable is expressed in terms of the

other variable is called the functional form. In this way one can see the streamline flow pattern

through graphs.

Eq. (2.1.6) for ψ (x, y) = Ω11 gives the following expression

y =
Ω11

(1 + λeσ5x) ε− xφ
, (2.35)

where

ε =
νσ5

1− Λσ25
− 4φ

σ5
(2.36)

in which ν = μ/ρ is the kinematic coefficient of viscosity and Λ = α1/ρ is the second-grade

parameter.

Fig. 2.1. is plotted for φ = σ5 = λ = 1, μ/ρ = 0.5, α1/ρ = 0.1, ψ = 15, 20, 25, 30, 40. Fig.

2.1. describes the continuous streamline flow pattern. It should be mentioned here that these

graphs simply defines the pattern of the flow for a particular choice of the stream function.

34



0 1 2 3 4 5
x

-5

-4

-3

-2

-1

0

y

y=15

y=20

y=25

y=30

y=40

Fig. 2.1. Streamline flow pattern for ψ (x, y) =
h

μσ5
ρ−α1σ25

− 4 φ
σ5

i
y (1 + λeσ5x)− φxy

2.3.2 Solutions when ψ (x, y) = yξ (x) + η (x)

To find another class of solution of Eq. (2.10) we use Eq. (2.25) into Eq. (2.10) to get the

following nonlinear differential equation

ρ

⎡⎣ 2φ ¡yξ00 + η00
¢
+ φ{y

¡
ξ00 + xξ000

¢
+ xη000}

−{y
¡
ξ0ξ00 − ξξ000

¢
+
¡
η0ξ00 − ξη000

¢
}

⎤⎦ (2.37)

= μ
¡
yξIV + ηIV

¢
+ α1

⎡⎣ 2φ ¡yξIV + ηIV
¢
+ φ{y

¡
ξIV + xξV

¢
+ xηV }

−{y
¡
ξ0ξIV − ξξV

¢
+
¡
η0ξIV − ξηV

¢
}

⎤⎦ .
From Eq. (2.37) we have the following equations:

ρ
£¡
ξ0ξ00 − ξξ000

¢
− φ

¡
3ξ00 + xξ000

¢¤
+ μξIV − α1

⎡⎣ ¡
ξ0ξIV − ξξV

¢
−φ

¡
3ξIV + xξV

¢
⎤⎦ = 0, (2.38)
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and

ρ
£¡
η0ξ00 − ξη000

¢
− φ

¡
2η00 + xη000

¢¤
+ μηIV − α1

⎡⎣ ¡
η0ξIV − ξηV

¢
−φ

¡
3ηIV + xηV

¢
⎤⎦ = 0, (2.39)

where ξ (x) and η (x) are arbitrary functions of the variable x. Integrating these equations with

respect to x and then taking the constants of integration equal to zero we have

μξ000 + ρ
£¡
ξ02 − ξξ00

¢
− φ

¡
2ξ0 + xξ00

¢¤
− α1

⎡⎣ ¡−ξξIV + 2ξ0ξ000 − ξ002
¢

−φ
¡
2ξ000 + xξIV

¢
⎤⎦ = 0, (2.40)

μη000 + ρ
£¡
η0ξ0 − ξη00

¢
− φ

¡
2η0 + xη00

¢¤
− α1

⎡⎣ ξ0η000 − ξηIV + η0ξ000

−η00ξ00 − φ
¡
2η000 + xηIV

¢
⎤⎦ = 0. (2.41)

Here it can be seen that Eq. (2.40) is exactly the same as of Eq. (2.26). The solution of

Eq. (2.26) is given in Eq. (2.30). In order to obtain the solution of Eq. (2.41) we substitute

the solution given in Eq. (2.30) into Eq. (2.41) and get

α1δ (1 + λeσ5x) ηV + (μ+ 3α1φ) η
IV − ρδ (1 + λeσ5x) η000 − 2ρφη00 + δλσ25

¡
ρ− α1σ

2
5

¢
eσ5xη0 = 0.

(2.42)

Clearly to obtain the general solution of Eq. (2.42) is not easy. For analytic solution of

above equation we consider the following cases:

Case 1 When α1 6= 0, φ 6= 0, σ5 = 1, λ = 0

We have from Eq. (2.42) as

α1aη
V + (μ+ 3α1φ) η

IV − ρaη000 − 2ρφη00 = 0. (2.43)

The above equation is of fifth order and for solution we substitute η00 = A (x) and get

α1aA
000
+ (μ+ 3α1φ)A

00 − ρaA
0 − 2ρφA = 0. (2.44)
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Taking A (x) = bP (x) ex the above equation becomes
α1δ bP 000 + {3α1 (δ + φ) + μ} bP 00 + {3α1 (δ + 2φ) + 2μ− ρδ} bP 0 = 0. (2.45)

Writing bP 0 (x) = R (x) , Eq. (2.45) reduces to

α1δR
00 + {μ+ 3α1 (φ+ δ)}R0 − {(3α1 − ρ) δ + 2μ+ 6α1φ}R = 0. (2.46)

The above equation is second order and its solution can be written as

R (x) = A3 exp

Ã
−c−

√
c2 − 4d
2

!
x+A4 exp

Ã
−c+

√
c2 − 4d
2

!
x, (2.47)

where A3 and A4 are arbitrary constants and

c =
3α1 (δ + φ) + μ

α1δ
, d =

3α1 (δ + 2φ) + 2μ− ρδ

α1δ
, δ =

μ

ρ− α1
− 4φ.

Equation (2.47) can also be written as

R (x) = A3e
m1x +A4e

m2x,

where

m1 =

Ã
−c−

√
c2 − 4d
2

!
, m2 =

Ã
−c+

√
c2 − 4d
2

!
.

In order to find η (x) we make back substitutions to proceed as

bP (x) = Z R (x) dx =

Z
(A3e

m1x +A4e
m2x) dx =

A3
m1

em1x +
A4
m2

em2x +A5

and A (x) = bP (x) ex implies that
A (x) =

A3
m1

e(1+m1)x +
A4
m2

e(1+m2)x +A5e
x
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which after taking η00 = A (x) gives

η (x) =
A3

m1 (1 +m1)
2 e
(1+m1)x +

A4

m2 (1 +m2)
2 e
(1+m2)x +A5e

x +A6x+A7, (2.48)

where Ai (i = 5, 6, 7) are constants of integrations. Substituting Eqs. (2.30) and (2.48) into

Eq. (2.25) one obtains

ψ (x, y) = y

∙
μ

ρ− α1
− φ (4 + x)

¸
+A5e

x +A6x+A7 (2.49)

+
A3

m1 (1 +m1)
2 e
(1+m1)x +

A4

m2 (1 +m2)
2 e
(1+m2)x.

The velocity components and the pressure field are respectively given by

u =
μ

ρ− α1
− 4φ, (2.50)

v = 2φy −
∙

A3
m1 (1 +m1)

e(1+m1)x +
A4

m2 (1 +m2)
e(1+m2)x +A5e

x +A6

¸
. (2.51)

p = p0 −
1

2
ρ
£
a21 +A26 + 4φ

2
¡
y2 + z2

¢
− 4yφA6

¤
(2.52)

+α1

⎡⎣ A23
m2
1
e2(1+m1)x + 2A3A4

m1m2
e(2+m1+m2)x +

A24
m2
2
e2(1+m2)x +A25e

2x

4φ2 +
2A3A5(2+3m1+m2

1)
(2+m1)m1(1+m1)

e(2+m1)x +
2A4A5(2+3m2+m2

2)
(2+m2)m2(1+m2)

e(2+m2)x

⎤⎦ .
The streamline flow pattern for ψ = Ω22 (say) is given as

y = − 1

ε1 − xφ

⎡⎣ −Ω22 + A3
m1(1+m1)

2 e
(1+m1)x

+ A4
m2(1+m2)

2 e
(1+m2)x +A5e

x +A6x+A7

⎤⎦ , (2.53)

where

ε1 =
ν

1− Λ − 4φ, a1 =
μ

ρ− α1
− 4φ.

The streamline flow pattern is plotted in Fig. 2.2. for φ = a = λ = 1, μ/ρ = 0.5, α1/ρ = 0.1,

Ai = 1 (i = 3− 7) , ψ = 15, 20, 25, 30, 40.
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Fig. 2.2. Streamline flow pattern for

ψ (x, y) = y
h

μ
ρ−α1 − φ (4 + x)

i
+ A3

m1(1+m1)
2 e
(1+m1)x + A4

m2(1+m2)
2 e
(1+m2)x +A5e

x +A6x+A7

Case 2 When α1 6= 0, φ = 0, σ5 = 1, λ 6= 0

then Eq. (2.42) after using δ = μ
ρ−α1 becomes

α1 (1 + λex) ηV + (ρ− α1) η
IV − ρ (1 + λex) η000 + (ρ− α1)λe

xη0 = 0. (2.54)

To find the solution of Eq. (2.54) we make few substitutions to reduce its order. For this

purpose we put η0 = bA (x) which leaves it into a form which is one order less, that is

α1 (1 + λex) bAIV + (ρ− α1) bA000 − ρ (1 + λex) bA00 + (ρ− α1)λe
x bA = 0. (2.55)

Now substituting bA (x) = P (x) ex in Eq. (2.55) and then P
0
(x) = R (x) into the resulting

expression we get

α1

⎡⎣ (1 + λex)R000 + (3 + 4λex)R00

+(3 + 6λex)R0 + (1 + 4λex)R

⎤⎦ = ρ
£
R00 + (2− λex)R0 + (1− 2λex)R

¤
. (2.56)

The Eq. (2.56) is third order. Its order can be reduced further by multiplying by ex and then
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integrating. After this process we have

α1 (1 + λex)R00 + [(2α1 + ρ) + 2α1λe
x]R0 + [α1 + ρ− (2α1 − ρ)λex]R = 0, (2.57)

where for simplicity the constant of integration is taken equal to zero.

The solution of Eq. (2.57) for λ = 0 is given by

R (x) = C5e
−x +C6e

−[(α1+ρ)/α1]x. (2.58)

Employing the same procedure as in case 1 we can write

η (x) = −C5x+
α21

ρ (α1 + ρ)
C6e

−(ρ/α1)x + C7e
x +C8, (2.59)

where Cr (r = 5, 6, 7, 8) are arbitrary constants. The stream function, the velocity components

and the pressure field in this case are respectively given as

ψ (x, y) =
μ

ρ− α1
y +

∙
−C5x+

α21
ρ (α1 + ρ)

C6e
−(ρ/α1)x + C7e

x +C8

¸
, (2.60)

u =
μ

ρ− α1
, (2.61)

v = C5 +
α1

(α1 + ρ)
C6e

−(ρ/α1)x − C7e
x, (2.62)

p = p0 −
1

2
ρ

∙
a22 + C25 + 2C7αe

(1−ρ/α1)x + 2
(1− α1)

(α1 − ρ)
C7αe

(1−ρ/α1)x
¸

(2.63)

+α1

⎡⎢⎢⎢⎢⎣
C27e

2x + ρ2α2

α21
e−2(ρ/α1)x − C7

ρ2α
α21

e(1−ρ/α1)x

+
³

ρ
α1
− 1
´
C7αe

(1−ρ/α1)x

+C7
αα1
α1−ρe

(1−ρ/α1)x −C7
αρ3

α21(α1−ρ)
e(1−ρ/α1)x

⎤⎥⎥⎥⎥⎦ ,

where

α =
α1

α1 + ρ
, a2 =

μ

ρ− α1
,
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and the stream function for ψ = Ω33 (constant) is given by the following functional form

y = − 1
ε2

∙
−Ω33 − C5x+

Λ2

1 + Λ
C6e

−(1/Λ)x +C7e
x + C8

¸
, (2.64)

where

ε2 =
ν

1− Λ .

The streamline flow pattern is sketched in Fig. 2.3. for φ = λ = 0, σ5 = 1, μ/ρ = 0.5,

α1/ρ = 0.1, Cr = 1 (r = 5− 8) , ψ = 15, 20, 25, 30, 40.

Fig. 2.3. Streamline flow pattern for

ψ (x, y) = μ
ρ−α1 y +

h
−C5x+ α21

ρ(α1+ρ)
C6e

−(ρ/α1)x +C7e
x + C8

i
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Fig. 2.4. Streamline flow pattern for negative second-grade parameter for

ψ (x, y) = μ
ρ−α1 y +

h
−C5x+ α21

ρ(α1+ρ)
C6e

−(ρ/α1)x +C7e
x + C8

i

Fig. 2.5. Streamline flow pattern for positive second-grade parameter for

ψ (x, y) = μ
ρ−α1 y +

h
−C5x+ α21

ρ(α1+ρ)
C6e

−(ρ/α1)x +C7e
x + C8

i
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2.4 Concluding remarks

In this chapter, the analytical solutions of non-linear equations governing the flow for a second-

grade fluid are obtained. Two different forms of the stream function are taken. In each problem

of stream function, the various possibilities of getting the analytical solutions are discussed. The

expressions for velocity profile, streamline and pressure distribution are constructed in each case.

Our results indicate that velocity, stream function and pressure are strongly dependent upon

the material parameter α1 of the second grade fluid. It is shown through graphs that increase in

second-grade parameter (α1 = 0.15) leads to decrease in velocity. Also decrease in second grade

parameter (α1 = −0.5) increases the velocity (see Figs. 2.4 and 2.5). The present analysis are

more general and several results of various authors (Aristov and Gitman [40], Berker [41] and

Riabouchinsky [42]) can be recovered in the limiting cases.
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Chapter 3

On solutions of some non-linear

differential equations arising in

Newtonian and non-Newtonian

fluids

3.1 Introduction

This work is motivated by the analysis of Lakshmana [43] . Lakshmana’s [43] work is extended

by considering the unattended parameters and then extended to second grade fluid. The mathe-

matical modelling and the solution given are important from the understanding of second grade

fluids. The work has great importance in a number of industrial or practical applications. Spiral

galaxies, atmospheric or ocean circulation, bathtub vortices, or even stirring tea in a cup, are

examples that illustrate the ubiquity of swirling flows at all scales in nature.

In this chapter, we develop the governing equation for an axisymmetric swirling flow of

a second grade fluid, which is highly non-linear. The primary purpose of this chapter is to

establish some analytical steady and unsteady solutions of the non-linear equation arising in the

swirling flows both in Newtonian and non-Newtonian fluids. The solutions are obtained using

various analytical methods including the Lie group method. The expressions for streamlines
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and velocity components are given in each case explicitly. The obtained solutions are also

compared in context of second grade without swirl and with the results of viscous fluid.

3.2 Governing equation for swirling flow

Let us consider the swirling flows in a second grade fluid in which the second component

(θ−component) of the velocity is not zero. The compatibility equation obtained from the

Stokes’ stream function is to be solved by assuming a specific form of the vorticity. This gives

us two unknown velocity components i.e., Vr and Vz. In order to obtain the Vθ component of

the velocity we substitute the stream function and its derivatives in the compatibility equation

which comes from the Stokes’ stream function. The angular momentum per unit mass about

the axis of symmetry of the flow is

Ω = rVθ. (3.1)

Note that we take the z−axis along the line of symmetry of the flow or we can say that

flow is symmetric about z−axis. The velocity components (Vr, Vθ, Vz) are independent of the

meridional angle θ. If the meridional component of velocity Vθ vanishes at every point of the

flow, whereas Vr and Vz are non-zero, then we obtain an axisymmetric flow and if the meridional

component of velocity Vθ does not vanish in the flow field region then the flow field is usually

expressed in terms of the swirl Ω.

For the axisymmetric flow with the swirling motion, the velocity field is

V =

∙
Vr (r, z, t) ,

Ω (r, z, t)

r
, Vz (r, z, t)

¸
. (3.2)

On using above equation into Eqs. (1.4) and (1.9) we can write

∂Vr
∂r

+
Vr
r
+

∂Vz
∂z

= 0, (3.3)

∂bp
∂r
+ ρ

∙
∂Vr
∂t
− ωVz −

Ω

r2
∂Ω

∂r

¸
= −

µ
μ+ α1

∂

∂t

¶µ
∂ω

∂z

¶
− α1

∙
Vz

³
∇2ω − ω

r2

´
+
Ω

r2
∂

∂r
E2Ω

¸
,

(3.4)
1

r

∂bp
∂θ
+
ρ

r

∙
∂Ω

∂t
+

Vr
r

∂Ω

∂r
+

Vz
r

∂Ω

∂z

¸
=

µ
μ+ α1

∂

∂t

¶
1

r
E2Ω+α1

∙
Vz
r

∂

∂z
E2Ω+

Vr
r

∂

∂r
E2Ω

¸
, (3.5)
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∂bp
∂z
+ ρ

∙
∂Vz
∂t

+ ωVr −
Ω

r2
∂Ω

∂z

¸
=

µ
μ+ α1

∂

∂t

¶
∇2Vz +α1

∙
Vr

³
∇2ω − ω

r2

´
− Ω

r2
∂

∂z
E2Ω

¸
, (3.6)

where

bp = p+
1

2
ρ

µ
V 2r + V 2z +

Ω2

r2

¶
− α1

∙
Vr

µ
∇2Vr −

Vr
r2

¶
+
Ω

r2
E2Ω+ Vz∇2Vz +

1

4
|A1|2

¸
,

¯̄
A21
¯̄
= 4

µ
∂Vr
∂r

¶2
+ 4

µ
∂Vz
∂z

¶2
+ 2

µ
∂Vr
∂z

+
∂Vz
∂r

¶2
+ 4

µ
Vr
r

¶2
+ 2

µ
1

r

∂Ω

∂r
− 2Ω

r2

¶2
+
2

r2

µ
∂Ω

∂z

¶2
,

∇2 =
∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
, E2 =

∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
, ω =

∂Vz
∂r
− ∂Vr

∂z
. (3.7)

Differentiating Eq. (3.4) with respect to z and Eq. (3.6) with respect to r and then subtracting

the resulting equations we obtain

ρ

∙
∂ω

∂t
+

∂

∂r
(ωVr) +

∂

∂z
(ωVz)−

∂

∂r

µ
Ω

r2
∂Ω

∂z

¶
+

∂

∂z

µ
Ω

r2
∂Ω

∂r

¶¸
(3.8)

=

µ
μ+ α1

∂

∂t

¶³
∇2ω − ω

r2

´
+ α1

⎡⎣ ∂
∂r

©¡
∇2ω − ω

r2

¢
Vr
ª
+ ∂

∂z

©¡
∇2ω − ω

r2

¢
Vz
ª

− ∂
∂r

³
Ω
r2

∂E2Ω
∂z

´
+ ∂

∂z

³
Ω
r2

∂E2Ω
∂r

´
⎤⎦ .

Introducing the Stokes’ stream function ψ (r, z, t) through

Vr = −
1

r

∂ψ

∂z
, Vz =

1

r

∂ψ

∂r
(3.9)

the continuity equation (1.9) is identically satisfied and Eq. (3.8) gives

ρ

"
E2ψt +

1

r

∂
¡
ψ,E2ψ

¢
∂ (r, z)

+
2

r2
∂ψ

∂z
E2ψ +

2

r2
Ω
∂Ω

∂z

#
(3.10)

=

µ
μ+ α1

∂

∂t

¶
E4ψ + α1

"
2

r2
Ω
∂E2Ω

∂z
− 1

r

∂
¡
Ω, E2Ω

¢
∂ (r, z)

+
1

r

∂
¡
ψ,E2ψ

¢
∂ (r, z)

+
2

r2
∂ψ

∂z
E2ψ

#
.

Assuming bp 6= bp (θ) will reduce Eq. (3.5) in the following form
ρ

r

∙
∂Ω

∂t
+
1

r

½
−1
r

∂ψ

∂z

∂Ω

∂r
+
1

r

∂ψ

∂r

∂Ω

∂z

¾¸
=

µ
μ+ α1

∂

∂t

¶
1

r
E2Ω

+
α1
r

∙
−1
r

∂ψ

∂z

∂

∂z
E2Ω+

1

r

∂ψ

∂r

∂

∂r
E2Ω

¸
,
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or

ρ

∙
∂Ω

∂t
+
1

r

∂ (ψ,Ω)

∂ (r, z)

¸
=

µ
μ+ α1

∂

∂t

¶
E2Ω+

α1
r

∂
¡
ψ,E2Ω

¢
∂ (r, z)

, (3.11)

where
∂ (ψ,Ω)

∂ (r, z)
=

∂ψ

∂r

∂Ω

∂z
− ∂ψ

∂z

∂Ω

∂r
. (3.12)

It should be pointed out that the Eqs. (3.10) and (3.11) are the compatibility equations

for the present axisymmetric swirling flows. These equations for α1 = 0 reduces to the results

of Goldstein [51]. In the next section we will find the solutions of these equations for both

α1 = 0 and α1 6= 0.

3.3 Analytic solutions

It is clear that the general solution of Eqs. (3.10) and (3.11) is not possible because of the high

nonlinearity. Thus, we discuss the special cases of these highly nonlinear partial differential

equations by imposing specific conditions on the stream function ψ and Ω. Let us first begin to

find the particular solutions of Newtonian fluid both for steady and non-steady cases. Then we

employ similar procedure in order to obtain the steady and unsteady solutions for the second

grade fluid.

3.4 Steady cases ∂/∂t(·) = 0

3.4.1 For viscous case α1 = 0, ψ = ψ(r, z) and Ω = Ω(r)

Here Eqs. (3.10) and (3.11) reduce to

1

r

∂(ψ,E2ψ)

∂(r, z)
+
2

r2
∂ψ

∂z
E2ψ = νE4ψ, (3.13)

1

r

∂ψ

∂z

dΩ

dr
+ ν

µ
d2

dr2
− 1

r

d

dr

¶
Ω = 0. (3.14)

Differentiating Eq. (3.14) with respect to variable z we get

∂2ψ

∂z2
= 0
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which upon integration gives

Ψ(r, z) = f(r)z + g(r), (3.15)

where f(r) and g(r) are arbitrary functions to be determined. If we substitute Eq. (3.15) into

Eq. (3.13), we get two non linear differential equations for f(r) and g(r) which is not possible

to have the solutions. In order to get rid of this difficulty we let

E2Ψ = ar2, (3.16)

which leaves Eq. (3.13) as an identity and Eq. (3.15) along with Eq. (3.16) gives

E2 (f(r)z + g(r)) =

µ
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

¶
(fz + g) = ar2,

or

z

µ
d2f

dr2
− 1

r

df

dr

¶
+

µ
d2g

dr2
− 1

r

dg

dr

¶
= ar2,

which finally helps in writing

d2f

dr2
− 1

r

df

dr
= 0, (3.17)

d2g

dr2
− 1

r

dg

dr
= ar2. (3.18)

The solutions of above equations are

f(r) = Ar2 +B, (3.19)

g(r) =
ar4

δ
+ Cr2 +D, (3.20)

in which A, B, C and D are constants of integration. On using the values of f(r) and g(r)

from Eqs. (3.19) and (3.20) into Eq. (3.15) we obtain the following expression for the stream

function

ψ(r, z) = (Ar2 +B)z +

µ
Cr2 +D +

ar4

δ1

¶
. (3.21)
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Substituting Eq. (3.21) into Eq. (3.14) we obtain

1

r
(Ar2 +B)

dΩ

dr
+ ν

µ
d2

dr2
− 1

r

d

dr

¶
Ω = 0. (3.22)

Clearly Vr and Vz can be obtained through Eq. (3.21). For the determination of Vθ = Ω/r

we have to solve Eq. (3.22) for Ω. In order to find Ω we substitute η = dΩ/dr to get

dη

dr
= η

µ
1

r2
− A

ν
− B

rν

¶
,

which gives

η = cr(1−
B
ν
)e−

Ar2

2ν .

From dΩ/dr = η we now write

Ω(r) = c

Z
r(1−

B
ν
)e−

Ar2

2ν dr + δ1, (3.23)

in which c and δ1 are constants.

On setting B = 0 and c = Aδ1/ν, Eq. (3.23) gives the solution of Lakshmana [43] i.e.

Ω(r) = δ1

µ
1− e−

Ar2

2ν

¶
. (3.24)

From Eq. (3.18) the velocity components are

Vr = −1
r

∂Ψ

∂z
= −1

r
Ar2 = −Ar, (3.25)

Vz =
1

r

∂Ψ

∂r
=
1

r
(2Arz + 2Cr +

1

2
ar3) = 2(Az + c) +

1

2
ar2, (3.26)

whereas the velocity component Vθ = Ω(r)/r can be obtained through Eq. (3.24) as

Vθ =
Ω

r
=

δ1
r

µ
1− e−

Ar2

2ν

¶
. (3.27)

The vorticity components are defined through

ξr = −
1

r

∂Ω

∂z
, ξθ = ω =

∂Vr
∂z
− ∂Vz

∂r
, ξz =

1

r

∂Ω

∂r
, (3.28)
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which in the present case take the following form

ζr = 0, ζθ = ω = −ar, ζz =
Aδ1
ν

e−
Ar2

2ν . (3.29)

When B 6= 0, then solution of Eq. (3.23) by using Mathematica is given by

Ω(r) = δ − c

"
2−

B
2ν

µ
A

ν

¶−1+ B
2ν

Γ

½µ
1− B

2ν

¶
,
Ar2

2ν

¾#
, (3.30)

where Γ(α, x) is the incomplete gamma function which is the generalization of the gamma

function Γ(α) (see Appendix 1). The velocity components and the vorticity components for

B 6= 0 are

Vr = −(Ar + B

r
), Vz = 2(Az + C) +

1

2
ar2, (3.31)

Vθ =
δ

r
− c

r

"
2−

B
2ν

µ
A

ν

¶−1+ B
2ν

Γ

½µ
1− B

2ν

¶
,
Ar2

2ν

¾#
,

ζr = 0, ζθ = ω = −ar, ζz =
Aδ1
ν

e−
Ar2

2ν . (3.32)

Here we remark that on setting B = 0 in Eqs. (3.30) to (3.32) we readily recover the solution

given by Lakshmana [43]. Moreover, by letting a = 0 in equations (3.31) and (3.32) we recover

the result of Roy [44].

On setting A = 0 in Eq. (3.22), we obtain the following solution for Ω(r)

Ω(r) = c1 + c2

µ
ν

2ν −B

¶
r
2ν−B
ν (3.33)

and the corresponding velocity and vorticity components are respectively given by

Vr = −
B

r
, Vz = 2C +

1

2
ar2, Vθ =

c1
r
+

c2
r

µ
ν

2ν −B

¶
r
2ν−B
ν , (3.34)

ζr = 0, ζθ = −ar, ζz = c2r
−B

ν , (3.35)

where c1 and c2 are constants.
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3.4.2 For α1 6= 0, Ω = Ω(r), ψ = ψ(r, z)

For this case Eq. (3.11) is

β

∙
∂ψ

∂z

d

dr

µ
d2Ω

dr2
− 1

r

dΩ

dr

¶¸
− ∂ψ

∂z

dΩ

dr
= νr

µ
d2Ω

dr2
− 1

r

dΩ

dr

¶
, (3.36)

where β = α1/ρ is the second grade parameter. Differentiating Eq. (3.36) with respect to z

and then integrating twice we get

ψ(r, z) = f(r)z + g(r). (3.37)

Again assuming E2ψ = ar2 leaves Eq. (3.19) as an identity and Eq. (3.37) becomes

ψ(r, z) = (Ar2 +B)z +

µ
Cr2 +D +

a

δ1
r4
¶
. (3.38)

On differentiating Eq. (3.38) with respect to z and substituting in Eq. (3.36) we have

β(Ar2 +B)
d3Ω

dr3
−
µ
β

r
(Ar2 +B) + νr

¶
d2Ω

dr2
=

µ
(1− β

r2
)(Ar2 +B)− ν

¶
dΩ

dr
. (3.39)

The general solution of Eq. (3.39) is not easy to obtain, therefore, we give some specific

cases:

Equation (3.39) for B = 0 can be written as

Ar

ν

∙
β
d

dr

µ
d2Ω

dr2
− 1

r

dΩ

dr

¶
− dΩ

dr

¸
=

d2Ω

dr2
− 1

r

dΩ

dr
. (3.40)

In order to find the solution of Eq. (3.40) we put dΩ/dr = η2 to have the following equation

r2
d2η2
dr2

+ λ1r
dη2
dr
− (λ1 + r2)η2 = 0, (3.41)

where λ1 = −
³
1 + ν

βA

´
.

The solution of Eq. (3.41) is given as

η2 = c3r
1−λ
2 J

∙
1 + λ1
2

,−ir
¸
+ c4r

1−λ
2 Y

∙
1 + λ1
2

,−ir
¸

(3.42)
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and by putting η = dΩ/dr we have the following

Ω(r) =

Z
η2 (r) dr, (3.43)

where c3 and c4 are arbitrary constants, and J and Y are Bessel functions of first and second

kind, respectively.

The velocity and vorticity components are

Vr = −Ar, Vz = 2 (Az + C) +
1

2
ar2, Vθ =

Ω

r
=
1

r

Z
η2 (r) dr, (3.44)

ζr = 0, ζθ = −ar, ζz =
1

r

∂

∂r

Z
η2 (r) dr. (3.45)

Equation (3.39) for A = 0 can be written as

B

rν

∙
β
d

dr

µ
d2Ω

dr2
− 1

r

dΩ

dr

¶
− dΩ

dr

¸
=

d2Ω

dr2
− 1

r

dΩ

dr
. (3.46)

The solution of Eq. (3.46) is obtained through Mathematica and is directly given as

Ω (r) = c5 + c3
r2

2
pFq

∙
B

2ν
, 2,

r2ν

2Bβ

¸
(3.47)

+c4r G

∙½½
1

2

¾
,

½
3

2
− B

2ν

¾¾
,

½½
1

2
,
1

2

¾
,

½
−1
2

¾¾
,
r2ν

4Bβ

¸
,

where c3, c4, and c5 are constants. The velocity and vorticity components are

Vr = 0, Vz = 2C +
1

2
ar2, Vθ = c5 + c3

r

2
pFq

∙
B

2ν
, 2,

r2ν

2Bβ

¸
(3.48)

+c4 G

∙½½
1

2

¾
,

½
3

2
− B

2ν

¾¾
,

½½
1

2
,
1

2

¾
,

½
−1
2

¾¾
,
r2ν

4Bβ

¸
,
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ζr = 0, ζθ = −ar, (3.49)

ζz =
r2c3
8β

pFq

∙
1 +

B

2ν
, 3,

r2ν

2Bβ

¸
+ c3 pFq

∙
B

2ν
, 2,

r2ν

2Bβ

¸
+
c4
r

G

∙½
{ } ,

½
3

2
− B

2ν

¾¾
,

½½
1

2
,
1

2

¾
, { }

¾
,
r2ν

2Bβ

¸
+
1

2r
(c4 − 1) G

∙½½
1

2

¾
,

½
3

2
− B

2ν

¾¾
,

½½
1

2
,
1

2

¾
,

½
−1
2

¾¾
,
r2ν

2Bβ

¸
,

where pFq (generalized hypergeometric function) and G (the Meijer function) are defined in

Appendix 2.

3.4.3 For α1 6= 0, Ω = 0, ψ = ψ(r, z)

Here Eq. (3.11) is automatically satisfied and Eq. (3.10) becomes

ρ

∙
1

r

∂(ψ,E2ψ)

∂(r, z)
+
2

r2
∂ψ

∂z
E2ψ

¸
− μE4ψ = α1

∙
1

r

∂(ψ,E4ψ)

∂(r, z)
+
2

r2
∂ψ

∂z
E4ψ

¸
. (3.50)

The above equation can also be written as

ρ

∙
1

r

∂(ψ,E2ψ/r2)

∂(r, z)

¸
− μ

r
E4ψ = α1

∙
∂(ψ,E4ψ/r2)

∂(r, z)

¸
. (3.51)

For solution of above equation let us take

E2ψ = ϕ(r) (3.52)

and obtain

∂ψ

∂z

h
rρ
³
2ϕ− rϕ

0
´
+ α1

³
r2ϕ

000 − 3rϕ00
+ 3ϕ

0
´i
− μr2

³
rϕ

00 − ϕ
0
´
= 0, (3.53)

where primes indicate differentiation with respect to r. Differentiating Eq. (3.53) with respect

to z and then solving the resulting equation we have

ψ(r, z) = λ(r)z + eα(r), (3.54)

where λ(r) and eα(r) are functions of integration.
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Since E2ψ = ϕ(r), so Eq. (3.54) becomes

µ
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2

¶
(λ(r)z + eα(r)) = ϕ(r),

or µ
λ
00 − 1

r
λ
0
¶
z +

µeα00 − 1
r
eα0¶ = ϕ(r)

or

λ
00 − 1

r
λ
0
= 0, eα00 − 1

r
eα0 = ϕ(r). (3.55)

The solution of first equation is

λ = c1
r2

2
+D1 (3.56)

and so Eq. (3.54) becomes

ψ(r, z) =
¡
C1r

2 +D1
¢
z + eα(r), (3.57)

in which C1 = c1/2 and D1 are arbitrary constants.

Using Eq. (3.57) into Eq. (3.53) one obtains

rρ
¡
C1r

2 +D1

¢ ³
2ϕ− rϕ

0
´
− μr2

³
rϕ

00 − ϕ
0
´
+ α1

¡
C1r

2 +D1

¢ ³
r2ϕ

000 − 3rϕ00
+ 3ϕ

0
´
= 0.

(3.58)

For viscous (Newtonian) case we get the following equation from Eq. (3.58)

νr2ϕ
00
+ (C1r

2 +D1 − ν)rϕ
0 − 2(C1r2 +D1)ϕ = 0. (3.59)

The particular solutions of Eq. (3.59) are obtained by Berker [41]. However, we give the

general solution of Eq. (3.59) with the help of Mathematica as follows.

ϕ = −C1r
2C1
2ν

− 1

4ν2

∙
C1r

2 (D + 2ν)C2

½
Γ

µ
−1− D1

2ν

¶
− Γ

µ
−1− D1

2ν
,
C1r

2

2ν

¶¾¸
, (3.60)

where Γ is the gamma function and C1, C2 are arbitrary constants.
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For α1 6= 0 and D1 = 0 the solution of Eq. (3.58) is

ϕ (r) = c2r
2 + c1r

4−ν/C1β × pFq

∙½
1− ν

2C1β

¾
,

½
2− ν

2C1β
, 3− ν

2C1β

¾
,
r2

4β

¸
(3.61)

+c3 G

∙
{{ } , {2}} ,

½
{0, 1} ,

½
2− ν

2C1β

¾¾
,
r2

4β

¸
.

Equation (3.61) can be written as

ϕ(r) = ε2r
2 + ε1ϕ1(r) + ε3ϕ2(r), (3.62)

where

ϕ1(r) = r
4−ν
C1β pFq

∙½
1− ν

2C1β

¾
,

½
2− ν

2C1β
, 3− ν

2C1β

¾
,
r2

4β

¸
,

ϕ2(r) = G

∙½
{}, {2}}, {{0, 1}, {2− ν

2C1β
}
¾
,
r2

4β

¸
.

In order to find α (r) we write

eα00 − eα0
r
= r

d

dr
(
1

r
eα0) = ϕ(r) = ε2r

2 + ε1ϕ1(r) + ε3ϕ2(r),

and integration yields

eα(r) = ε2
r4

8
+ ε1

Z
r

Z
1

r
ϕ1(r)dr + ε3

Z
r

Z
1

r
ϕ2(r)dr + ε4

r2

2
+ ε5. (3.63)

Using Eq. (3.63) in equation Eq. (3.57) we obtain

ψ(r, z) = Ar2z + ε2
r4

8
+ ε1

Z
r

Z
1

r
ϕ1(r)dr + ε3

Z
r

Z
1

r
ϕ2(r)dr + ε4

r2

2
+ ε5. (3.64)

Thus, the velocity and vorticity components in this case are

Vr = −Ar, Vθ = 0, Vz = 2Az + ε2
r2

2
+ ε4 + ε1

Z
1

r
ϕ1(r)dr + ε3

Z
1

r
ϕ2(r)dr, (3.65)

ξr = 0, ξθ = −ε2r − ε1
1

r
ϕ1(r)− ε3

1

r
ϕ2(r), ξz = 0. (3.66)
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The Eq. (3.58) for C1 = 0 can be written as

α1D1r
2ϕ

000 − r(μr2 + 3α1D1) + (μr
2 − r2ρD1 + 3α1D1)ϕ

0
+ 2rρD1ϕ = 0. (3.67)

The solution of Eq. (3.67) is identical to that given by Siddiqui et al. [28]. The stream

functions is thus given

ψ = zD1+ε8r
4+ε9r

2+ε10+ε6

Z
r

µZ
r

µZ
φ3 (r) dr

¶
dr

¶
dr+ε7

Z
r

µZ
r

µZ
φ4 (r) dr

¶
dr

¶
dr.

(3.68)

In Eq. (3.68)

φ3 (r) = r 1F1

∙
4μ− ρD1

2μ
, 3,

μr2

2α1D1

¸
, φ4 (r) = −

2α1D1

μr
1F1

∙
ρD1
2μ

,−1, μr2

2α1D1

¸
,

and ε6, ε7, ε8, ε9 and ε10 are constants and 1F1 is the confluent hypergeometric function of the

first kind and is the special case of pFq for p = 1 and q = 1 (see Appendix 2). The confluent

hypergeometric function can be obtained from the series expansion

1F1 (θ,b; z1) = 1 +
θz1
b
+

θ (θ + 1)

2!
z21 + .... =

∞X
k=0

(θ)k
(b)k

zk1
k!
. (3.69)

Remark 2 Some special results are obtained when θ and b are both integers.

1. If θ < 0, and either b > 0 or b < θ, the series yields a polynomial with a finite number of

terms.

2. If b = 0 or negative integer, then 1F1 (θ,b; z1) itself is infinite.

3.4.4 Ω(r) = Ω0r
2 + Ω1

We now specify our problem by considering the particular choice of Ω(r),

Ω(r) = Ω0r
2 +Ω1, (3.70)

where Ω0 and Ω1 are constants. Using Eq. (3.70) in Eq. (3.11) we get
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−2ρΩ0
∂Ψ

∂z
= 0.

As ρ 6= 0, Ω0 6= 0 it implies that ∂Ψ
∂z = 0 and thus Ψ = Ψ(r).

With this Eq. (3.10) becomes

E4Ψ = 0, (3.71)

which can also be written as

r
∂

∂r

µ
1

r

∂

∂r

¶µ
r
∂

∂r

µ
1

r

∂

∂r

¶¶
Ψ = 0. (3.72)

Integrating four times we get

Ψ(r) = A+Br2 + Cr4 +Dr2 ln r, (3.73)

and the corresponding velocity and vorticity components are

Vr = 0, Vθ = Ω0r +
Ω1
r
, Vz = 2B + 4Cr

2 +D (1 + 2 ln r) , (3.74)

ζr = 0, ζθ = −8Cr − 2
D

r
, ζz = 2Ω0, (3.75)

where A, B, C, D, Ω0 and Ω1 are constants.

3.5 Unsteady cases

In this section our interest lies in obtaining the unsteady solutions for viscous and second grade

fluids.

3.5.1 When α1 = 0, Ω = Ω(r, t) and ψ = ψ(r, z)

Eq. (3.11) become

∂Ω

∂t
− 1

r

∂ψ

∂z

∂Ω

∂r
− ν

µ
∂2

∂r2
− 1

r

∂

∂r

¶
Ω = 0 (3.76)
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which gives

ψ(r, z) = f(r)z + g(r), (3.77)

and on putting E2ψ = ar2, we get

ψ(r, z) = (Ar2 +B)z + (Cr2 +D +
a

8
r4). (3.78)

As before, using Eq. (3.78) into Eq. (3.76) we obtain

∂Ω

∂t
− 1

r
(Ar2 +B)

∂Ω

∂r
− ν(

∂2

∂r2
− 1

r

∂

∂r
)Ω = 0. (3.79)

In order to find the solution of Eq. (3.79) we use three different methods:

Method 1

On introducing

σ1 = h(t)r, Ω = Ω(σ1), (3.80)

into Eq. (3.79) we readily obtain

σ1

∙
1

h3

½
dh

dt
−Ah (t)

¾
− B

σ21

¸
dΩ

dσ1
− ν

∙
d2Ω

dσ21
− 1

σ1

dΩ

dσ1

¸
= 0. (3.81)

Choosing h(t) such that
dh

dt
−Ah(t) = −Aλh3(t), (3.82)

we get from Eq. (3.81) the following ordinary differential equation

ν
d2Ω

dσ21
+

µ
Aλσ1 +

µ
B − ν

σ1

¶¶
dΩ

dσ1
= 0, (3.83)

where λ is a constant. The Eq. (3.83) is similar to that discussed in section 3.2. The solution

of Eq. (3.83) is found through Mathematica and is given as

Ω (σ1) = c7 − c62
− B
2ν

µ
Aλ

ν

¶−1+ B
2ν

Γ

∙µ
1− B

2ν

¶
,
Aλσ21
2ν

¸
, (3.84)
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where c6 and c7 are constants.

To obtain the solution of Eq. (3.82) we put h−2 = Φ to have the following equation

dΦ

dt
+ 2AΦ = 2Aλ. (3.85)

The solution of Eq. (3.85) is

Φ = (λ+ c8e
−2At). (3.86)

Since Φ = h−2 so

h(t) = (λ+ c8e
−2At)−

1
2 . (3.87)

Also σ1 = h(t)r gives

σ1 = r(λ+ c8e
−2At)−

1
2 . (3.88)

Using the value of σ21 from Eq. (3.88) in Eq. (3.84) we get the unsteady solution of Eq.

(3.79) as

Ω (r, t) = c9 + c102
− B
2ν

µ
Aλ

ν

¶−1+ B
2ν

Γ

"µ
1− B

2ν

¶
,

Aλr2

2ν
¡
λ+ c8e−2At

¢# , (3.89)

where c8, c9 and c10 are constants.

The velocity and vorticity components are respectively given by

Vr = −Ar, Vz = 2 (Az +C) +
1

2
ar2, (3.90)

Vθ =
c9
r
+

c10
r
2−

B
2ν

µ
Aλ

ν

¶−1+ B
2ν

Γ

"µ
1− B

2ν

¶
,

Aλr2

2ν
¡
λ+ c8e−2At

¢# ,
ζr = 0, ζθ = −ar, ζz = c10r

−B
ν
¡
λ+ c8e

−2At¢ 12(Bν −1) e−Ar2

2ν
λ

(λ+c8e−2At) . (3.91)

For B = 0, Eq. (3.83) become

d2Ω

dσ21
− 1

σ1

dΩ

dσ1
+

Aλ

ν
σ1

dΩ

dσ1
= 0, (3.92)
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which is exactly the same as discussed by Lakshmana [43]. The solution is given as

Ω(σ1) = δ1

∙
1− exp

µ
−Aλ
2ν

σ21

¶¸
. (3.93)

Using Eq. (3.88) in Eq. (3.93) we have

Ω(r, t) = δ1

∙
1− exp

µ
−Aλ
2ν

r2

(λ+ c8e−2At)

¶¸
(3.94)

and the corresponding velocity and vorticity components are

Vr = −Ar, Vθ =
δ1
r

∙
1− exp

µ
− Ar2

2ν (1 + c11e−2At)

¶¸
, Vz = 2 (Az +C) +

1

2
ar2, (3.95)

ζr = 0, ζθ = −ar, ζz =
Aδ1

ν (1 + c11e−2At)
e
− Ar2

2ν(1+c11e−2At) , (3.96)

where δ1 is the constant of integration and c11 = c8/λ.

When A = B = 0, then Eq. (3.83) become

∂Ω

∂t
− ν

µ
∂2

∂r2
− 1

r

∂

∂r

¶
Ω = 0 (3.97)

which upon using the similarity transform

η1 =
r

2
√
rt

(3.98)

reduces to
d2Ω

dη21
+ (2η1 −

1

η1
)
dΩ

dη1
= 0. (3.99)

The solution of Eq. (3.99) is

Ω(η1) = −
Ω2
2
e−η

2
1 +Ω3, (3.100)

in which Ω2 and Ω3 are constants of integration and which on using η1 =
r

2
√
νt
gives

Ω(η1) = −
Ω2
2
e−

r2

4νt +Ω3. (3.101)
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Consequently, the velocity and vorticity components are

Vr = 0, Vθ =
1

r

∙
Ω3 −

Ω2
2
e−

r2

4νt

¸
, Vz = 2C +

1

2
ar2, (3.102)

ζr = 0, ζθ = −ar, ζz =
∂Vθ
∂r

+
Vθ
r
. (3.103)

Method 2

Here we apply separation of variable method to obtain the solution of Eq. (3.79). For that

let us assume

Ω(r, t) = eξ(r)eη(t), (3.104)

into Eq. (3.79) to have the following equation

eξeη0(t)eη(t) − 1r (Ar2 +B)
deξ
dr
− ν

Ã
d2eξ
dr2
− 1

r

deξ
dr

!
= 0, (3.105)

where prime denotes the differentiation with respect to time. We now discuss two cases in order

to study Eq. (3.105).

Case 1 eη0(t) = 0 implies that eη(t) =constant= eη0 (say) and Eq. (3.105) becomes a steady
case which is already discussed in section 3.4.1.

Case 2 If eη0(t) 6= 0 then we choose eη such that
eη0(t)eη(t) = −λ1(constant),

which is solved to give the solution eη(t) = λ0e
−λ1t, (3.106)

where λ0 is an arbitrary integration constant and Eq. (3.105) become

ν
d2eξ
dr2

+
1

r

¡
(Ar2 +B)− ν

¢ deξ
dr
+ λ1eξ = 0. (3.107)

When λ1 = 0, we again have the steady case discussed in section 3.4.1. For λ1 6= 0 we

discuss few possible cases which are described as:
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Subcase 1 For A 6= 0, B 6= 0, we have the following solution

eξ1 (r) = δ3 1F1

∙
λ1
2A

,
B

2ν
,−Ar

2

2ν

¸
(3.108)

+δ4 1F1

∙
1 +

λ1
2A
− B

2ν
, 2− B

2ν
,−Ar

2

2ν

¸
.

Subcase 2 For A 6= 0, B = 0, we have the following solution

eξ2 (r) = r2δ5 1F1

∙
1 +

λ1
2A

, 2,−Ar
2

2ν

¸
(3.109)

+δ6 G

∙½
{ } ,

½
1− λ1

2A

¾¾
, {{0, 1} , { }} , Ar

2

2ν

¸
.

Subcase 3 For A = 0, B 6= 0, we have the following solution

eξ3 (r) =
1√
π
2−(B−2ν)/2νr1−B/2νν(ν−B)/2ν

µ
− λ1
2A

¶−(B−2ν)/4ν
(3.110)

×
"
δ7 K

"
B − 2ν
2ν

, r

r
−λ1
ν

#
+ δ8
√
π2(B−2ν)/ν I

"
B − 2ν
2ν

, r

r
−λ1
ν

#
Γ

µ
B

2ν

¶#
,

where δ3, δ4, δ5, δ6, δ7, and δ8 are constants, K is the modified Bessel function of the second

kind, I is the modified Bessel function of the first kind, 1F1 is the confluent hypergeometric of

first kind, and G is the Meijer function. The complete solution in all the subcases is given by

Ω1 (r, t) = eξ1 (r)λ0e−λ1t, Ω2 (r, t) = eξ2 (r)λ0e−λ1t, Ω3 (r, t) = eξ3 (r)λ0e−λ1t (3.111)

and the velocity and vorticity components for subcases 1 and 2 are

Vr = −Ar, Vz = 2 (Az + C) +
1

2
ar2, V1θ =

1

r
eξ1 (r)λ0e−λ1t, V2θ = 1

r
eξ2 (r)λ0e−λ1t, (3.112)

ζr = 0, ζθ = −ar, ζ1z =
1

r

deξ1
dr

λ0e
−λ1t, ζ2z =

1

r

deξ2
dr

λ0e
−λ1t. (3.113)

The velocity and vorticity components for subcase 3 are

Vr = 0, Vz = 2C +
1

2
ar2, V3θ =

1

r
eξ3 (r)λ0e−λ1t, (3.114)
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ζr = 0, ζθ = −ar, ζ3z =
1

r

deξ3
dr

λ0e
−λ1t. (3.115)

3.5.2 For α1 6= 0, Ω = Ω(r, t) and ψ = ψ(r, z)

Eq. (3.11) become

β

∙
∂

∂t

µ
∂2Ω

∂r2
− 1

r

∂Ω

∂r

¶
− 1

r

∂ψ

∂z

µ
∂3Ω

∂r3
− 1

r

∂2Ω

∂r2
+
1

r2
∂Ω

∂r

¶¸
(3.116)

=

∙
∂Ω

∂t
− 1

r

∂ψ

∂z

∂Ω

∂r

¸
− ν

µ
∂2Ω

∂r2
− 1

r

∂Ω

∂r

¶

Differentiating Eq. (3.116) with respect to z and then integrating twice with respect to z

we obtain as before

ψ (r, z) = f (r) z + g (r) (3.117)

and E2ψ = ar2 gives

ψ (r, z) =
¡
Ar2 +B

¢
z +

³
Cr2 +D +

a

8
r4
´
. (3.118)

Using the value of ψ from Eq. (3.118) in Eq. (3.116) we have the linear differential equation

for determination of Ω

β

∙
∂

∂t

µ
∂2Ω

∂r2
− 1

r

∂Ω

∂r

¶
− 1

r

¡
Ar2 +B

¢µ∂3Ω
∂r3
− 1

r

∂2Ω

∂r2
+
1

r2
∂Ω

∂r

¶¸
=

∙
∂Ω

∂t
− 1

r

¡
Ar2 +B

¢ ∂Ω
∂r

¸
− ν

µ
∂2Ω

∂r2
− 1

r

∂Ω

∂r

¶
. (3.119)

In order to get the solution of Eq. (3.119), we introduce product of two functions as in

viscous case

Ω(r, t) = bξ(r)bη(t), (3.120)
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which on inserting in Eq. (3.119) gives

β

"bη0(t)bη(t)
Ã
d2bξ
dr2
− 1

r

dbξ
dr

!
− 1

r
(Ar2 +B)

Ã
d3bξ
dr3
− 1

r

d2bξ
dr2

+
1

r2
dbξ
dr

!#

=

"bξbη0(t)bη(t) − 1r (Ar2 +B)
dbξ
dr

#
− ν

Ã
d2bξ
dr2
− 1

r

dbξ
dr

!
. (3.121)

For β = α1
ρ = 0, B = 0,we obtain the case already discussed in previous section. For β 6= 0,

B = 0, we discuss two cases bη0(t) = 0 and bη0(t) 6= 0.
Case 1 If bη0 (t) = 0 then bη (t) =constant= bη0 and we obtain the case already discussed in

section previous section.

Case 2 If bη0 (t) 6= 0 then we choose bη such that
bη0bη = constant = −λ2 (say) (3.122)

which leaves Eq. (3.121) in the following form

βAr2
d3bξ
dr3
− [β (λ2 −A)− ν] r

d2bξ
dr2
−
£
ν − β (λ2 −A)−Ar2

¤ dbξ
dr
− λ2rbξ = 0. (3.123)

The solution of Eq. (3.123) is given by

bξ (r) = c24r
2 pFq

⎡⎣ n
1 + λ2

2A

o
,n

2, 1 + λ2
2A −

ν
2Aβ

o
, r

2

4β

⎤⎦ (3.124)

+c25r
(2Aβ−βλ2+ν)/Aβ × pFq

⎡⎣ n
1 + ν

2Aβ

o
,n

1− λ2
2A +

ν
2Aβ , 2−

λ2
2A +

ν
2Aβ

o
, r

2

4β

⎤⎦
+c26 G

∙½½
1− λ2

2A

¾
, { }

¾
,

½
{0, 1} ,

½
2Aβ − βλ2 + ν

2Aβ

¾¾
,
r2

4β

¸
,

where c24, c25 and c26 are constants and the velocity and vorticity components are

Vr = −Ar, Vz = 2 (Az + C) +
1

2
ar2, Vθ = λ0e

−λ2t 1

r
bξ (r) , (3.125)
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ζr = 0, ζθ = −ar, ζz = λ0e
−λ2t 1

r

dbξ
dr

. (3.126)

where λ0 is an arbitrary constant.

3.5.3 For Vr = −Ar, Vz = 2 (Az + C) + 1
2
ar2, α1 = 0

we observe that Vθ = V (r, t) is governed by (3.11) with Ω = rV . Since

ζ =(ζr, ζθ, ζz) =

∙
−1
r

∂Ω

∂z
,−ω, 1

r

∂Ω

∂r

¸
. (3.127)

Writing

ζz =
1

r

∂

∂r
(rV ) = ζ (3.128)

we obtain from (3.11) the following equation

∂ζ

∂t
−A

µ
r
∂ζ

∂r
+ 2ζ

¶
=

ν

r

∂

∂r

µ
r
∂ζ

∂r

¶
. (3.129)

In order to find a class of exact solutions of Eq. (3.129) we apply symmetry group methods

to find its symmetries and its reduction. The basis of our discussion is a theory conceived by

S. Lie. Lie developed a general theory dealing with symmetries and group properties of differ-

ential equations. The theory of Lie is a valuable tool for solving ordinary differential equations

and partial differential equations. The word symmetry is used in our everyday language in

different meanings. In the one sense symmetric means something like well proportioned and

well-balanced. The symmetry generators of (3.129) are

X1 =
∂

∂t
, (3.130)

X2 = ζ
∂

∂ζ
,

X3 = e2At
∂

∂t
+Are2At

∂

∂r
− A2r2

ν
e2Atζ

∂

∂ζ
,

X4 = e−2At
∂

∂t
−Are−2At

∂

∂r
+ 2Aζe−2At

∂

∂ζ
,

Xα = α (t, r)
∂

∂ζ
,
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as well as the infinite superposition symmetries Xα = α (t, r) ∂/∂ζ, where α satisfies Eq. (3.129)

(see for e.g. [16] and refs. therein for symmetries of evolution equations). The linear parabolic

equation

∂ζ

∂t
=

∂2ζ

∂r2
+

1

4r2
ζ (3.131)

also admits a similar Lie algebra of symmetry operators given by

Y1 =
∂

∂t
, (3.132)

Y2 = ζ
∂

∂ζ
,

Y3 = 2t
∂

∂t
+ r

∂

∂r
,

Y4 = 4t
2 ∂

∂t
+ 4rt

∂

∂r
−
¡
r2 + 2t

¢
ζ
∂

∂ζ
,

Yα = α
¡
t, r
¢ ∂

∂ζ
,

where α satisfies Eq. (3.131). The Lie algebra of symmetry operators can be represented by

the following table:

Table 3.1.
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Here

α0 = rαr + 2tαt, (3.132a)

α000 = 4trαr + 2t
2
αt +

¡
r2 + 2t

¢
α, (3.132b)

where α satisfies Eq. (3.131) . Thus if we know a solution to Eq. (3.131) , Eqs. (3.132a, b) enables

us to generate new solutions. For example, if ζ = r1/2 is a solution, then so is 4tr1/2 + r5/2,

which is solution from Eq. (3.132b) . This means that we can generate an infinite number of

polynomial solutions by repeatedly using Eqs. (3.132a, b) .

As a consequence of the similarity of the Lie algebras of operators for both the parabolic

equations, one can transform Eq. (3.129) to the simpler form Eq. (3.131). The invertible point

transformation that reduces Eqs. (3.129) to (3.131) is

t =
1

2A

¡
1− e2At

¢−1
, (3.133)

r =
eAt√

ν (1− e2At)
r,

ζ =
√
rν−1/4e−

3
2
At
¡
1− e2At

¢1/2
ζ exp

∙
−Ar

2

2ν

µ
e2At

1− e2At

¶¸
.

To obtain the solution of Eq. (3.131) we write

ζ = X (r)T
¡
t
¢

(3.134)

and get

r2X
00
+

µ
1

4
+ λr2

¶
X = 0, (3.135a)

1

T

dT

dt
= −bλ, (3.135b)

where bλ is the arbitrary separation constant and prime denotes the differentiation with respect
to r. The transformation X = r−1/2X converts Eq. (3.135a) into Bessel function of order zero

i.e.,

r2X
00
+ rX

0
+ bλX = 0. (3.136)
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The solution of (3.136) is given by

X (r) =
h
δ1J0

³pbλr´+ δ2Y 0

³pbλr´i , (3.137)

or

X (r) =
√
r
h
δ1J0

³pbλr´+ δ2Y 0

³pbλr´i ,
and finally, from Eqs. (3.134) , (3.135b) and (3.137) we have

ζ
¡
r, t
¢
= e−λt

√
r
h
δ1J0

³pbλr´+ δ2Y 0

³pbλr´i , (3.138)

where J0

³pbλr´ is the Bessel function of the first kind of order zero and Y 0

³pbλr´ is the
Bessel function of the second kind of order zero. The solution of Eq. (3.131) viz. Eq. (3.132) is

in the transformed coordinate system
¡
t, r, ζ

¢
. In the usual coordinate system (t, r, ζ) we have

the following form via Eq. (3.133)

ζ (r, t) = e
2At− λ

2A(1−e2At) exp

∙
Ar2e2At

2ν (1− e2At)

¸
(3.139)

×

⎡⎣δ1J0
⎛⎝sbλ

ν

eAt

1− e2At
r

⎞⎠+ δ2Y0

⎛⎝sbλ
ν

eAt

1− e2At
r

⎞⎠⎤⎦ ,
where δ1, δ2 and bλ > 0 are constants and the velocity components are

Vr = −Ar, Vθ =
Ω

r
=
1

r

Z
rζdr, Vz = 2 (Az + C) +

1

2
ar2. (3.140)

Remark 3 One can use Eq. (3.132b) together with (3.139) to generate infinitely many solutions

of (3.8.3) .

3.6 Conclusions

We have developed the governing equations of motion for the axially symmetric swirling flow

of a second-grade fluid. Some exact, analytical, steady, and non-steady solutions for the non-

linear equations of Newtonian and second-grade fluids are obtained. Various methods are used
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for obtaining the solutions of non-linear equations. The model and the analytical methods

employed in this chapter have been shown to be useful for the theory analysis of viscoelastic

fluid. Our analysis shows that the results obtained here are more general and several results

obtained by different authors such Lakshmana [43] , Roy [44] , Berker [41] , Siddiqui et al. [28] ,

and Goldstein [51] can be recovered as special cases.
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Chapter 4

Inverse solutions for unsteady flows

of a second grade fluid

This work contains two parts In first part we develop the equations of motion in unsteady

plane polar, axisymmetric cylindrical and axisymmetric spherical coordinates is given In the

second part we solve these equations by choosing specific forms of the stream function in these

coordinate system. The fluid equations and their solutions are important in the sense that

the entire geometry of the system changes as one moves Cartesian coordinate system to these

coordinate systems. For example, the flow in a pipe, flow around a cylinder, flow into a thin slit,

flow around a sphere and flow between coaxial cylinders and spheres, can not be demonstrated

in Cartesian coordinates.

This chapter is concerned with the modelling for the unsteady flow of a second grade fluid in

unsteady plane polar, axisymmetric cylindrical and axisymmetric spherical polar coordinates.

The analytical solution in each case are obtained by taking appropriate forms of the stream

functions. The governing non-linear equations are solved in order to obtain the velocity compo-

nents for flows in plane polar, axisymmetric cylindrical and spherical coordinates. The solutions

obtained by the present analysis are also compared with the existing results in the literature.
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4.1 Modelling for second-grade fluid in plane polar coordinates

The unsteady velocity field is defined by

V =[u (r, θ, t) , v (r, θ, t) , 0] . (4.1)

On substituting

∇bp =
∂bp
∂r
+
1

r

∂bp
∂θ
+

∂bp
∂z

, (4.2)

bp = p+
1

2
ρ | V |2 −α1

¡
V·∇2V

¢
− 1
4
| A21 |, (4.3)

∇2V =

∙µ
∇2u− u

r2
− 2

r2
∂v

∂θ

¶
,

µ
∇2v − v

r2
+
2

r2
∂u

∂θ

¶
, 0

¸
, (4.4)

∂

∂t

£
∇2V

¤
=

∙
∂

∂t

µ
∇2u− u

r2
− 2

r2
∂v

∂θ

¶
,
∂

∂t

µ
∇2v − v

r2
+
2

r2
∂u

∂θ

¶
, 0

¸
, (4.5)

∇×V =

∙
0, 0, ω =

∂v

∂r
+

v

r
− 1

r

∂u

∂θ

¸
, (4.6)

V× (∇×V) = [vω,−uω, 0] , (4.7)

∇2 (∇×V)×V =
£
−v∇2ω, u∇2ω, 0

¤
, (4.8)

into Eqs. (1.4) and (1.9), we obtain the continuity equation and component form of momentum

equation, in the absence of body forces, as follows

∂u

∂r
+

u

r
+
1

r

∂v

∂θ
= 0, (4.9)
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∂bp
∂r
+ ρ

∙
∂u

∂t
− vω

¸
=

µ
μ+ α1

∂

∂t

¶µ
∇2u− u

r2
− 2

r2
∂v

∂θ

¶
− α1v∇2ω + (α1 + α2)

£
divA21

¤
r
,

(4.10)

1

r

∂bp
∂θ
+ ρ

∙
∂v

∂t
+ uω

¸
=

µ
μ+ α1

∂

∂t

¶µ
∇2v − v

r2
+
2

r2
∂u

∂θ

¶
+ α1u∇2ω + (α1 + α2)

£
divA21

¤
θ
,

(4.11)

∂bp
∂z
= 0. (4.12)

On using the following results

∇2u− u

r2
− 2

r2
∂v

∂θ
= −1

r

∂ω

∂θ
, ∇2v − v

r2
+
2

r2
∂u

∂θ
=

∂ω

∂r
, (4.13)£

divA21
¤
r
=

∂

∂r

µ
| A1 |2
2

¶
,
£
divA21

¤
θ
=
1

r

∂

∂θ

µ
| A1 |2
2

¶

the Eqs. (4.10) and (4.11) become

∂bp
∂r
+ ρ

∙
∂u

∂t
− vω

¸
=

µ
μ+ α1

∂

∂t

¶µ
−1
r

∂ω

∂θ

¶
− α1v∇2ω + (α1 + α2)

∂

∂r

µ
| A21 |
2

¶
, (4.14)

1

r

∂bp
∂θ
+ ρ

∙
∂v

∂t
+ uω

¸
=

µ
μ+ α1

∂

∂t

¶
∂ω

∂r
+ α1u∇2ω + (α1 + α2)

∂

∂θ

µ
| A21 |
2

¶
. (4.15)

Equations (4.14) and (4.15) can also be written as

∂

∂r
S1 + ρ

∙
∂u

∂t
− vω

¸
=

µ
μ+ α1

∂

∂t

¶µ
−1
r

∂ω

∂θ

¶
− α1v∇2ω, (4.16)

1

r

∂

∂θ
S1 + ρ

∙
∂v

∂t
+ uω

¸
=

µ
μ+ α1

∂

∂t

¶
∂ω

∂r
+ α1u∇2ω, (4.17)

where
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S1 = p+
1

2
ρ
¡
u2 + v2

¢
+ α1

µ
u

r

∂w

∂θ
− v

∂w

∂r

¶
(4.18)

−(3α1 + 2α2)
4

"
4

µ
∂u

∂r

¶2
+ 4

µ
1

r

∂v

∂θ
− u

r

¶2
+ 2

µ
∂v

∂r
− v

r
+
1

r

∂u

∂θ

¶2#
.

In order to obtain the compatibility equation we define the stream function ψ = ψ (r, θ, t)

through

u =
1

r

∂ψ

∂θ
, v = −∂ψ

∂r
(4.19)

we see that the continuity equation is satisfied identically and vorticity equation becomes

ω =
∂v

∂r
+

v

r
− 1

r

∂u

∂θ
= −

µ
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2

¶
ψ = −∇2ψ. (4.20)

Using Eqs. (4.19) and (4.20) into Eqs. (4.16) and (4.17) we obtain

∂S1
∂r

+ ρ

∙
1

r

∂2ψ

∂t∂θ
− ∂ψ

∂r
∇2ψ

¸
=
1

r

µ
μ+ α1

∂

∂t

¶
∂

∂θ
∇2ψ − α1

∂ψ

∂r
∇4ψ, (4.21)

∂S1
∂θ
− ρ

∙
r
∂2ψ

∂t∂θ
+

∂ψ

∂r
∇2ψ

¸
= −r

µ
μ+ α1

∂

∂t

¶
∂

∂r
∇2ψ − α1

∂ψ

∂θ
∇4ψ. (4.22)

To obtain the single equation in terms of stream function we use the integrability condition

S1rθ = S1θr to eliminate the pressure gradient. This can be obtained by differentiating Eq.

(4.21) with respect to θ and Eq. (4.22) with respect to r and then subtracting the resulting

expressions i.e.

ρ

∙
r
∂

∂t
∇2ψ −

©
ψ,∇2ψ

ª¸
= r

µ
μ+ α1

∂

∂t

¶
∇4ψ − α1

©
ψ,∇4ψ

ª
, (4.23)

where

∇2ψ =

µ
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂θ2

¶
ψ, ∇4ψ = ∇2∇2ψ, (4.24)

∂
¡
ψ,∇2ψ

¢
∂ (r, θ)

=
∂ψ

∂r

∂∇2ψ
∂θ

− ∂ψ

∂θ

∂∇2ψ
∂r

.
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It is to be noted that the Eq. (4.23) for steady case reduces to the equation as discussed by

Siddiqui et al. [28].

4.2 Modelling of second grade fluid in axisymmetric cylindrical

coordinates

Here the velocity field is

V = [u (r, z, t) , 0, w (r, z, t)] . (4.25)

Using above equation, we have

∇ep = ∙∂ep
∂r

,
1

r

∂ep
∂θ

,
∂ep
∂z

¸
, (4.26)

∇2V =
h
∇2u− u

r2
, 0,∇2w

i
, (4.27)

∂

∂t

£
∇2V

¤
= ∇2Vt =

∙
∂

∂t

³
∇2u− u

r2

´
, 0,

∂

∂t
∇2w

¸
, (4.28)

∇×V =

∙
0, eΩ = −µ∂w

∂r
− ∂u

∂z

¶
, 0

¸
, (4.29)

∇2 (∇×V) =
"
0,−

Ã
∇2eΩ− eΩ

r2

!
, 0

#
, (4.30)

∇2 (∇×V)×V =

"
−w

Ã
∇2eΩ− eΩ

r2

!
, 0, u

Ã
∇2eΩ− eΩ

r2

!#
, (4.31)

V× (∇×V) =
³
weΩ, 0, − ueΩ´ . (4.32)

From Eqs. (1.4), (1.9) and (4.25) to (4.232) we get

∂u

∂r
+

u

r
+

∂w

∂z
= 0, (4.33)
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∂ep
∂r
+ ρ

∙
∂u

∂t
− weΩ¸ = µμ+ α1

∂

∂t

¶³
∇2u− u

r2

´
− α1w

Ã
∇2eΩ− eΩ

r2

!
+ (α1 + α2)div

¡
A21
¢
r
,

(4.34)

1

r

∂ep
∂θ
= 0, (4.35)

∂ep
∂z
+ ρ

∙
∂w

∂t
+ ueΩ¸ = µμ∇2w + α1

∂

∂t

¶
+ α1u

Ã
∇2eΩ− eΩ

r2

!
+ (α1 + α2)div

¡
A21
¢
z
, (4.36)

where

∇2 = ∂2

∂r2
+
1

r

∂

∂r
+

∂2

∂z2
, eΩ = ∂w

∂r
− ∂u

∂z
. (4.37)

Using the results

∇2u− u

r2
= −∂

eΩ
∂z

, ∇2w = ∂eΩ
∂r

+
eΩ
r
, div

¡
A21
¢
r
=
1

2

∂

∂r
|A1|2 +

2

r

∂

∂z

³
ueΩ´+ eΩ2

r
,

div
¡
A21
¢
θ
= 0, div

¡
A21
¢
z
=
1

2

∂

∂z
|A1|2 −

2

r

∂

∂r

³
ueΩ´ , (4.38)

tr
¡
A21
¢
= tr

³
A1A

>
1

´
=
¯̄
A21
¯̄
= 4

µ
∂u

∂r

¶2
+ 4

µ
∂w

∂z

¶2
+ 4

³u
r

´2
+ 2

µ
∂u

∂z
+

∂w

∂r

¶2
,

the Eqs. (4.34) and (4.36) can be rewritten as

∂ep
∂r
+ ρ

∙
∂u

∂t
+ weΩ¸ = −

µ
μ+ α1

∂

∂t

¶
∂eΩ
∂z
− α1w

Ã
∇2eΩ− eΩ

r2

!
(4.39)

+(α1 + α2)

"
1

2

∂

∂r

¯̄
A21
¯̄
+
2

r

∂

∂z

³
ueΩ´+ eΩ2

r

#
,

∂ep
∂z
+ ρ

∙
∂w

∂t
+ ueΩ¸ = −

µ
μ+ α1

∂

∂t

¶Ã
∂eΩ
∂r

+
eΩ
r

!
+ α1u

Ã
∇2eΩ− eΩ

r2

!
(4.40)

+(α1 + α2)

∙
1

2

∂

∂z

¯̄
A21
¯̄
− 2

r

∂

∂r

³
ueΩ´¸ .
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Defining the generalized pressure

S2 =
1

2
ρ
¡
u2 + w2

¢
+ p− α1

h
u
³
∇2u− u

r2

´
+ w∇2w

i
− (3α1 + 2α2)

u

¯̄
A21
¯̄

(4.41)

where ¯̄
A21
¯̄
= 4

µ
∂u

∂r

¶2
+ 4

µ
∂w

∂z

¶2
+ 4

³u
r

´2
+ 2

µ
∂u

∂z
+

∂w

∂r

¶2
.

we rewrite Eqs. (4.39) and (4.40) in the form

∂S2
∂r

+ρ

∙
∂u

∂t
−weΩ¸ = −µμ+ α1

∂

∂t

¶
∂eΩ
∂z
−α1w

Ã
∇2eΩ− eΩ

r2

!
+(α1 + α2)

"
2

r

∂

∂z

³
ueΩ´+ eΩ2

r

#
,

(4.42)

∂S2
∂z

+ ρ

∙
∂w

∂t
+ ueΩ¸ = µμ+ α1

∂

∂t

¶Ã
∂eΩ
∂r

+
eΩ
r

!
+ α1u

Ã
∇2eΩ− eΩ

r2

!
− 2 (α1 + α2)

r

∂

∂r

³
ueΩ´ ,
(4.43)

To find the compatibility equation we define

u =
1

r

∂eψ
∂z

, w = −1
r

∂eψ
∂r

(4.44)

and note that the continuity equation is satisfied identically and vorticity function is

eΩ = ∂w

∂r
− ∂u

∂z
= −1

r

Ã
∂2eψ
∂r2
− 1

r

∂eψ
∂r
+

∂2eψ
∂z2

!
= −1

r
E2eψ, (4.45)

where

E2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (4.46)

Using Eqs. (4.44) and (4.45) in Eqs. (4.42) and (4.43) we obtain
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∂S2
∂r

+ ρ

"
1

r

∂2eψ
∂t∂z

− ∂eψ
∂r

E2eψ
r2

#
(4.47)

=
1

r

µ
μ+ α1

∂

∂t

¶
∂

∂z
E2eψ − α1

∂eψ
∂r

E4eψ − 1
r
(α1 + α2)

⎡⎣2 ∂
∂z

Ã
∂eψ
∂z

E2eψ
r2

!
−
Ã
E2eψ
r2

!2⎤⎦

∂S2
∂z
−ρ
"
r
∂2eψ
∂t∂r

+
∂eψ
∂z

E2eψ
r2

#
= −1

r

µ
μ+ α1

∂

∂t

¶
∂

∂r
E2eψ−α1∂eψ

∂z
E4eψ+2

r
(α1 + α2)

∂

∂r

Ã
∂eψ
∂z

E2eψ
r2

!
.

(4.48)

Differentiating Eq. (4.47) with respect to z and Eq. (4.48) with respect to r and then

subtracting Eq. (4.47) from Eq. (4.48), we obtain

ρ

∙
1

r

∂

∂t
E2Ψ−

neψ,E2eψ/r2o¸ =
1

r

µ
μ+ α1

∂

∂t

¶
E4eψ − α1

neψ,E4eψ/r2o (4.49)

− (α1 + α2)

⎡⎣2
r
E2

Ã
∂eψ
∂z

E2eψ
r2

!
− 1

r

∂

∂z

Ã
E2eψ
r

!2⎤⎦ ,
where neψ,E2eψ/r2o = ∂eψ

∂r

∂

∂z

Ã
E2eψ
r2

!
− ∂eψ

∂z

∂

∂r

Ã
E2eψ
r2

!
. (4.50)

Equation (4.23) for steady case reduces to Siddiqui et al. [28].

4.3 Modelling of second-grade fluid in axisymmetric spherical

coordinates

The velocity field for this case is

V = [u (R, θ, t) , v (R, θ, t) , 0] . (4.51)

Using above we have

∇ ·V =
∂u

∂R
+
2u

R
+
1

R

∂v

∂θ
+

v

R
cot θ, (4.52)
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∇p =
∙
∂p

∂R
,
1

R

∂p

∂θ
,

1

R sin θ

∂p

∂φ

¸
, (4.53)

∇2V =

∙µ
∇2u− 2u

R2
− 2v

R2
cot θ − 2

R2
∂v

∂θ

¶
,
µ
∇2v − v

R2 sin2 θ
+
2

R2
∂u

∂θ

¶
, 0
¸
, (4.54)

∇2Vt =

∙µ
∇2ut −

2ut
R2
− 2vt

R2
cot θ − 2

R2
∂vt
∂θ

¶
,
µ
∇2vt −

vt

R2 sin2 θ
+
2

R2
∂ut
∂θ

¶
,0
¸
, (4.55)

∇×V =

∙
0, 0, Ω =

∂v

∂R
+

v

R
− 1

R

∂u

∂θ

¸
, (4.56)

V× (∇×V) =
£
vΩ, − vΩ, 0

¤
, (4.57)

∇2 (∇×V) =
∙
0, 0, ∇2Ω− Ω

R2 sin2 θ

¸
, (4.58)

∇2 (∇×V)×V =

∙
−v
µ
∇2Ω− Ω

R2 sin2 θ

¶
, u
µ
∇2Ω− Ω

R2 sin2 θ

¶
, 0
¸
. (4.59)

On using the results (4.52) to (4.59) into Eqs. (1.4) and (1.9) we obtain, in the absence of body

forces, the following equations

∂u

∂R
+
2u

R
+
1

R

∂v

∂θ
+

v

R
cot θ = 0, (4.60)

∂p

∂R
+ ρ

∙
∂u

∂t
− vΩ

¸
=

µ
μ+ α1

∂

∂t

¶µ
∇2u− 2u

R2
− 2v

R2
cot θ − 2

R2
∂v

∂θ

¶
(4.61)

−α1v
µ
∇2Ω− Ω

R2 sin2 θ

¶
+ (α1 + α2)div

£
A21
¤
R
,

1

R

∂p

∂θ
+ ρ

∙
∂v

∂t
+ uΩ

¸
=

µ
μ+ α1

∂

∂t

¶µ
∇2v − v

R2 sin2 θ
+
2

R2
∂u

∂θ

¶
(4.62)

+α1u

µ
∇2Ω− Ω

R2 sin2 θ

¶
+ (α1 + α2)div

£
A21
¤
θ
,

1

R sin θ

∂p

∂φ
= (α1 + α2)div

£
A21
¤
φ
, (4.63)
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where

p = p+
1

2
ρ | V |2 − α1

µ
V·∇2V+1

4
| A21 |

¶
, (4.64)

|A1|2 = trA21 = 4
µ
∂u

∂R

¶2
+ 4

µ
u

R
+
1

R

∂v

∂θ

¶2
+ 4

³ u
R
+

v

R
cot θ

´2
+ 2

µ
∂v

∂R
− v

R
+
1

R

∂u

∂θ

¶2
,

∇2 =
∂

∂R

µ
R2

∂

∂R

¶
+

1

R2 sin θ

∂

∂θ

µ
sin θ

∂

∂θ

¶
, (4.65)

and Ω is the vorticity function.

On using the following values

∇2u− 2u
R2
− 2v

R2
cot θ − 2

R2
∂v

∂θ
= − 1

R sin θ

∂

∂θ

¡
Ω sin θ

¢
, (4.66)

∇2v − v

R2 sin2 θ
+
2

R2
∂u

∂θ
=

∂Ω

∂R
+
Ω

R
,

£
divA21

¤
R

=
1

2

∂

∂R
|A1|2 +

2

R sin θ

∂

∂θ

h³ u
R
+

v

R
cot θ

´
Ω sin θ

i
+
Ω
2

R
,

£
divA21

¤
θ
=

1

2

∂

∂θ
|A1|2 −

2

R

∂

∂R

"
(u+ v cot θ)Ω+

Ω
2

R
cot θ

#
,£

divA21
¤
φ
= 0, trA1 =∇ ·V =0,

equations (4.61) to (4.63) are

∂p

∂R
+ ρ

∙
∂u

∂t
− vΩ

¸
= −

µ
μ+ α1

∂

∂t

¶ ∙
1

R sin θ

∂

∂θ

¡
Ω sin θ

¢¸
(4.67)

−α1v
µ
∇2Ω− Ω

R2 sin2 θ

¶
+
(α1 + α2)

2

∂

∂R
|A1|2

+(α1 + α2)

"
2

R sin θ

∂

∂θ

³ u
R
+

v

R
cot θ

´
Ω sin θ +

Ω
2

R

#
,

1

R

∂p

∂θ
+ ρ

∙
∂v

∂t
+ uΩ

¸
= μ

µ
∂Ω

∂R
+
Ω

R

¶
+ α1u

µ
∇2Ω− Ω

R2 sin2 θ

¶
+
(α1 + α2)

2R

∂

∂θ
|A1|2

+
(α1 + α2)

R

∙
−2 ∂

∂R
(u+ v cot θ)Ω+Ω

2
cot θ

¸
, (4.68)

1

R sin θ

∂p

∂φ
= 0. (4.69)
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On defining

S3 = p+
1

2
ρ |V|2 − α1

¡
V·∇2V

¢
− (3α1 + 2α2)

4
|A1|2 (4.70)

the Eqs. (4.67) and (4.68) can be rewritten as

∂S3
∂R

+ ρ

∙
∂u

∂t
− vΩ

¸
= − 1

R sin θ

µ
μ+ α1

∂

∂t

¶
∂

∂θ

¡
Ω sin θ

¢
− α1v

µ
∇2Ω− Ω

R2 sin2 θ

¶
+(α1 + α2)

"
2

R sin θ

∂

∂θ

³ u
R
+

v

R
cot θ

´
Ω sin θ +

Ω
2

R

#
, (4.71)

1

R

∂S3
∂θ

+ ρ

∙
∂v

∂t
+ uΩ

¸
=

µ
μ+ α1

∂

∂t

¶µ
∂Ω

∂R
+
Ω

R

¶
+ α1u

µ
∇2Ω− Ω

R2 sin2 θ

¶
+
(α1 + α2)

R

∙
−2 ∂

∂R
(u+ v cot θ)Ω+Ω

2
cot θ

¸
. (4.72)

Introducing the Stokes’ stream function

u =
1

R2
∂ψ

∂σ
, v =

1

R
√
1− σ2

∂ψ

∂R
, σ = cos θ (4.73)

the continuity equation is identically satisfied and vorticity function become

Ω =
∂v

∂R
+

v

R
− 1

R

∂u

∂θ
=

1

R
√
1− σ2

D2ψ, (4.74)

where

D2 =
∂2

∂R2
+
1− σ2

R2
∂2

∂σ2
. (4.75)

Substituting Eqs. (4.73) and (4.74) in Eqs. (4.71) and (4.72) we obtain

∂S3
∂R

+ ρ

∙
1

R2
∂

∂t

∂ψ

∂σ
− 1

R2 (1− σ2)

∂ψ

∂R
D2ψ

¸
(4.76)

=
1

R2

µ
μ+ α1

∂

∂t

¶
∂

∂σ
D2ψ − α1D

4ψ

R2 (1− σ2)

∂ψ

∂R

+(α1 + α2)

"
− 2
R

∂

∂σ

½µ
1

R4
∂ψ

∂σ
+

σ

R3 (1− σ2)

∂ψ

∂R

¶
D2ψ

¾
+

¡
D2ψ

¢2
R3 (1− σ2)

#
,
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−∂S3
∂σ

+ ρ

∙
∂

∂t

1

1− σ2
∂ψ

∂R
+

1

R2 (1− σ2)

∂ψ

∂σ
D2ψ

¸
(4.77)

=

µ
μ+ α1

∂

∂t

¶
1

(1− σ2)

∂

∂R
D2ψ +

α1D
4ψ

R2 (1− σ2)

∂ψ

∂σ

−(α1 + α2)√
1− σ2

"
2
∂

∂R

µ
1

R3
∂ψ

∂σ
+

σ

R2 (1− σ2)

∂ψ

∂R

¶
D2ψ√
1− σ2

− σ

R2 (1− σ2)
3
2

¡
D2ψ

¢2#
.

Differentiating Eq. (4.76) with respect to σ and Eq. (4.77) with respect to R and then

adding the resulting equation we get

ρ

∙
∂

∂t

D2ψ

1− σ2
−
½
ψ,

D2ψ

R2 (1− σ2)

¾¸
(4.78)

=

µ
μ+ α1

∂

∂t

¶
D4ψ

1− σ2
− α1

½
ψ,

D4ψ

R2 (1− σ2)

¾
± 2 (α1 + α2)

1− σ2

⎡⎣ D2
³
∂ψ
∂σ

D2ψ
R3

´
+ σ

R3(1−σ2)
∂ψ
∂RD

2ψ

−
³
D2ψ
R3

∂
∂σ +

σD2ψ
R2(1−σ2)

∂
∂R

´
D2ψ

⎤⎦ ,
where ½

ψ,
D2ψ

R2 (1− σ2)

¾
=

∂ψ

∂R

∂

∂σ

µ
D2ψ

R2 (1− σ2)

¶
− ∂ψ

∂σ

∂

∂R

µ
D2ψ

R2 (1− σ2)

¶
. (4.79)

Note that the Eq.(4.78) for steady case reduces to Siddiqui et al. [28].

4.4 Solutions

In this section we apply inverse method to obtain the solution of non-linear partial differential

equations in sections 4.1, 4.2, and 4.3, by considering the specific forms of the stream function.

4.4.1 Flow where ψ(r, θ, t) = rnF (θ, t)

We choose

ψ (r, θ, t) = rnF (θ, t) (4.80)

in which the arbitrary function F depends upon θ and t and n is an integer. Using Eq. (4.80)

into Eq. (4.23) we obtain

ρ

∙
∂G

∂t
−
½
nF

∂G

∂θ
− (n− 2) ∂F

∂θ
G

¾
rn−2

¸
=

µ
μ+ α1

∂

∂t

¶
Hr−2 (4.81)

−α1
∙
nF

∂H

∂θ
− (n− 4) ∂F

∂θ
H

¸
rn−4.
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In above equation

G (θ, t) = n2F (θ, t) +
∂2F (θ, t)

∂θ2
=

µ
n2 +

∂

∂θ2

¶
F (θ, t) , (4.82)

H (θ, t) =

µ
(n− 2)2 + ∂2

∂θ2

¶
G (θ, t) .

Taking n = 0, Eqs. (4.81) and (4.82) yield

ρ

∙
∂G

∂t
− 2∂F

∂θ
Gr−2

¸
=

µ
μ+ α1

∂

∂t

¶
Hr−2 − 4α1

∂F

∂θ
Hr−4, (4.83)

G (θ, t) =
∂2F (θ, t)

∂θ2
= H (θ, t) =

µ
4 +

∂2

∂θ2

¶
G (θ, t)

and which gives the following equations

ρ
∂G

∂t
= 0, (4.83a)

2ρ
∂F

∂θ
G+ μH + α1

∂H

∂t
= 0, (4.83b)

4α1H
∂F

∂θ
= 0. (4.83c)

where

G =
∂2F

∂θ2
, H = 4G+

∂2G

∂θ2
. (4.84)

It is worth mentioning that for α1 = 0 and ∂t (·) = 0 we get Jeffery-Hamel flows [46] and

for ∂t (·) = 0 we recover the analysis of reference [41] .

Equation (4.83a) implies that G 6= G (t) which shows that G is steady and hence from Eq.

(4.84) H is steady. From Eq. (4.83c) we assume ∂F
∂θ 6= 0 (since ∂F

∂θ = 0 ⇒ F 6= F (θ) and

which contradicts the assumption (4.80)) which implies H = 0. Using these informations in

Eq. (4.83b) we get

2ρ
∂F

∂θ

∂2F

∂θ2
= 0. (4.85)

The solution of above equation is

F (θ, t) = A7 (t) θ +B7 (t) , (4.86)
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where A7 (t) and B7 (t) are arbitrary functions.

Now the expressions for stream function and velocity components are given through Eqs.

(4.80) and (4.19) as

ψ (r, θ, t) = A7 (t) θ +B7 (t) , (4.87)

u = r−1A7 (t) , (4.88)

v = 0. (4.89)

For n = 1 Eq. (4.81) becomes

ρ

∙
∂G

∂t
−
½
F
∂G

∂θ
+

∂F

∂θ
G

¾
r−1

¸
=

µ
μ+ α1

∂

∂t

¶
Hr−2 − α1

∙
F
∂H

∂θ
+ 3

∂F

∂θ
H

¸
r−4, (4.90)

which give rise to the following equations

∂G

∂t
= 0, (4.90a)

∂

∂θ
(FG) = 0, (4.90b)µ

μ+ α1
∂

∂t

¶
H = 0, (4.90c)

F
∂H

∂θ
+ 3

∂F

∂θ
H = 0, (4.90d)

where

G = F +
∂2F

∂θ2
, H = G+

∂2G

∂θ2
. (4.91)

Now Eq. (4.90a) indicates that G is steady and hence through Eq. (4.91) H is steady and

from Eq.(4.90c) we get
∂2G

∂θ2
+G = 0 (4.92)

whose general solution is

G (θ, t) = A8 (t) cos θ +B8 (t) sin θ, (4.93)

where A8 (t) and B8 (t) are arbitrary functions of t. Substitution of Eq. (4.93) into Eq. (4.90b)

yield

F (θ, t) = C (t) [A8 (t) cos θ +B8 (t) sin θ]
−1 , (4.94)
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where C (t) is function of integration. The stream function (4.80) and velocity components

(4.19) are respectively given by

ψ (r, θ, t) = rC (t) [A8 (t) cos θ +B8 (t) sin θ]
−1 , (4.95)

u = C (t) [A8 (t) sin θ −B8 (t) cos θ] [A8 (t) cos θ +B8 (t) sin θ]
−2 , (4.96)

v = −C (t) [A8 (t) cos θ +B8 (t) sin θ]
−1 . (4.97)

For n = 2 we have following from Eq. (4.81)

ρ

∙
∂G

∂t
− 2F ∂G

∂θ

¸
=

µ
μ+ α1

∂

∂t

¶
Hr−2 − α1

∙
2F

∂H

∂θ
+ 2

∂F

∂θ
H

¸
r−2, (4.98)

which yields

∂G

∂t
− 2F ∂G

∂θ
= 0, (4.98a)µ

μ+ α1
∂

∂t

¶
H − 2α1

∂

∂θ
(FH) = 0, (4.98b)

where

G = 4F +
∂2F

∂θ2
, H =

∂2G

∂θ2
. (4.99)

For the special case α1 = 0 we getµ
∂

∂t
− 2F ∂

∂θ

¶µ
4F +

∂2F

∂θ2

¶
= 0,

∂2

∂θ2

µ
4F +

∂2F

∂θ2

¶
= 0. (4.100)

In order to solve Eq. (4.100) we let

F (θ, t) =
a0
2
+Q (s) , s = θ + a0t (4.101)

to get (for Q 6= 0)
d3Q

ds3
+ 4

dQ

ds
= 0. (4.102)

Solving Eq. (4.102) and then inserting in Eq. (4.101) we obtain

F (θ, t) = a4 + a2 cos 2 (θ + at) + a3 sin 2 (θ + at) , (4.103)

84



where a0, a2, a3 and a4 are the arbitrary constants. The stream function and velocity compo-

nents are

ψ (r, θ, t) = r2 [a4 + a2 cos 2 (θ + a0t) + a3 sin 2 (θ + a0t)] , (4.104)

u = 2r [−a2 sin 2 (θ + a0t) + a3 cos 2 (θ + a0t)] , (4.105)

v = −2r [a4 + a2 cos 2 (θ + a0t) + a3 sin 2 (θ + a0t)] . (4.106)

For α1 6= 0, Eq. (98a, b) gives

4
∂F

∂t
+

∂3F

∂t∂θ2
− 8F ∂F

∂θ
− 2F ∂3F

∂θ3
= 0, (4.107)µ

μ+ α1
∂

∂t

¶µ
4
∂F

∂θ
+

∂3F

∂θ3

¶
− 2α1

µ
4F

∂2F

∂θ2
+

∂4F

∂θ4

¶
= a5 (t) , (4.108)

where a5 (t) is arbitrary function. The possible solution of Eq. (4.108) for a5 (t) = 0 is given by

ψ (r, θ, t) = r2 [θ0 cos 2θ + θ1 sin 2θ] e
λ2t, u = 2r [−θ0 sin 2θ + θ1 cos 2θ] e

λ2t,

v = −2r [θ0 cos 2θ + θ1 sin 2θ] e
λ2t, (4.109)

where λ2, θ0 and θ1 are arbitrary constants.

For other value of n, Eq. (4.81) requires to satisfy

∂G

∂t
= 0,

µ
μ+ α1

∂

∂t

¶
H = 0, (4.109a)

nF
∂G

∂θ
− (n− 2) ∂F

∂θ
G = 0, (4.109b)

nF
∂H

∂θ
− (n− 4) ∂F

∂θ
H = 0. (4.109c)

where G and H are described in Eq. (4.82). From Eq. (4.109a) we get G 6= G (t) and hence

from Eq. (4.82)2 H 6= H (t) and we get H = 0. Eq. (4.109c) is solved to get

G (θ, t) = C1 (t)F
n−2
2 , n 6= 0. (4.110)

in which C1 (t) is function of integration.
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Eq. (4.110) together with Eq. (4.82) forms a non-linear partial differential equation for the

determination of F (except when n = 2), which is given as

∂2F

∂θ2
+ n2F = C1 (t)F

n−2
2 . (4.111)

The solution (stream function and velocity components) of Eq. (4.111) for n = 1 and

C1 (t) = 0 is given by

ψ = r (A9 (t) cos θ +B9 (t) sin θ) , u = −A9 (t) sin θ+B9 (t) cos θ, v = − (A9 (t) cos θ +B9 (t) sin θ) .

(4.112)

The solution (stream function and velocity components) of Eq. (4.111) for n = 2 and C1 (t) 6= 0

is as follows

ψ = r2
∙
C1 (t)

4
+A10 (t) cos 2θ +B10 (t) sin 2θ

¸
, u = 2r [−A10 (t) sin 2θ +B10 (t) cos 2θ] ,

v = −2r
∙
C1 (t)

4
+A10 (t) cos 2θ +B10 (t) sin 2θ

¸
, (4.113)

in which Ai (t) and Bi (t) (i = 9, 10) are arbitrary functions.

For ψ = ψ (r, t) , Eq. (4.111) becomes

µ
μ+ α1

∂

∂t

¶
∇4ψ − ρ∇2ψt = 0. (4.114)

On letting

ψ (r, t) = Φ1 (r) e
λ5t (4.115)

equation (4.114) becomes

1

r

∂

∂r

∙
r
∂

∂r

½
1

r

∂

∂r

µ
r
∂Φ1
∂r

¶¾¸
− ξ2

1

r

∂

∂r

µ
r
∂Φ1
∂r

¶
= 0, (4.116)

which on simplification gives

r2
d2Φ1
dr2

+ r
dΦ1
dr
− r2ξ2Φ1 = (A4 ln r +B4) r

2, (4.117)
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where

ξ25 =
ρλ5

μ+ α1λ5
.

For steady case the solution of Eq. (4.114) is

ψ (r) = A5r
2 ln r +B5r

2 + C3 ln r, (4.118)

where A5, B5 and C3 are arbitrary constants and the velocity components are

u = 0, v = −
¡
C3r

−1 + (A5 + 2B5) r + 2A5r ln r
¢
. (4.119)

Here we remark that the solution given in Eq. (4.118) is in agreement to that given in Siddiqui

and Kaloni [28].

The solution of Eq. (4.117) , after substituting in Eq. (4.115) , for A4 = B4 = 0 is given as

ψ (r, t) =
£
A4I0 (rξ5) +B4K0 (rξ5)

¤
eλ5t (4.120)

and the velocity components are

u = 0, v = ξ5
£
−A4I1 (rξ5) +B4K1 (rξ5)

¤
eλ5t, (4.121)

where In (x) and Kn (x) are the modified Bessel functions of first and second kind, respectively.

4.4.2 Flow where bψ(r, z, t) = rnF (z, t)

Inserting bψ (r, z, t) = rnF (z, t) (4.122)
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into Eq. (4.49) we get

ρ

⎡⎣ n (n− 2) rn−3 ∂F∂t + rn−1 ∂3F
∂z2∂t

− 4n (n− 2) r2n−5F ∂F
∂z

−
n
nF ∂3F

∂z3 − (n− 2)
∂F
∂z

∂2F
∂z2

o
r2n−3

⎤⎦ (4.123)

=

µ
μ+ α1

∂

∂t

¶⎡⎣ n (n− 2)2 (n− 4) rn−5F + 2n (n− 2) rn−3 ∂2F
∂z2

+rn−1 ∂
4F
∂z4

⎤⎦

−α1

⎡⎢⎢⎢⎣
6n (n− 2)2 (n− 4) r2n−7F ∂F

∂z

+2n (n− 2)
n
nF ∂3F

∂z3
− (n− 4) ∂F∂z

∂2F
∂z2

o
r2n−5

+
n
nF ∂5F

∂z5
− (n− 2) ∂F∂z

∂4F
∂z4

o
r2n−3

⎤⎥⎥⎥⎦
−2 (α1 + α2)

⎡⎣ 3n (n− 2)2 (n− 4) r2n−7F ∂F
∂z + 2 (n− 2) (3n− 2) r2n−5

∂F
∂z

∂2F
∂z2

+
³
∂F
∂z

∂4F
∂z4

+ 2∂
2F
∂z2

∂3F
∂z3

´
r2n−3

⎤⎦ .
For n = 2, Eq. (4.123) reduces to

µ
μ+ α1

∂

∂t

¶
∂4F

∂z4
+ρ

µ
2F

∂3F

∂z3
+

∂4Ft
∂z4

¶
= 2α1

µ
F
∂5F

∂z5

¶
+2 (α1 + α2)

µ
∂F

∂z

∂4F

∂z4
+ 2

∂2F

∂z2
∂3F

∂z3

¶
.

(4.124)

The first integral of Eq. (4.5.3) is

μ
∂3F

∂z3
+ ρ

Ã
2F

∂2F

∂z2
−
µ
∂F

∂z

¶2
− ∂Ft

∂z

!
= 2α1

Ã
F
∂4F

∂z4
+

µ
∂2F

∂z2

¶2
− 1
2

∂3Ft
∂z3

!
(4.125)

+α2

Ã
2F

∂2F

∂z2
+

µ
∂2F

∂z2

¶2!
,

where we have taken the function of integration equal to zero. In order to solve Eq. (4.124) we

define

F (z, t) = N +Q (z + 2Nt) = N +Q (s) , s = z + 2Nt (4.126)

to obtain the following equation

μ
d3Q

ds3
+ ρ

Ã
2Q

d2Q

ds2
−
µ
dQ

ds

¶2!
= 2α1

Ã
Q
d4Q

ds4
+

µ
d2Q

ds2

¶2!
+ α2

Ã
2
dQ

ds

d3Q

ds3
+

µ
d2Q

ds2

¶2!
.

(4.127)

88



Letting α1 = α2 = 0 in Eq. (4.127) and assuming

Q = A12s
λ6 (4.128)

we get the following relation

μλ6 (λ6 − 1) (λ6 − 2) sλ6−3 +A12ρλ6 (2 (λ6 − 1) + 1) s2(λ6−1) = 0. (4.129)

On choosing λ6 = −1 we readily obtain A12 = 2ν (ν is the kinematic viscosity). The

expressions for stream function (4.122) and velocity components (4.44) are

bψ (r, z, t) = r2
h
N + 2ν (z + 2Nt)−1

i
, (4.130)

u = −2νr (z + 2Nt)−2 , (4.131)

v = −2
h
N + 2ν (z + 2Nt)−1

i
. (4.132)

It is noted that the solutions (4.130) to (4.132) reduces to that of Berker solution [41] when

N = 0.

For α1 6= 0, α2 6= 0 we assume [46, 47]

Q = A0 (1 + C0e
a9s) , s = z + 2Nt (4.133)

into Eq. (4.127) and get, after a straight forward calculations, the following solution

Q (s) =
−μa9

2
¡
ρ− α1a29

¢ (1 + C0e
a9s) , (4.134)

where

a9 =

q
ρ (4α1 + 3α2)

−1

and C0 is a constant. The stream function (4.122) and velocity components (4.44) in this case
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become

bψ (r, z, t) =

"
N − μa9

2
¡
ρ− α1a29

¢ ³1 +C0e
a9(z+2Nt)

´#
r2, (4.135)

u = − μr

2
¡
ρ− α1a29

¢C0ea9(z+2Nt), (4.136)

v =

"
−N +

μa9

2
¡
ρ− α1a29

¢ ³1 + C0e
a9(z+2Nt)

´#
2r. (4.137)

For n = 0, Eq. (4.123) gives

ρ
∂2Ft
∂z3

=

µ
μ+ α1

∂

∂t

¶
∂4F

∂z4
, (4.138)

ρ
∂F

∂z

∂2F

∂z2
= α1

∂F

∂z

∂4F

∂z4
+ (α1 + α2)

µ
∂F

∂z

∂4F

∂z4
+ 2

∂2F

∂z2
∂3F

∂z3

¶
, (4.139)

(5α1 + 4α2)
∂F

∂z

∂2F

∂z2
= 0. (4.140)

Since ∂F
∂z 6= 0 thus Eq. (4.140) implies that

F (z, t) = a11 (t) z + a12 (t) , (4.141)

where a11 (t) and a12 (t) are arbitrary functions of time and above expression leads to the

following values of the stream function (4.122) and velocity components (4.44)

bψ = F, u = r−1a11 (t) , v = 0. (4.142)

Writing

F (z, t) = Φ2 (z) e
λ7t (4.143)

in Eq. (4.138) and then solving the resulting equation we obtain

F (z, t) =

µ
a15e

ηz + a16e
−ηz − (a13z + a14)

η25

¶
eλ7t, (4.144)

90



in which ai (i = 13, 14, 15, 16) are arbitrary integration constants and

η25 =
ρλ7

μ+ α1λ7
.

The corresponding stream function (4.122) and velocity components (4.44) are

bψ = F, u = r−1
∂F

∂z
, v = 0. (4.145)

4.4.3 Flow where ψ(R, σ, t) = RnF (σ, t)

On specializing the solution of Eq. (4.78) of the form

ψ(R, σ, t) = RnF (σ, t) (4.146)

we obtain

ρ

∙
Rn−2∂G1

∂t
−
½
nF

∂G1
∂σ
− (n− 4) ∂F

∂σ
G1

¾
R2n−5

¸
(4.147)

=

µ
μ+ α1

∂

∂t

¶
H1R

n−4 − α1

∙
nF

∂H1

∂σ
+H1

∂F

∂σ
(n− 6)

¸
R2n−7

+
2 (α1 + α2)

1− σ2

⎡⎣ n¡1− σ2
¢

∂2

∂σ2
+ (2n− 5) (2n− 6)

¡
G∂F

∂σ + nσFG1
¢o

−
n
G∂G

∂σ +
(n−2)σ
1−σ2 G2

o
⎤⎦R2n−7,

where

G1 =
G

1− σ2
, H1 =

H

1− σ2
, σ = cos θ, (4.148)

G (σ, t) = n (n− 1)F +
¡
1− σ2

¢ ∂2F
∂σ2

, H (σ, t) = (n− 2) (n− 3)G+
¡
1− σ2

¢ ∂2G
∂σ2

,

D2ψ =

µ
∂2

∂R2
+
1− σ2

R2
∂2

∂σ2

¶
ψ, u =

1

R2
∂ψ

∂σ
, v =

1

R
√
1− σ2

∂ψ

∂R
.
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For n = 0, Eqs. (4.147) and (4.148) become

ρ

∙
R−2

∂G1
∂t
− 4∂F

∂σ
G1R

−5
¸
=

µ
μ+ α1

∂

∂t

¶
H1R

−4 − α1

µ
6H1

∂F

∂σ

¶
R−7 (4.149)

+
2 (α1 + α2)

1− σ2

⎡⎣ ¡1− σ2
¢

∂2

∂σ2

¡
G∂F

∂σ

¢
+ 30G∂F

∂σ

−
³
G∂F

∂σ −
2σ
1−σ2G

2
´

⎤⎦R−7,

G =
¡
1− σ2

¢ ∂2F
∂σ2

, G1 =
G

1− σ2
, H = 6G+

¡
1− σ2

¢ ∂2G
∂σ2

, H1 =
H

1− σ2
. (4.150)

Equation (4.149) give rise to the following partial differential equations

∂G1
∂t

= 0,
∂F

∂σ
G1 = 0,

µ
μ+ α1

∂

∂t

¶
H1 = 0, (4.151)

3α1H1
∂F

∂σ
=

(α1 + α2)

1− σ2

⎡⎣ ¡
1− σ2

¢
∂2

∂σ2

¡
G∂F

∂σ

¢
+30G∂F

∂σ −
³
G∂G

∂σ −
2σ
1−σ2G

2
´
⎤⎦ .

Equations (4.151)1,3 and Eqs. (4.150)2,4 imply that G and H are not functions of t and

hence Eq. (4.151)2 with the help of Eqs. (4.150)1,2 become

∂F

∂σ
G1 =

∂F

∂σ

µ
G

1− σ2

¶
=

1

1− σ2
∂F

∂σ

¡
1− σ2

¢ ∂2F
∂σ2

=
∂F

∂σ

∂2F

∂σ2
= 0.

Since ∂F
∂σ 6= 0, we get

∂2F
∂σ2 = 0 and whose general solution is

F (σ, t) = C0 (t)σ + C1 (t) , (4.152)

where C0 (t) and C1 (t) are arbitrary constants and the stream function (4.146) and velocity

components (4.73) are found as

ψ = C0 (t)σ + C1 (t) , u =
C0 (t)

R2
, v = 0. (4.153)
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For n = 1, Eqs. (4.147) and (4.148) yield

ρ

∙
R−1

∂G1
∂t
−
½
F
∂G1
∂σ

+ 3
∂F

∂σ
G1

¾
R−3

¸
(4.154)

=

µ
μ+ α1

∂

∂t

¶
H1R

−3 + α1

∙
F
∂H1

∂σ
+ 5H1

∂F

∂σ

¸
R−5

+
2 (α1 + α2)

1− σ2

⎡⎣ ¡
1− σ2

¢
∂2

∂σ2

¡
G∂F

∂σ + σFG1
¢

+12
¡
G∂F

∂σ + σFG1
¢
−
³
G∂F

∂σ −
σ

1−σ2G
2
´ R−5

⎤⎦ ,

G =
¡
1− σ2

¢ ∂2F
∂σ2

, G1 =
G

1− σ2
, H = 2G+

¡
1− σ2

¢ ∂2G
∂σ2

, H1 =
H

1− σ2
. (4.155)

Equation (4.156) gives the following partial differential equations

∂G1
∂t

= 0, − ρ

µ
F
∂G1
∂σ

+ 3
∂F

∂σ
G1

¶
=

µ
μ+ α1

∂

∂t

¶
H1, (4.156)

α1

µ
F
∂H1

∂σ
+ 5H1

∂F

∂σ

¶
=
2 (α1 + α2)

1− σ2

⎡⎣ ¡
1− σ2

¢
∂2

∂σ2

¡
G∂F

∂σ + σFG1
¢

+12
¡
G∂F

∂σ + σFG1
¢
−
³
G∂F

∂σ −
σ

1−σ2G
2
´
⎤⎦ .

Again Eqs. (4.156)1,2 give that G and hence H is steady, so that the Eq. (4.156)2 becomes

μH1 + ρ

µ
F
∂G1
∂σ

+ 3
∂F

∂σ
G1

¶
= 0

or

μ

∙
2
∂2F

∂σ2
+

∂2

∂σ2

½¡
1− σ2

¢ ∂2F
∂σ2

¾¸
+ ρ

∙
F
∂3F

∂σ3
+ 3

∂F

∂σ

∂2F

∂σ2

¸
= 0. (4.157)

In order to find the solution of Eq. (4.157), we write this, after some lengthy calculations,

the following expression

∂3

∂σ3

∙
2μ
¡
1− σ2

¢ ∂F
∂σ

+ 4σμF + ρF 2
¸
= 0. (4.158)

Integrating Eq. (4.158) we obtain

2μ
¡
1− σ2

¢ ∂F
∂σ

+ 4σμF + ρF 2 = C11 (t)σ
2 + C12 (t)σ + C13 (t) , (4.159)

where C11 (t), C12 (t) and C13 (t) are arbitrary functions of the variable t.
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Following Landau and Liftshitz [47] (by setting functions of integration equal to zero) we

assume the solution as

F (σ, t) = −λ8
¡
1− σ2

¢
(σ − a17)

−1 , (4.160)

where λ8 and a17 are arbitrary real constants. Inserting Eq. (4.160) into Eq. (4.159) it follows

λ8 = −2μ/ρ. (4.161)

Using the value of λ8 in Eq. (4.160) one obtains

F (σ, t) =
2ν
¡
1− σ2

¢
σ − a17

. (4.162)

Substituting Eq. (4.162) into Eq. (4.156)3 we obtain the following

96ν2
∙

1

(σ − a17)
2 −

2σ

(σ − a17)
3 −

1− σ2

(σ − a17)
4

¸⎡⎢⎢⎣ α1

½
11σ2−1
σ−a17 +

21σ(1−σ2)
(σ−a17)2

+
10(1−σ2)2

(σ−a17)3

¾
(α1 + α2)

½
2σ + 1+σ2

σ−a17 +
7σ(1−σ2)
(σ−a17)2

+
4σ(1−σ2)2

(σ−a17)3

¾
⎤⎥⎥⎦ = 0.

(4.163)

It can be noted from Eq. (4.163) that solution cannot be obtained for all values of the

parameter a17. Siddiqui et al. [28] found the solution of Eq. (4.163) for steady cases when

a17 = −1, 1, 0. We are recasting the solution for the completeness. On setting a17 = ±1, Eq.

(4.163) is satisfied identically and Eq. (4.162) gives

F1,2 = ∓2ν (1± σ) , for a17 = ±1 (4.164)

and for a17 = 0 and 7α1 + 2α2 = 0, Eq. (4.162) become

F3 =
2ν

σ

¡
1− σ2

¢
. (4.165)

The stream function (4.146) and the velocity components (4.73) for F1, F2 and F3 are

respectively given as

ψ = RF1 (σ, t) , u = −
2ν

R
, v = −2ν

R

1 + σ√
1− σ2

, (4.166)
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ψ = RF2 (σ, t) , u = −
2ν

R
, v =

2ν

R

1− σ√
1− σ2

, (4.167)

ψ = RF3 (σ, t) , u = −
2ν

R

1 + σ2

σ2
, v =

2ν

R

√
1− σ2

σ
. (4.168)

For n = 2, Eqs. (4.147) and (4.148) reduce to

ρ

∙
∂G1
∂t
−
½
2F

∂G1
∂σ

+ 2
∂F

∂σ
G1

¾
R−1

¸
(4.169)

=

µ
μ+ α1

∂

∂t

¶
H1R

−2 − α1

∙
2F

∂H1

∂σ
+ 4H1

∂F

∂σ

¸
R−3

+
2 (α1 + α2)

1− σ2

⎡⎣ ¡1− σ2
¢

∂2

∂σ2

¡
G∂F

∂σ + 2σFG1
¢

+2
¡
G∂F

∂σ + 2σFG1
¢
−G∂G

∂σ

⎤⎦R−3,

G = 2F +
¡
1− σ2

¢ ∂2F
∂σ2

, G1 =
1

1− σ2
G, H =

¡
1− σ2

¢ ∂2G
∂σ2

, H1 =
1

1− σ2
H. (4.170)

On comparing the coefficients of R, Eq. (4.169) gives the following equations

∂G1
∂t

= 0,
∂

∂σ
(G1F ) = 0,

µ
μ+ α1

∂

∂t

¶
H1 = 0, (4.171)

α1

µ
F
∂H1

∂σ
+ 2H1

∂F

∂σ

¶
=

2 (α1 + α2)

1− σ2

⎡⎣ ¡1− σ2
¢

∂2

∂σ2

¡
G∂F

∂σ + 2σFG1
¢

+2
¡
G∂F

∂σ + 2σFG1
¢
−G∂G

∂σ

⎤⎦ .
Equations (4.171)1,3 together with Eq. (4.170) imply that G1 and hence H1 is steady. From

Eq. (4.171)2 we get ¡
1− σ2

¢−1
F

∙
2F +

¡
1− σ2

¢ ∂2F
∂σ2

¸
= C (t) . (4.172)

The solution of Eq. (4.172) is given as

F (σ, t) =
¡
σ2 − 1

¢ eC1 (t) + 1
4
eC2 (t) £−2σ + ¡1− σ2

¢
{ln (σ − 1)− ln (σ + 1)}

¤
(4.173)

and the stream function and velocity components respectively are

ψ = R2F (σ, t) , v = 2
¡
1− σ2

¢−1/2
F (σ, t) ,

u =
σ

2

∙
4 eC1 (t) + eC2 (t)½ln (σ + 1)− ln (σ − 1)− 2

σ

¾¸
, (4.174)
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where eC1 (t)and eC2 (t) are arbitrary functions.
For n = 3, Eqs. (4.147) and (4.148) lead to the following

ρ

∙
R
∂G1
∂t
−
½
3F

∂G1
∂σ

+G1
∂F

∂σ

¾
R

¸
(4.175)

=

µ
μ+ α1

∂

∂t

¶
H1R

−1 − α1

∙
3F

∂H1

∂σ
+ 3H1

∂F

∂σ

¸
R−1

+
2 (α1 + α2)

1− σ2

∙¡
1− σ2

¢ ∂2

∂σ2

µ
G
∂F

∂σ
+ 3σFG1

¶
−
µ
G
∂G

∂σ
+

σ

1− σ2
G2
¶¸

R−1,

G = 6F+
¡
1− σ2

¢ ∂2F
∂σ2

, G1 =
¡
1− σ2

¢−1
G, H =

¡
1− σ2

¢ ∂2G
∂σ2

, H1 =
¡
1− σ2

¢−1
H. (4.176)

Equation (4.175) gives rise to the following

∂G1
∂t
−
µ
3F

∂G1
∂σ

+G1
∂F

∂σ

¶
= 0, (4.177)

µ
μ+ α1

∂

∂t

¶
H1 − α1

∙
3F

∂H1

∂σ
+ 3H1

∂F

∂σ

¸
(4.178)

=
2 (α1 + α2)

1− σ2

∙¡
1− σ2

¢ ∂2

∂σ2

µ
G
∂F

∂σ
+ 3σFG1

¶
−
µ
G
∂G

∂σ
+

σ

1− σ2
G2
¶¸
.

For steady
¡
∂
∂t (·) = 0

¢
and viscous case (α1 = 0) , Eq. (4.178) gives μH1 = 0 which on using

Eq. (4.176) becomes

μ
∂2

∂σ2

∙
6F +

¡
1− σ2

¢ ∂2F
∂σ2

¸
= 0

which on integration gives

6F +
¡
1− σ2

¢ ∂2F
∂σ2

= k1σ + k2, (4.179)

where k1and k2 are constants of integration. It is observed that the solution F obtained in Eq.

(4.179) is only satisfied through Eq. (4.177) when the constants k1and k2 are fixed to zero. So

the solution of Eq. (4.177) is

F (σ) = σ
¡
σ2 − 1

¢ eC3 − 1
4
eC4 £−4 + 6σ2 + 3σ ¡σ2 − 1¢ {1− ln (1 + σ)}+ ln (σ − 1)

¤
. (4.180)
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The stream function and velocity components are

ψ = R3F (σ, t) , v = 3R
¡
1− σ2

¢−1/2
F (σ) ,

u = R

∙¡
3σ2 − 1

¢ eC3 − 9
2
eC4σ + 3

4

¡
3σ2 − 1

¢ eC4 {ln (1 + σ)}− ln (σ − 1)
¸
. (4.181)

When k1 6= 0, k2 6= 0, we have the following solution of Eq. (4.179)

F (σ) =
1

24

⎡⎣ 6k2σ2 + 4nk1σ3 + 6σ ¡σ2 − 1¢ eC5 + 3 eC6 ¡2− 3σ2¢o
+3σ

¡
σ2 − 1

¢ ³
k2 − 6 eC6´ {ln (σ − 1)− ln (σ + 1)}

⎤⎦ , (4.182)

where eCi (i = 3− 6) are constants. The stream function and the velocity components in this

case are

ψ = R3F (σ, t) , u = R
dF

dσ
, v = 3R

¡
1− σ2

¢−1/2
F (σ) . (4.183)

For n = 4, Eqs. (4.147) and (4.148) become

ρ

∙
R2

∂G1
∂t
− 4F ∂G1

∂σ
R3
¸
=

µ
μ+ α1

∂

∂t

¶
H1 − α1

∙
4F

∂H1

∂σ
+ 2H1

∂F

∂σ

¸
R (4.184)

+
2 (α1 + α2)

1− σ2

⎡⎢⎢⎢⎣
¡
1− σ2

¢
∂2

∂σ2

¡
G∂F

∂σ + 4σFG1
¢

+6
¡
G∂F

∂σ + 4σFG1
¢

−
n
G∂G

∂σ + 2σ
¡
1− σ2

¢−1
G2
o
⎤⎥⎥⎥⎦R,

G = 12F +
¡
1− σ2

¢ ∂2F
∂σ2

, G1 =
¡
1− σ2

¢−1
G,

H =
¡
1− σ2

¢ ∂2G
∂σ2

+ 2G, H1 =
¡
1− σ2

¢−1
H. (4.185)

Following equations are obtained from Eq. (4.184)

∂G1
∂t

= 0, F
∂G1
∂σ

= 0,
µ
μ+ α1

∂

∂t

¶
H1 = 0, (4.186)

α1

∙
4F

∂H1

∂σ
+ 2H1

∂F

∂σ

¸
=

2 (α1 + α2)

1− σ2

⎡⎣ n¡1− σ2
¢

∂2

∂σ2
+ 6
o¡

G∂F
∂σ + 4σFG1

¢
−
n
G∂G

∂σ + 2σ
¡
1− σ2

¢−1
G2
o

⎤⎦ .
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The first and third equations in Eq. (4.186) imply that G1 and hence H1 is steady (not a

function of t). Since F 6= 0, Eq. (4.186)2 gives ∂G1
∂t = 0, which on using Eq. (4.185)2 gives the

following solution

G = A16
¡
1− σ2

¢
. (4.187)

Using Eq. (4.185)1 in Eq. (4.187) we get

¡
1− σ2

¢ ∂2G
∂σ2

+ 2G = A16
¡
1− σ2

¢
. (4.188)

The solution of Eq. (4.188) for steady case is given by Berker [41] and in order to avoid

repetition we directly give the solution with stream function and velocity components as

F = k3σ
2
¡
1− σ2

¢
, (4.189)

ψ = k3σ
¡
1− 2σ2

¢
R2, u = 2k3σ

¡
1− 2σ2

¢
R2, v = 4k3σ2

p
1− σ2R2,

where k3 is a constant.

4.5 Conclusions

In this chapter, the governing time dependent equations for plane polar, axisymmetric cylindri-

cal and spherical coordinates are derived. By assuming certain forms of the stream function in

different coordinate system, we obtained closed to eleven solutions of the resulting differential

equations. The solutions obtained are found to be in well agreement to that of the previous

solutions for viscous and second grade fluids. The modeled compatibility equations in all the

three coordinate systems for steady cases reduce to Siddiqui et al. [28] , whereas the solutions

successfully verifies the results of Jaffery-Hamel [46] , Berker [41] , Squire [46] , and Landau and

Liftshitz [47] .
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Chapter 5

Flow of a third grade fluid induced

by a variable shear stress

5.1 Introduction

The solution of third grade fluid is far more complicated than the Navier-Stokes equations and

for the second grade fluids. The second grade fluids though complicated are sometimes amenable

to certain solution methods, whereas third grade fluids do not yield solutions for these problems.

Physically, if the second grade fluids are important by shear thickening properties, third grade

fluids have the significance because of the shear thinning properties. The nonlinearity enters

further through the boundary conditions as well.

This chapter comprises the flow of an incompressible third grade fluid over an infinite wall.

The flow is induced due to a variable shear stress. The variable shear stress of the third grade

fluid make the boundary condition non-linear. This chapter is arranged as follows:

In section 5.2, the modelling of the governing equation for flow of a third grade fluid is

given. Section 5.3 deals with the formulation of the problem. Section 5.4 is decomposed into

four subsections. In subsection 5.4.1, the solution is given when the shear stress is proportional

to eλt (λ is real and positive constant). Subsection 5.4.3 gives the analytical solution of the

problem when shear stress is proportional to eiωt (ω is imposed frequency). Both the series

and numerical solutions are given in subsection 5.4.1, whereas only series solution is obtained

in subsection 5.4.3. Moreover, the results and discussion are presented in subsections 5.4.2.
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and 5.4.4. Section 5.5 synthesis the concluding remarks. It is found that with an increase in

second-grade parameter and third-grade parameter, the velocity decreases and thus boundary

layer thickness increases.

5.2 Modeling for variable suction in third grade fluid

Consider the flow of a third grade fluid over a plate. The wall is infinite in extent and thus the

velocity field depends only y and t. i.e.

V =[u (y, t) , 0, 0] , (5.1)

which satisfies the equation of continuity. Making use of Eq. (5.1) , one can write

A1 =

⎡⎣ 0 ∂u
∂y

∂u
∂y 0

⎤⎦ , (5.2)

A21 =

⎡⎣ ³∂u∂y´2 0

0
³
∂u
∂y

´2
⎤⎦ , (5.3)

A2 =

⎡⎣ 0 ∂2u
∂y∂t

∂2u
∂y∂t 2

³
∂u
∂y

´2
⎤⎦ , (5.4)

A3 =

⎡⎣ 0 ∂3u
∂y∂t2

∂3u
∂y∂t2

6∂u∂y

³
∂2u
∂y∂t

´
⎤⎦ , (5.5)

and thus through Eqs. (1.6) and (1.7) we can write

T =

⎡⎣ −p+ α2

³
∂u
∂y

´2
μ∂u
∂y + α1

³
∂2u
∂y∂t

´
+ 2β3

³
∂u
∂y

´3
μ∂u
∂y + α1

∂2u
∂y∂t + 2β3

³
∂u
∂y

´3
−p+ 2α1

³
∂u
∂y

´2
+ α2

³
∂u
∂y

´2
⎤⎦ . (5.6)

From above equation

(divT)x =
∂

∂x

"
−p+ α2

µ
∂u

∂y

¶2#
+

∂

∂y

"
μ
∂u

∂y
+ α1

µ
∂2u

∂y∂t
+ V

∂2u

∂y2

¶
+ 2β3

µ
∂u

∂y

¶3#
, (5.7)
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(divT)y = −
∂p

∂y
+ (2α1 + α2)

∂

∂y

µ
∂u

∂y

¶2
. (5.8)

In absence of body forces, the momentum equation satisfies the following equations

ρ

∙
∂V

∂t
+ (V ·∇)V

¸
x

= (divT)x , (5.9)

ρ

∙
∂V

∂t
+ (V ·∇)V

¸
y

= (divT)y , (5.10)

where subscripts indicates the x and y components of the momentum equation.

From Eqs. (5.1) and Eqs. (5.7) to (5.10) one can write

ρ
∂u

∂t
= −∂bp2

∂x
+ μ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ 6β3

µ
∂u

∂y

¶2 ∂2u
∂y2

, (5.11)

0 = −∂bp2
∂y

, (5.12)

where bp2 = p− (2α1 + α2)

µ
∂u

∂y

¶2
. (5.13)

Eliminating the pressure gradient between Eqs. (5.11) and (5.12) finally yields

ρ
∂u

∂t
= μ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ 6β3

µ
∂u

∂y

¶2 ∂2u
∂y2

. (5.14)

It should be pointed out Eq. (5.14) holds for second grade fluid when β3 = 0. The equation

which governs the viscous flow can be taken for α1 = 0 and β3 = 0.

5.3 Problem formulation

Let us consider the flow of a thermodynamic third grade fluid over an infinite plate at y = 0.

Choose the y−axis perpendicular to the plate. The plate is assumed under a variable shear

stress with magnitude c1τ (t) where c1 is a constant having the dimension ρU0 (ρ is the density

and U0 is some reference velocity). The governing non-linear equation is taken from Eq. (5.14)

as

ρ
∂u

∂t
= μ

∂2u

∂y2
+ α1

∂3u

∂y2∂t
+ 6β3

"
∂2u

∂y2

µ
∂u

∂y

¶2#
. (5.15)
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The non-linear boundary conditions for the flow under consideration are

"
μ
∂u

∂y
+ α1

∂2u

∂y∂t
+ 2β3

µ
∂u

∂y

¶3#
y=0

= c1τ (t) , t > 0, (5.16)

u(y, t)→ 0, as y →∞. (5.17)

We shall now write the field equation and the boundary conditions. For that we use

α1 =
α1U

2
0

ρν2
, ε =

6β3U
4
0

ρν3
, u =

u

U0
, t =

U20 t

ν
, η =

U0
ν
y, (5.18)

in Eq. (5.15) and the boundary conditions (5.16) and (5.17) , and then omitting the bars for

simplicity we get

∂u

∂t
=

∂2u

∂η2
+ α1

∂3u

∂η2∂t
+ ε

"
∂u

∂η

µ
∂u

∂η

¶2#
, (5.19)

"
∂u

∂η
+ α1

∂2u

∂η∂t
+
1

3
ε

µ
∂u

∂η

¶3#
η=0

= τ (t) , tm 0, (5.20)

u (η, t)→ 0 as η →∞. (5.21)

In this chapter we discuss two cases (i) τ (t) = eλt (λ is real and positive constant) and

(ii) τ(t) = eıωt (ω is imposed frequency). In the former case since λ is positive, it is prudent

to obtain a numerical solution besides an analytical solution in the form of perturbation series

in terms of ε. In the latter case, on the other hand since the solution is essentially bounded

therefore, a perturbation solution should give acceptable results.

5.4 Solution of the problem

5.4.1 Solution for case 1: τ (t) = eλt, λ is purely real (acceleration)

Numerical solution

In problems of this type, usually no initial condition is given at t = 0. For example, for a second

grade fluid (ε = 0) Hayat et al. [21] and Rajagopal [19] derived the analytical solutions for

102



a number of unsteady unidirectional flow problems, without using any initial condition. The

initial condition, if derived, can be obtained from the solution.

Because of the nonlinearity introduced on account of the third grade fluid parameter, a

closed form analytical solution, in general, is not feasible to obtain, and a numerical solution

should be sought. For the latter, it appears that an initial condition must be prescribed at

t = 0. However, as Ariel [48] has recently demonstrated in an analogous situation, the initial

condition can be deduced if appropriate transformations are used.

We choose

u (η, t) = eλtf (η, t) , (5.22)

so that the differential equation for f takes the form

∂f

∂t
+ λf =

∂2f

∂η2
+ α1

µ
∂3f

∂t∂η2
+ λ

∂2f

∂η2

¶
+ εe2λt

µ
∂f

∂η

¶2 ∂2f
∂η2

(5.23)

and the boundary conditions become

(1 + α1λ)
∂f (0, t)

∂η
+
1

3
εe2λt

∙
∂f (0, t)

∂η

¸3
= 1, f (∞, t) = 0. (5.24)

Next we introduce the transformation

ξ = e2λt (5.25)

which leads us the boundary value problem

2λξ
∂f

∂ξ
+ λf = (1 + α1λ)

∂2f

∂η2
+ 2α1λξ

∂3f

∂ξ∂η2
+ εξ

µ
∂f

∂η

¶2 ∂2f
∂η2

, (5.26)

(1 + α1λ)
∂f (0, t)

∂η
+
1

3
εξ

∙
∂f (0, t)

∂η

¸3
= 1, f (∞, ξ) = 0. (5.27)

Equation (5.26) has only the boundary conditions at η = 0 and η =∞, but not the initial

condition at ξ = 0. But if we make the reasonable assumption that f is regular at ξ = 0, we

do not need the initial condition to get the integration started at ξ = 0. Equation (5.26) can

thus be integrated in the entire domain 0 ≤ ξ <∞ ∩ 0 ≤ η ≤ ∞. When one reaches ξ = 1, the

initial condition is recovered for the problem. Now either the original equation (5.19) can be
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integrated in the usual manner, or the integration can be further carried out of equation (5.26)

beyond ξ = 1. We have chosen the latter approach in the present work.

The details of the integration scheme have been furnished in Ariel [48] and are omitted here,

except that in the present work the situation is slightly complicated on account of the boundary

condition at η = 0. Now we have

(1 + α1λ)
∂f (0, ξ)

∂η
+
1

3
εξ

∙
∂f (0, ξ)

∂η

¸3
= 1 (5.28)

which is a cubic in ∂f (0, ξ) /∂η, that must be solved for each value of ξ. Also at ξ = 0, the

solution for f is

f (η, 0) = − 1√
λ
√
1 + λα1

exp

Ã
−
r

λ

1 + λα1
η

!
. (5.30)

Table 5.1 Illustrating the variation of u (0) , the velocity at the plate with α1, the vis-

coelastic fluid parameter and ε, the second-grade fluid parameter for λ = 0.5 using (i) exact

numerical solution and (ii) perturbation solution

From Table 5.1, we observe that there is a very good agreement between the numerical
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solution and the perturbation solution for t = 0 and small values of t (t < 1). For the values

of t greater than 3, there is sufficient discrepancy in the results that the perturbation solution

can no longer be accepted and the results from the numerical solution only should be used.
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Fig. 5.1. Variation of velocity profile u with η for t = 1.
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Fig. 5.2. Variation of velocity profile u with η for t = 2.
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Fig. 5.3. Variation of velocity profile u with η for t = 5.

Perturbation solution

We perturb the velocity field u in third grade parameter ε as follows [49] .

u (η, t; ε) = u0 (η, t) + εu1 (η, t) + ε2u2 (η, t) + · · · . (5.30)

For ε = 0, Eq. (5.32) gives an exact solution for the reduced problem corresponding to a

second-grade fluid. Using Eq. (5.30) into Eqs. (5.19) and the boundary conditions (5.20) and

(5.21) and then comparing the coefficients of like powers of ε one obtains the following systems

up to O
¡
ε2
¢
as:

Zeroth order system

∂u0
∂t

=
∂2u0
∂η2

+ α1
∂3u0
∂η2∂t

, (5.31)

∂u0
∂η

+ α1
∂2u0
∂η∂t

¯̄̄̄
η=0

= eλt, t > 0, (5.32)

u0 (η, t)→ 0 as η →∞. (5.33)

First order system
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∂u1
∂t

=
∂2u1
∂η2

+ α1
∂3u1
∂η2∂t

+
∂2u0
∂η2

µ
∂2u0
∂η2

¶2
, (5.34)

∂u1
∂η

+ α1
∂2u1
∂η∂t

+
1

3

µ
∂u0
∂η

¶3 ¯̄̄̄¯
η=0

= 0, (5.35)

u1 (η, t)→ 0 as η →∞. (5.36)

Second order system

∂u2
∂t

=
∂2u2
∂η2

+ α1
∂3u2
∂η2∂t

+
∂2u1
∂η2

µ
∂2u0
∂η2

¶2
+ 2

∂u0
∂η

∂u1
∂η

∂2u0
∂η2

, (5.37)

∂u2
∂η

+ α1
∂2u2
∂η∂t

+

µ
∂u0
∂η

¶2 ∂u1
∂η

¯̄̄̄
¯
η=0

= 0, (5.38)

u2 (η, t)→ 0 as η →∞. (5.39)

The above systems after using the transformations

u0 (η, t) = f0 (η) e
λt, u1 (η, t) = f1 (η) e

3λt, u2 (η, t) = f2 (η) e
5λt. (5.40)

reduce to the following:

(1 + λα1) f
00
0 (η)− λf0 = 0, (5.41)

(1 + λα1) f
0
0 (η) = 1, (5.42)

f0 (η)→ 0 as η →∞, (5.43)

(1 + 3λα1) f
00
1 (η)− 3λf1 = −

¡
f 00
¢2
f 000 , (5.44)
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(1 + 3λα1) f
0
1 (0) +

1

3

¡
f 00 (0)

¢3
= 0, (5.45)

f1 (η)→ 0 as η →∞, (5.46)

(1 + 5λα1) f
00
2 (η)− 5λf1 = −

¡
f 00
¢2
f 001 − 2f 00f 01f 000 , (5.47)

(1 + 5λα1) f
0
2 (0) +

¡
f 00 (0)

¢3
f 00 (0) = 0, (5.48)

f2 (η)→ 0 as η →∞, (5.49)

where prime denotes the differentiation with respect to η.

After lengthy but straightforward calculations, the solutions of the above systems are

f0 (η) = −A0c0e−c0η, (5.50)

f1 (η) = A1
¡
c1e

−c1η − 3c0e−3c0η
¢
, (5.51)

f2 (η) = A2
¡
c2e

−c2η − 5c0e−5c0η
¢
+B2

h
c2e

−c2η − (2c0 + c1) e
−(2c0+c1)η

i
, (5.52)

where

A0 =
1

λ
, c0 =

r
λ

1 + λα1
, A1 = −

A30c
4
0

18 (1 + 4λα1)
, c1 =

r
3λ

1 + 3λα1
,

A2 =
−9A20A1c40
20 (1 + 6λα1)

, B2 =
A20A1c

4
0c
2
1

(2c0 + c1)
2 (1 + 5λα1)− 5λ

, c2 =

r
5λ

1 + 5λα1
.

The expression for skin friction is given as

τ1 = τ1/ρU
2
0 =

h
eλtf 00 (0) + εe3λtf 01 (0) + ε2e5λtf 02 (0) + · · ·

i
. (5.53)
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From Eqs. (5.50) to (5.52) we can obtain

f 00 (η) = A0c
2
0e
−c0η, (5.54)

f 01 (η) = A1
¡
−c21e−c1η + 9c20e−3c0η

¢
, (5.55)

f 02 (η) = A2
¡
−c22e−c2η + 25c20e−5c0η

¢
+B2

h
−c22e−c2η + (2c0 + c1)

2 e−(2c0+c1)η
i
. (5.56)

5.4.2 Results and discussion

Fig. 5.1 is plotted for the velocity field u against η for (α1 = 0, 1, 2; t = 1;λ = 0.5 and

ε = 0.1; 0.5). It is observed that with an increase in the viscoelastic parameter α1 the velocity

increases near the boundary but then decreases away from the boundary thus causing the

boundary layer thickness to increase. Also it is found that when α1 is fixed i.e. (α1 = 0) and

the third-grade parameter is increased from ε = 0.1 to ε = 0.5 the velocity is again increased

near the plate and then decreased away from the boundary, though the effect of third-grade

fluid parameter is not as pronounced as that of the viscoelastic fluid parameter. Same behavior

is observed when α1 = 1 and α1 = 2. In Figs. 5.2 and 5.3 the velocity field u is plotted

against η for (α1 = 0, 1, 2; t = 2;λ = 0.5 and ε = 0.1; 0.5) and (α1 = 0, 1, 2; t = 5;λ = 0.5

and ε = 0.1; 0.5), respectively. The similar observations for the velocity field and the boundary

layer thickness are seen in these figures as in Fig. 5.1 except that the difference between the

velocity profiles for ε = 0.1 and ε = 0.5 become prominent as we increase t from 2 to 5.

5.4.3 Solution for case 2: τ (t) = eλt, λ is purely imaginary (oscillations)

Perturbation solution

We now discuss the case when the shear stress at the plate has an oscillating nature. For that

we put λ = iω in τ (t) and employing the same procedure as in section 5.3.1 one obtains

u (η, t; ε) = [f0R (η) cosωt− f0I (η) sinωt] (5.57)

+ε [f1R (η) cos 3ωt− f1I (η) sin 3ωt]

+ε2 [f2R (η) cos 5ωt− f2I (η) sin 5ωt] + · · · ,
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where the expressions for the functions f0R, f0I , f1R, f1I , f2R, f2I are straightforward to obtain,

which can be easily obtained from Eqs. (5.50) to (5.52) by letting λ = iω. Separating the real

and imaginary parts we obtain

f0R =
−e−R1η
R22 + I22

(R2 cos I1η − I2 sin I1η) , f0I =
e−R1η

R22 + I22
(R2 sin I1η + I2 cos I1η) ,

f1R =
e−3R1η

R24 + I24
[R4 (R1 cos 3I1η + I1 sin 3I1η)− I4 (I1 cos 3I1η −R1 sin 3I1η)]

− e−R3η

3
¡
R24 + I24

¢ [R4 (R3 cos I3η + I3 sin 3I3η)− I4 (I3 cos I3η −R3 sin I3η)] ,

f1I =
e−3R1η

R24 + I24
[R4 (I1 cos 3I1η −R1 sin 3I1η) + I4 (R1 cos 3I1η + I1 sin 3I1η)]

− e−R3η

3
¡
R24 + I24

¢ [R4 (I3 cos I3η −R3 sin I3η) + I4 (R3 cos I3η + I3 sin 3I3η)] ,

f2R = R9 +R13 +R14, f2I = I9 + I13 + I14,

R1 =
1q

2
¡
1 + ω2α21

¢
rq

(ω2α1)
2 + ω2 + ω2α1,

I1 =
1q

2
¡
1 + ω2α21

¢
rq

(ω2α1)
2 + ω2 − ω2α1,

R2 =
1√
2

rq
(ω2α1)

2 + ω2 + ω2, I2 = ±
1√
2

rq
(ω2α1)

2 + ω2 − ω2,

R3 =
1q

2
¡
1 + 9ω2α21

¢
rq

(9ω2α1)
2 + 9ω2 + 9ω2α1,

I3 =
1q

2
¡
1 + 9ω2α21

¢
rq

(9ω2α1)
2 + 9ω2 − 9ω2α1,

R4 = 2ω2α1
¡
2ω2α21 − 3

¢
, I4 = ω

¡
1− 9ω2α21

¢
,
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R14 =
¡
a7 cos I5η − b7 sin I5η

¢
e−R5η, I14 =

¡
b7 cos I5η + a7 sin I5η

¢
e−R5η,

R13 = R10 −
¡
a18R12 − b18I12

¢
, I13 = I10 −

¡
b18R12 + a18I12

¢
,

R12 = R11 cos I5η + I11 sin I5η, I12 = I11 cos I5η −R11 sin I5η,

R11 =
e−R5η

R25 + I25
[(R3 + 2R1)R5 + I5 (I3 + 2I1)] ,

I11 =
e−R5η

R25 + I25
[(I3 + 2I1)R5 − I5 (R3 + 2R1)] ,

R10 = e−(2R1+R3)η
£
a18 cos (2I1 + I3) η + b18 sin (2I1 + I3) η

¤
,

I10 = e−(2R1+R3)η
£
b18 cos (2I1 + I3) η − a18 sin (2I1 + I3) η

¤
,

a18 =
a15a17 + b15b17

a217 + b
2
17

, b18 =
b15b17 − a15a17

a217 + b
2
17

, a17 = 3
¡
a16 − 5ωα1b16

¢
,

a16 = (2R1 +R3)
2 − (2I1 + I3)

2 −
¡
R25 + I25

¢2
,

b16 = (2R1 +R3) (2I1 + I3)− 2R5I5, b17 = 3
¡
b16 + 5ωα1a16

¢
,

a15 = (2R1 +R3)
¡
a13a14 − b13b14

¢
− (2I1 + I3)

¡
b13a14 + a13a14

¢
,

b15 = (2I1 + I3)
¡
a13a14 − b13b14

¢
+ (2R1 +R3)

¡
b13a14 + a13a14

¢
,

a14 =
¡
R26 − I26

¢ ¡
R21 − I21

¢
− 4R1I1R6I6,

b14 = 2R1I1
¡
R26 − I26

¢
+ 2R6I6

¡
R21 − I21

¢
,

a13 = a2
¡
R23 − I23

¢
− 2b2R3I3, b13 = b2

¡
R23 − I23

¢
+ 2a2R3I3,
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R9 = R7 − (R8 cos I5η + I8 sin I5η) , I9 = I7 − (I8 cos I5η −R8 sin I5η) ,

R8 =
5e−R5η

R25 + I25

£
(R1R5 + I1I5) a12 − b12 (I1R5 −R1I5)

¤
,

I8 =
5e−R5η

R25 + I25

£
(I1R5 −R1I5) a12 + b12 (R1R5 + I1I5)

¤
,

R7 = e−5R1η
¡
a12 cos 5I1η + b12 sin 5I1η

¢
, a12 =

15
¡
a9a11 + b9b11

¢
a211 + b

2
11

,

I7 = e−5R1η
¡
b12 cos 5I1η − a12 sin 5I1η

¢
, b12 =

15
¡
b9a11 − a9b11

¢
a211 + b

2
11

,

a11 = a10 − 5ωα1b10, b11 = b10 + 5ωα1a10,

a10 = 25
¡
R21 − I21

¢
−
¡
R25 − I25

¢
, b10 = 50R1I1 − 2R5I5,

a9 =
¡
R26 − I26

¢ ¡
a2a8 − b2b8

¢
− 2R6I6

¡
b2a8 + a2b8

¢
,

b9 = 2R6I6
¡
a2a8 − b2b8

¢
+
¡
R26 − I26

¢ ¡
b2a8 + a2b8

¢
,

a8 = R1

n¡
R21 − I21

¢2 − 4R21I21o− 4 ¡R21 − I21
¢
R1I

2
1 , d = a2 + ib2,

b8 = I1

n¡
R21 − I21

¢2 − 4R21I21o+ 4 ¡R21 − I21
¢
R21I1, c = R6 + iI6,

a3 =
¡
R23 − I23

¢
− 9

¡
R21 − I21

¢
, b3 = 2R3I3 + 2R1I1,

√
θ = R5 + iI5,

a4 =
¡
R26 − I26

¢ ¡
R21 − I21

¢
− 4R1I1R6I6, b = R3 + iI3,

b4 = 2R1I1
¡
R26 − I26

¢
+ 2R6I6

¡
R21 − I21

¢
, a = R1 + iI1,

a5 = R5 − 5ωα1I5, b5 = I5 + 5ωα1R5, a7 =
a5a6 + b5b6

3
³
a25 + b

2
5

´ , b7 = a5b6 − a6b5

3
³
a25 + b

2
5

´ ,
a6 = a4

¡
a2a3 − b2b3

¢
− b4

¡
b3a2 + a3b2

¢
, a2 =

−30ω2α1
(30ω2α1)

2 +
¡
6ω − 24ω3α21

¢2 ,
b6 = b4

¡
a2a3 − b2b3

¢
+ a4

¡
b3a2 + a3b2

¢
, b2 =

24ω3α21 − 6ω
(30ω2α1)

2 +
¡
6ω − 24ω3α21

¢2 ,
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R6 =
1√
2

rq
a21 + b

2
1 + a1, I6 =

1√
2

rq
a21 + b

2
1 − a1,

R5 =
1q

2
¡
1 + 25ω2α21

¢
rq

(25ω2α1)
2 + 25ω2 + 25ω2α1,

I5 =
1q

2
¡
1 + 25ω2α21

¢
rq

(25ω2α1)
2 + 25ω2 − 25ω2α1,

in which f0R, f0I , f1R, f1I , and f2R, f2I indicate the real and imaginary parts of f0, f1 and f2,

respectively.
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Fig. 5.4. Variation of velocity profile u with η for t = π/2, ε = 0, ω = 0.1 and α1 = 0; 1; 2.
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Fig. 5.6. Variation of velocity profile u with η for t = 2π, ε = 0.1, ω = 0.5 and α1 = 0; 1; 2.
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Fig. 5.7. Variation of velocity profile u with η for t = 2π, ε = 0.5, α1 = 0.5 and
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5.4.4 Results and discussion

In Fig. 5.4 u the velocity is plotted against η for a second-grade fluid (α1 = 0, 1, 2; t = π/2;ω =

0.5; ε = 0). It is observed that with an increase in the viscoelastic fluid parameter α1 the

velocity decreases and thus boundary layer thickness increases. Similar effects are seen in Fig.

5.5 in which t = 2π and ω = 0.5 are taken instead of t = π/2 and ω = 0.1. In Fig. 5.6 the

velocity u is plotted against η for a third-grade fluid (α1 = 0, 1, 2; t = 2π;ω = 0.5; ε = 0.1).

Figure 6 shows that with the increase in third-grade parameter the velocity decreases and the

boundary layer thickness further increases. In Fig. 5.7 the velocity u is plotted against η for

α1 = 0.5, t = 2π, ε = 0.5, and for various values of oscillating frequency (ω = 0.1, 0.3, 0.7).

It is clear from Fig. 5.7 that the amplitude of the velocity decreases with an increase of the

oscillating frequency. Fig. 5.8 is plotted for the stress τxy at any point in the fluid against η

for various values of α1.

The skin friction at the plate η = 0 can be obtained by finding the real part in the following

equation

τ2 = τ2/ρU
2
0 =

⎡⎣ eiωt{f 00R (0) + if 00I (0)}+ εe3iωt{f 01R (0) + if 01I (0)}

+εe5iωt{f 02R (0) + if 02I (0)}+ · · ·

⎤⎦ , (5.58)

where f 00R (0) , f
0
1R (0) , f

0
2R (0) , f

0
0I (0) , f

0
1I (0) , f

0
2I (0) are given as:

f 00R (0) =
R1R2 + I1I1
R22 + I22

, f 00I (0) =
I1R2 −R1I2
R22 + I22

,

f 01R (0) =
1

R24 + I24

∙
6R1I1I4 + 3R4

¡
I21 −R21

¢
+
1

3
R4
¡
R23 − I23

¢
− 2
3
R3I1I4

¸
,

f 01I (0) =
1

R24 + I24

∙
−6R1I1I4 + 3I4

¡
I21 −R21

¢
+
1

3
I4
¡
R23 − I23

¢
+
2

3
R3I3R4

¸
,

f 02R (0) = R09 (0) +R013 (0) +R014 (0) , f
0
2I (0) = I 09 (0) + I 013 (0) + I 014 (0) .

5.5 Concluding remarks

Here we have constructed the results for the flow of a third-grade fluid on a plate. The flow

is generated due to a variable shear stress of the plate and the solution of non-linear partial
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differential equation is presented. The problem considered is more general and several limiting

cases are obtained as the particular problem of the presented analysis. Specifically, the results

for viscous and second-grade fluid flows due to a variable shear stress (which are not yet in the

literature to the best of our knowledge) can be recovered by taking α1 = ε = 0 and ε = 0,

respectively. Our investigation shows that the perturbation technique is adequate for the case

when the variable shear stress has as oscillatory character, however, if the shear stress grows

exponentially with time then the perturbation solution can be accepted only for small values

of time. For moderate to large values of time, the numerical solution must be used.
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Chapter 6

Time dependent flow of a third

grade fluid in the case of suction

6.1 Introduction

We emphasize that the process of suction/blowing has its importance in many engineering

applications such as in the design of thrust bearing and radial diffusers and thermal oil recovery.

Suction is applied to chemical processes to remove reactants. Blowing is used to add reactants,

cool the surfaces, prevent corrosion or scaling and reduce the drag. Hopefully, the subsequent

analysis will help understand the phenomena in some more details.

This chapter examines the flow of an incompressible third grade fluid over an infinite porous

plate. The flow analysis has been carried out for sudden motion of a plate. The governing non-

linear partial differential equation resulting from the momentum equation is solved analytically.

For the analytic solution, the perturbation method has been employed. Special emphasis has

been given to the influence of suction and the material parameter of the third grade fluid on

the flow. Several known results of interest are found to follow as particular cases of the solution

of the problem considered. It is observed from the solution that non-Newtonian effects on

the velocity are present for small time. For large time the velocity and shear stress for the

Newtonian and non-Newtonian fluids are the same.
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6.2 Governing problem

We consider an infinite permeable plate aligned along the x−axis. We mean by permeable

plates that the plates with very fine holes distributed uniformly throughout the plate through

which fluid can flow freely and continuously. Suddenly, the plate is set into motion with velocity

U0 along the x−axis. The fluid at y > 0 is at rest far away from the plate. The velocity field

for the present flow analysis is

V = (u (y, t) , v (y, t) , 0) , (6.1)

which together with continuity equation (1.9) gives

v = V (t)

in which V (t) < 0 corresponds to the variable suction velocity and thus Eq. (6.1) now becomes

V = (u (y, t) , V (t) , 0) . (6.2)

Using above definition of velocity, Eq. (1.4) yields

ρ

∙
∂u

∂t
+ V (t)

∂u

∂y

¸
= −∂bp3

∂x
+ μ

∂2u

∂y2
+ α1

µ
∂3u

∂y2∂t
+ V

∂3u

∂y3

¶
(6.3)

+β1

µ
∂4u

∂y2∂t2
+ V 0

∂3u

∂y3
+ 2V

∂4u

∂y3∂t
+ V 2

∂4u

∂y4

¶
+ 6 (β2 + β3)

µ
∂u

∂y

¶2 ∂2u
∂y2

,

ρ
∂V (t)

∂t
= −∂bp3

∂y
, (6.4)

bp3 = p− (2α1 + α2)

µ
∂u

∂y

¶2
+ 2 (3β1 + β2)

∂u

∂y

µ
∂2u

∂y∂t
+ V

∂2u

∂y2

¶
. (6.5)

Eliminating the pressure bp3 from Eqs. (6.3) and (6.4) one can write
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∂u

∂t
+ V (t)

∂u

∂y
= ν

∂2u

∂y2
+ β

µ
∂3u

∂y2∂t
+ V (t)

∂3u

∂y3

¶
+ γ

µ
∂u

∂y

¶2 ∂2u
∂y2

(6.6)

+ε1

µ
∂2u

∂y2∂t2
+ V

0
(t)

∂3u

∂y3
+ 2V (t)

∂4u

∂y3∂t
+ V 2

∂4u

∂y4

¶

where β = α1/ρ, γ = 6(β2 + β3)/ρ and ε1 = β1/ρ. Note that bp3 is a linear function in y and in

writing Eq. (6.6) we have used the expression (1.6) for the Cauchy stress tensor.

The appropriate boundary conditions are

u(0, t) = U0 for t > 0, (6.7)

u(y, t) → 0 as y →∞.

Introducing the non-dimensional variables

u = U0f, y =
ν

U0
ξ, t =

ν

U20
τ , (6.8)

the governing problem becomes

∂f

∂τ
+ V (τ)

∂f

∂ξ
=

∂2f

∂ξ2
+ β

∙
∂3f

∂ξ2∂τ
+ V (τ)

∂3f

∂ξ3

¸
+ γ

µ
∂f

∂ξ

¶2 ∂2f
∂ξ2

(6.9)

+ε

∙
∂4f

∂ξ2∂τ2
+ V

0
(τ)

∂3f

∂ξ3
+ 2V

∂4f

∂ξ3∂τ
+ V

2∂4f

∂ξ4

¸
,

f(0, τ) = 1, for τ > 0, (6.10)

f → 0 as ξ →∞,

in which

V (t) = U0V (τ), β =
ν2

U20
β, γ =

ν3

U40
γ, ε =

ν3

U40
ε. (6.11)
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6.3 Perturbation solution

Writing

η =
y −

R
V (t)dt

2
√
νt

=
ξ −

R
V (τ)dτ

2
√
τ

, (6.12)

f(η, τ) = f0(η) +
1

τ
f1(η) +

1

τ2
f2(η) + · · · , (6.13)

into Eq. (6.9) and conditions (6.10) and then equating the coefficients of like powers of 1/τ we

get the following systems:

System of order zero

f
00

0 + 2ηf
0
0 = 0, (6.14)

f0(0, τ) = 1, for τ > 0, (6.15)

f0(∞, τ) = 0.

System of order one

f
00

1 + 2ηf
0
1 + 4f1 = β

µ
f
00

0 +
1

2
ηf

000

0

¶
− γ

4
f
00

0

³
f
0
0

´2
, (6.16)

f1(0, τ) = 1, for τ > 0, (6.17)

f1(∞, τ) = 0.

The solution of the zeroth order system is

f0 = 1− 2√
π

ηZ
0

e−ξ
2
1dξ1 (6.18)

= 1− erf(η) = erf c(η)

where erf(η) is the error function and erfc(η) is the complementary error function.
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Substitution of Eq. (6.18) into Eq. (6.16) we have

f
00

1 + 2ηf
0
1 + 4f1 =

2β√
π
ηe−η

2
(3− 2η2)− 4γ

π
3/2

ηe−3η
2
. (6.19)

Note that the solution of Eq. (6.19) is the sum of complementary function and particular

integral. The complementary function satisfies

f
00

1 + 2ηf
0
1 + 4f1 = 0. (6.20)

Writing

f1 =
∞X
j=0

ajη
j (6.21)

and using into Eq. (6.20) we obtain

aj+2 =
−2aj
j + 1

, j = 0, 1, 2, 3, 4, ., . (6.22)

On substituting Eq. (6.22) into Eq. (6.21) the complementary function and particular integral

are of the following type

f1c = a0

µ
1− 2η2 + 4

3
η4 − 8

15
η6 + · · ·

¶
+ a1ηe

−η2 , (6.23)

f1p =
β√
π
η3e−η

2 − γ

π
3/2

µ
2

3
η3 +

2.8

3.5
η5 +

2.4.74

3.5.7.6
η7 +

4.2.184

5.7.9.8
η9
¶
e−3η

2
. (6.24)

The general solution is

f1 = a0

µ
1− 2η2 + 4

3
η4 − 8

15
η6 + · · ·

¶
+

µ
a1η +

β√
π
η3
¶
e−η

2
+ F (η)e−3η

2
, (6.25)

where

F (η) = − γ

π
3/2

µ
2

3
η3 +

2.8

3.5
η5 +

2.4.74

3.5.7.6
η7 +

4.2.184

5.7.9.8
η9
¶
. (6.26)
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Using f1(0) = 0, we have a0 = 0 and thus the expression for f1 is

f1 =

µ
a1η +

β√
π
η3
¶
e−η

2
+ F (η)e−3η

2
. (6.27)

Let us write

F (η) =
∞X
n=1

a2n+1η
2n+1 = a3η

3 + a5η
5 + a7η

7 + a9η
9 + · · · . (6.28)

On comparing Eqs. (6.26) and (6.28) we can write

a3
γ
= − 2

3π
3/2
= −0.1172475, a5 = −

γ

π
3/2

2.8

3.5
= a3.

8

5
⇒ a5

a3
=
8

5
. (6.29)

The calculations of coefficients a2n+1 are described in terms of a3 in Table 6.1. as follows:

a5
a3

1.60000000 a15
a3

0.05858760 a25
a3

0.00005584

a7
a3

1.40952381 a17
a3

0.01769331 a27
a3

0.00001094

a9
a3

0.87619048 a19
a3

0.00478697 a29
a3

0.00000201

a11
a3

0.42528139 a21
a3

0.00117728 a31
a3

0.00000035

a13
a3

0.17053169 a23
a3

0.00026620 a33
a3

0.00000006

Table 6.1

There is one constant a1 in Eq. (6.27). The value of a1 is calculated by imposing the fact

that the displacement thickness has to vanish at t = 0 [50] and get

a1 = −
β√
π
−
X
n=1

n!

3n+1
a2n+1. (6.30)

The graphs are shown in Figs. 6.1, 6.2 and 6.3 in which velocity varies with respect to the

non-dimensional distance to the plate, for various values of time and suction parameter i.e.,

τ = 4, β = −4, γ = 4,....τ = 4, β = −2, γ = 2, ....τ = 100, β = −2, γ = 2 and V = −0.05, 0,

0.05. For V = 0 we get the result of Erdogan [50].
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Fig. 6.1. Variation of f with η for V (t) = 0.

Fig. 6.2. Variation of f with η for V (t) = −0.05.
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Fig. 6.3. Variation of f with η for V (t) = 0.05.

6.4 Shear stress at the plate

The shear stress at the plate is

τxy = μ
∂u

∂y
+ α1

∙
∂2u

∂y∂t
+ V (t)

∂2u

∂y2

¸
+ 2 (β2 + β3)

µ
∂u

∂y

¶3
(6.31)

+β1

∙
∂3u

∂y∂t2
+

dV

dt

∂2u

∂y2
+ 2V (t)

∂3u

∂y2∂t
+ (V (t))2

∂3u

∂y3

¸

which in terms of non-dimensional variables is

τxy
ρU2

=
∂f

∂ξ
+ β̄

∙
∂2f

∂ξ∂τ
+ V (τ)

∂2f

∂ξ2

¸
+
1

3
γ̄

µ
∂f

∂ξ

¶3
(6.32)

+ε̄

∙
∂3f

∂ξ∂τ2
+

dV

dτ

∂2f

∂ξ2
+ 2V (τ)

∂3f

∂ξ2∂τ
+
¡
V (τ)

¢2 ∂3f
∂ξ3

¸
.
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Using Eqs. (6.12) and (6.13) into above we obtain at y = 0 the following

[Υxy]y=0
ρU2

= − 1√
π

³ ν

U2t

´ 1
2
e−λ

2

(6.33)

+
1√
π

³ ν

U2t

´ 3
2

⎡⎣ ³
0.5β − 1

3πγ + 1.5
β√
π
λ
´

−λ
n

β√
π

¡
λ3 − 1

¢
+ 0.1197γ

o
⎤⎦ e−λ2 + · · · ,

where

λ(t) = −
R
V (t)dt

2
√
νt

. (6.34)

Figs. 6.4 and 6.5 shows the variation of the shear stresses at the plate for various values of

time and the suction parameter. In these graphs we have taken β = −1, γ = 1 and β = 0, γ = 0

and V (t) = 0, −1. It is clear from the graphs that for small times
³
U2t
ν < 5

´
non-Newtonian

effects occur and for large times
³
U2t
ν ≥ 5

´
it become weak and behaves like a Newtonian fluid.

Moreover, it is shown in Fig. 6.5 that with the introduction of the suction parameter V , the

boundary layer thickness decreases.

Fig. 6.4. Variation of shear stress at the plate for various values of time and for V (t) = 0.
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Fig. 6.5. Variation of shear stress at the plate for various values of time and for V (t) = −1.

6.5 Special cases

6.5.1 Case 1

At V (τ) = 0, β = 0, γ = 0 and ε̄ = 0, we obtain the familiar first Stokes’ problem [51, 52] of a

plate suddenly set into motion. The solution is given by

f (η) = U [1− erf (η∗)] , (6.35)

where

η∗ =
ξ

2
√
τ
. (6.36)

6.5.2 Case 2

At V (τ) = 0, β 6= 0, γ = 0 and ε̄ = 0, we readily recover the result of Teipel [30] , the impulsive

motion of a flat plate in a viscoelastic fluid and the solution is given by

f = U

"
f0 (η) +

µ
β

vt

¶
f1 (η) +

µ
β

vt

¶2
f2 (η) + · · ·

#
, (6.37)
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f0 (η) =

µ
1− 2√

π

Z η

0
e−ξ

2

dξ

¶
, f1 (η) =

µ
a01η +

1√
π
η3
¶
e−η

2
,

f2 (η) =

∙
a02η +

5

2

µ
1√
π
− a01 −

4

15
a02

¶
η3 − 1

4

µ
11√
π
− 4a01

¶
η5 +

1

2
√
π
η7
¸
e−η

2
,

where

a01 = −
1

2
√
π
, a02 = −

3

2

1√
π
.

6.5.3 Case 3

For V (τ) = KU
2
√
τ
, β = 0, γ = 0 and ε̄ = 0, we obtain the solution of the form [53]

f (η) = U

⎡⎣1− erf
³

ξ
2
√
τ
− K

2

´
1 + erf

¡
K
2

¢
⎤⎦ . (6.38)

The graph is shown for K = −2, 0, 1, 2, 4, 6 in Fig. 6. It is observed that for K > 23, f (η)

is exactly one and for K < −11 it is no more real.

Fig. 6.6. Variation of the function f with η for different values of parameter K.
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6.6 Concluding remarks

In this chapter, an analysis is made for the flow of a third grade fluid on the plate with variable

suction. The following conclusions can be drawn from the present study.

1. It is found that with an increase in suction, the boundary layer thickness decreases and

with an increase in blowing the boundary layer thickness increases.

2. From Eq. (6.12), it is again noted that for short time (τ = 4) a strong non-Newtonian

effect is present in the velocity field and velocity behaves as a Newtonian case for large

time (τ = 100).

3. Introduction of the similarity parameter η leads to an exact solution of the governing

non-linear partial differential equation.
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Chapter 7

Flow of a third grade fluid induced

due to the oscillations of a porous

plate

7.1 Introduction

This chapter describes the flow of a third-grade fluid on a porous plate which executes oscil-

lations in its own plane with superimposed injection (blowing) or suction. The analysis also

examines the behavior of an increasing or decreasing velocity amplitude of the oscillating porous

plate. The non-linear problem has been solved using perturbation method. The obtained results

are compared with those known from the literature. The result indicates that a combination

of suction/injection and decreasing/increasing velocity amplitude is possible for a third-grade

fluid.

7.2 Problem formulation

Here, we consider a thermodynamic compatible third grade fluid flow on a porous plate. We

choose x−axis along and y−axis perpendicular to the plate. For t > 0, the plate starts oscil-

lating. The governing equation for constant suction V0 (< 0) can be obtained from Eq. (6.6)
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as
∂u

∂t
+ V0

∂u

∂y
= ν

∂2u

∂y2
+ β

∙
V0

∂3u

∂y3
+

∂3u

∂y2∂t

¸
+ γ

"
∂2u

∂y2

µ
∂u

∂y

¶2#
, (7.1)

where V0 > 0 is the blowing velocity. The above equation holds for a thermodynamic third

grade fluid.

The expression for the shear stress is

τxy = μ
∂u

∂y
+ α1

½
V0

∂2u

∂y2
+

∂2u

∂y∂t

¾
+ 2β3

µ
∂u

∂y

¶3
. (7.2)

The boundary conditions are [54]

u (0, t) = U(t) = U0e
(β0−iω)t, ω > 0, t > 0, β0 = constant 6= 0, (7.3)

u (y, t)→ 0 as y →∞, (7.4)

where β0 is the accelerating/decelerating parameter.

Defining the following non-dimensional parameters

η = y
p

ω
2ν , d = V0

2
√
νω
, τ = ωt, c = βo

ω ,

f = u
U0
, φ1 =

ω
2νβ, φ2 =

ωU20
4ν2

γ
(7.5)

equations (7.1) to (7.4) give

∂f

∂τ
+
√
2d

∂f

∂η
=
1

2

∂2f

∂η2
+ φ1

∙
∂3f

∂η2∂τ
+
√
2d

∂3f

∂η3

¸
+ φ2

∂2f

∂η2

µ
∂f

∂η

¶3
, (7.6)

f (0, τ) = e(c−i)τ , (7.7)

f → 0 as η →∞, (7.8)

τxy =
1√

2ωνρU0
τxy =

1

2

∂f

∂η
+ φ1

∙
∂2f

∂η∂τ
+
√
2d

∂2f

∂η2

¸
+
1

2
φ2

µ
∂f

∂η

¶3
. (7.9)
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7.3 Solution of the problem

We suppose that the non-dimensional velocity f can be expanded in power series in φ2 as:

f (η, τ ;φ2) = f0 (η, τ) + φ2f1 (η, τ) + · · · . (7.10)

On substituting Eq. (7.10) into Eqs. (7.6) to (7.9) and then equating the like powers of φ2 we

obtain the following systems:

Zeroth order system

∂f0
∂τ

+
√
2d

∂f0
∂η

=
1

2

∂2f

∂η2
+ φ1

∙
∂3f0
∂η2∂τ

+
√
2d

∂3f0
∂η3

¸
, (7.11)

f0 (0, τ) = e(c−i)τ , (7.12)

f0 → 0 as η →∞, (7.13)

τ0 =
1√

2ωνρU0
τ0 =

1

2

∂f0
∂η

+ φ1

∙
∂2f0
∂η∂τ

+
√
2d

∂2f0
∂η2

¸
. (7.14)

First order system

∂f1
∂τ

+
√
2d

∂f1
∂η

=
1

2

∂2f1
∂η2

+ φ1

∙
∂3f1
∂η2∂τ

+
√
2d

∂3f1
∂η3

¸
+ φ2

∂2f0
∂η2

µ
∂f0
∂η

¶3
, (7.15)

f1 (0, τ) = 0, (7.16)

f1 → 0 as η →∞, (7.17)

τ1 =
1√

2ωνρU0
τ1 =

1

2

∂f1
∂η

+ φ1

∙
∂2f1
∂η∂τ

+
√
2d

∂2f1
∂η2

¸
+
1

2
φ2

µ
∂f0
∂η

¶3
. (7.18)

Zeroth order solution

We write

f0 (η, τ) = g0 (η) e
(c−i)τ . (7.19)
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Making use of above equation, Eqs. (7.11) to (7.13) give

φ1
d3g0
dη3

+
1 + 2φ1(c− i)

2
√
2d

d2g0
dη2
− dg0

dη
− (c− i)√

2d
g0 = 0, (7.20)

g0 (0) = 1, (7.21)

g0 (∞) = 0. (7.22)

The solution of Eq. (7.20) along with conditions (7.21) and (7.22) is obtained by employing a

procedure used by Foote et al. [20] . The solution of Eq. (7.20) subject to conditions (7.21) and

(7.22) reads as

g0 (η) = eAη. (7.23)

The real part of the zeroth order solution is

f0 (η) = exp
£
cτ +

¡
C0R + C1Rφ1 + C2Rφ

2
1

¢
η
¤
cos
£
τ −

¡
C0I +C1Iφ1 + C2Iφ

2
1

¢
η
¤
, (7.24)

in which

A =
¡
C0 + C1φ1 +C2φ

2
1

¢
, C0 =

√
2
³
d−

p
d2 + c− i

´
, C1 =

√
2dC30 + (c− i)C20√

2d− C0
,

C2 =
C21 + 6

√
2dC20C1 + 4 (c− i)C1C0

2
¡√
2d− C0

¢ , c0I = ±
rq

(d2 + c)2 + 1− d2 − c,

c0R =
√
2d±

rq
(d2 + c)2 + 1 + (d2 + c),

C1R =
P√

2d− C0R
− C0I√

2d− C0R

"
PC0I +Q

¡√
2d− C0R

¢
C20I +

¡√
2d− C0R

¢2
#
,

C1I =

"
PC0I +Q

¡√
2d− C0R

¢
C20I +

¡√
2d− C0R

¢2
#
, C2I =

"
P1C0I +Q1

¡√
2d− C0R

¢
C20I +

¡√
2d−C0R

¢2
#
,
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C2R =
P1√

2d− C0R
− C0I√

2d− C0R

"
P1C0I +Q1

¡√
2d− C0R

¢
C20I +

¡√
2d−C0R

¢2
#
,

P =
√
2d
¡
C30R − 3C0RC20I

¢
+ c

¡
C20R − C20I

¢
+ 2C0RC0I ,

Q =
√
2d
¡
3C20RC0I − C30I

¢
+ 2cC0RC0I −

¡
C20R −C20I

¢
,

P1 = 3
√
2d
¡
C20RC1R −C20IC1R − 2C0RC0IC1I

¢
+
1

2

¡
C21R − C21I

¢
+2c (C0RC1R − C0IC1I) + 2 (C0RC1I + C0IC1R) ,

Q1 = 3
√
2d
¡
2C0RC0IC1R + C20RC1I − C20IC1I

¢
+ C1RC1I

+2c (C0RC1I + C0IC1R)− 2 (C0RC1R − C0IC1I) .

The expression for shear stress at the plate now is

τ0 =
1√

2νωρU0
τ0 = Ae(c−i)τ

∙
1

2
+ φ1

n√
2dA+ (c− i)

o¸
. (7.25)

First order solution

Using Eq. (7.24) into Eq. (7.15) we can write

∂f1
∂τ

+
√
2d

∂f1
∂η

=
1

2

∂2f1
∂η2

+ φ1

∙
∂3f1
∂η2∂τ

+
√
2d

∂3f1
∂η3

¸
+A4e3Aηe3(c−i)τ . (7.26)

We take the solution of above equation in the form

f1 (η, τ) = g1 (η) e
3(c−i)τ (7.27)

and obtain

√
2dφ1g

000
1 +

1 + 6φ1 (c− i)

2
g001 −

√
2dg01 − 3 (c− i) g1 = −A4e3Aη. (7.28)
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The corresponding boundary conditions are

g1 (0) = 0, (7.29)

g1 (∞) = 0. (7.30)

The solution of Eq. (7.28) consists of complementary function and particular integral. The

solution of Eq. (7.28) subject to conditions (7.29) and (7.30) is

g1 (η) =
A4

AB

¡
eBη − e3Aη

¢
. (7.31)

The real part of f1 through Eq. (7.27) is

f1 (η, τ) = e(3cτ+k3η) [q1 cos (3τ − k4η) + q2 sin (3τ − k4η)] (7.32)

−e3(cτ+k1η) [q1 cos 3 (τ − k2η) + q2 sin 3 (τ − k2η)] ,

where

q1 =
al + bn

a2 + b2
, q2 =

an− bl

a2 + b2
, AB = 27A3A+ 9A2B + 3AC +D,

A =
√
2dφ1, B =

1

2
[1 + 6φ1 (c− i)] , C = −

√
2d, D = −3 (c− i) ,

a =
h
27
√
2dφ1

¡
k31 − 3k1k22

¢i
+
9

2
[
¡
k21 − k22

¢
(1 + 6φ1c) + 12k1k2φ1]− 3

√
2dk1 − 3c,

b =
h
27
√
2dφ1

¡
3k21k2 − k32

¢i
+
9

2
[2k1k2 (1 + 6φ1c)− 6φ1

¡
k21 − k22

¢
]− 3
√
2dk2 + 3,

l = k41 + k42 − 6k21k22, n = 4k31k2 − 4k1k32, k1 =
¡
C0R + C1Rφ1 +C2Rφ

2
1

¢
,

k2 =
¡
C0I + C1Iφ1 +C2Iφ

2
1

¢
, k3 =

¡
E0R +E1Rφ1 +E2Rφ

2
1

¢
, k4 =

¡
E0I +E1Iφ1 +E2Iφ

2
1

¢
,

E0R =
√
2d−

rq
(d2 + 3C)2 + 9 + d2 + 3C, E0I = −

rq
(d2 + 3C)2 + 9− d2 − 3C,
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E1R =
P2√

2d−E0R
− E0I√

2d−E0R

"
P2E0I +Q2

¡√
2d−E0R

¢
E20I +

¡√
2d−E0R

¢2
#
,

E1I =

"
P2E0I +Q2

¡√
2d−E0R

¢
E20I +

¡√
2d−E0R

¢2
#
, E2I =

"
P3E0I +Q3

¡√
2d−E0R

¢
E20I +

¡√
2d−E0R

¢2
#
,

E2R =
P3√

2d−E0R
− E0I√

2d−E0R

"
P3E0I +Q3

¡√
2d−E0R

¢
E20I +

¡√
2d−E0R

¢2
#
,

P2 =
√
2d
¡
E30R − 3E0RE20I

¢
+ 3c

¡
E20R −E20I

¢
+ 6E0RE0I ,

Q2 =
√
2d
¡
3E20RE0I −E30I

¢
+ 6cE0RE0I − 3

¡
E20R −E20I

¢
,

P3 = 3
√
2d
¡
E20RE1R −E20IE1R − 2E0RE0IE1I

¢
+
1

2

¡
E21R −E21I

¢
+6c (E0RE1R −E0IE1I) + 6 (E0RE1I +E0IE1R) ,

Q3 = 3
√
2d
¡
2E0RE0IE1R +E20RE1I −E20IE1I

¢
+E1RE1I

+6c (E0RE1I +E0IE1R)− 6 (E0RE1R −E0IE1I) .

Hence the velocity profile up to the first order is obtained by combining the zeroth order

and first order solution in Eq. (7.10) as

f (η, τ) = Re

∙
eAηe(c−i)τ + φ2

½
A4

AB

¡
eBη − e3Aη

¢¾
e3(c−i)τ

¸
. (7.33)

We observe from Eq. (7.33) that this solution satisfies the boundary conditions given in Eqs.

(7.3) and (7.4).

The non-dimensional stress at the plate (η = 0) is given by

τ1 =
1√

2νωρU0
τ1 (7.34)

=
A4e3(c−i)τ

AB

∙
B

½
1

2
+ φ1

³√
2dB + 3 (c− i)

´¾
−A

½
3

2
+ 9φ1 (A+ c− i)

¾¸
+
1

3
A3e3(c−i)τ .
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7.4 Special cases

To understand the different physical aspects of the solution (7.33), we discuss some special

cases:

7.4.1 Oscillating plate (Newtonian fluid with c = d = 0)

Stokes’ second problem [55, 56] can be obtained by taking c = d = φ1 = φ2 = 0, i.e.,

fNS (η, τ) = exp (−η) cos (τ − η) , (7.35)

where NS in the subscript stands for Navier-Stokes.

7.4.2 Oscillating plate (Newtonian fluid with c = d 6= 0)

New solutions of Stokes second problem [54] are recovered by taking φ1 = φ2 = 0 and c = d 6= 0

from solution (7.33) i.e.,

fNT (η, τ) = exp

"
cτ +

Ã
√
2d−

rq
(d2 + c)2 + 1 + d2 + c

!
η

#
(7.36)

× cos
"
τ −

Ãrq
(d2 + c)2 + 1 + d2 + c

!
η

#
,

where NT in the subscript indicates new solutions of Turbatu et al. [54].

7.4.3 Oscillating plate (Viscoelastic fluid with c = d 6= 0, φ1 6= 0)

The results of viscoelastic second-grade fluid [25] are readily obtained by taking φ2 = 0 in the

solution (7.33), that is

fV E (η, τ) = exp
£
cτ +

¡
C0R +C1Rφ1 + C2Rφ

2
1

¢
η
¤
× cos

£
τ −

¡
C0I + C1Iφ1 + C2Iφ

2
1

¢
η
¤
.

(7.37)

Here V E stands for viscoelastic.
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7.4.4 Oscillating porous plate (Third grade fluid with c = 0, d 6= 0, φ1 6= 0,

φ2 6= 0)

For c = 0, d 6= 0, φ1 6= 0 and φ2 6= 0, solution (7.33) gives

f (η, τ) = exp
h³ bC0R + bC1Rφ1 + bC2Rφ21´ ηi× cos hτ − ³ bC0I + bC1Iφ1 + bC2Iφ21´ ηi

+φ2{e(3cτ+k3η)
hbq1 cos³3τ − bk4η´+ bq2 sin³3τ − bk4η´i (7.38)

−e3(cτ+k1η)
hbq1 cos 3³τ − bk2η´+ bq2 sin 3³τ − bk2η´i},

where

bq1 =
babl +bbbnba2 +bb2 , bq2 = babn−bbblba2 +bb2 ,ba =
h
27
√
2dφ1

³bk31 − 3bk1bk22´i+ 92[³bk21 − bk22´+ 12bk1bk2φ1]− 3√2dbk1,bb =
h
27
√
2dφ1

³
3bk21bk2 − bk32´i+ 92[2bk1bk2 − 6φ1 ³bk21 − bk22´]− 3√2dbk2 + 3,bl = bk41 + bk42 − 6bk21bk22, bn = 4bk31bk2 − 4bk1bk32,

bk1 =
³ bC0R + bC1Rφ1 + bC2Rφ21´ , bk2 = ³ bC0I + bC1Iφ1 + bC2Iφ21´ ,bk3 =
³ bE0R + bE1Rφ1 + bE2Rφ21´ , bk4 = ³ bE0I + bE1Iφ1 + bE2Iφ21´ ,

bC0R =
√
2d−

qp
d4 + 1 + d2, bC0I = −qpd4 + 1− d2,
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bC1R =
bP√

2d− bC0R −
bC0I√

2d− bC0R
⎡⎢⎣ bP bC0I + bQ³√2d− bC0R´bC20I + ³√2d− bC0R´2

⎤⎥⎦ ,
bC1I =

⎡⎢⎣ bP bC0I + bQ³√2d− bC0R´bC20I + ³√2d− bC0R´2
⎤⎥⎦ , bC2I =

⎡⎢⎣ bP1 bC0I + bQ1 ³√2d− bC0R´bC20I + ³√2d− bC0R´2
⎤⎥⎦ ,

bC2R =
bP1√

2d− bC0R −
bC0I√

2d− bC0R
⎡⎢⎣ bP1 bC0I + bQ1 ³√2d− bC0R´bC20I + ³√2d− bC0R´2

⎤⎥⎦ ,

bP =
√
2d
³ bC30R − 3 bC20R bC20I´+ 2 bC0R bC0I , bQ = √2d³3 bC20R bC0I − bC30I´− ³ bC20R − bC20I´ ,bP1 = 3

√
2d
³ bC20R bC1R − bC20I bC1R − 2 bC0R bC0I bC1I´+ 1

2

³ bC21R − bC21I´+ 2³ bC0R bC1I + bC0I bC1R´ ,bQ1 = 3
√
2d
³
2 bC0R bC0I bC1R + bC20R bC1I − bC20I bC1I´+ bC1R bC1I − 2³ bC0R bC1R − bC0I bC1I´ ,

bE0R =
√
2d−

qp
d4 + 9 + d2, bE0I = −qpd4 + 9− d2,

bE1R =
bP2√

2d− bE0R −
bE0I√

2d− bE0R
⎡⎢⎣ bP2 bE0I + bQ2 ³√2d− bE0R´bE20I + ³√2d− bE0R´2

⎤⎥⎦ ,
bE1I =

⎡⎢⎣ bP2 bE0I + bQ2 ³√2d− bE0R´bE20I + ³√2d− bE0R´2
⎤⎥⎦ , bE2I =

⎡⎢⎣ bP3 bE0I + bQ3 ³√2d− bE0R´bE20I + ³√2d− bE0R´2
⎤⎥⎦ ,

bE2R =
bP3√

2d− bE0R −
bE0I√

2d− bE0R
⎡⎢⎣ bP3 bE0I + bQ3 ³√2d− bE0R´bE20I + ³√2d− bE0R´2

⎤⎥⎦ ,

bP2 =
√
2d
³ bE30R − 3 bE0R bE20I´+ 6 bE0R bE0I , bQ2 = √2d³3 bE20R bE0I − bE30I´− 3³ bE20R − bE20I´ ,bP3 = 3

√
2d
³ bE20R bE1R − bE20I bE1R − 2 bE0R bE0I bE1I´+ 12 ³ bE21R − bE21I´+ 6³ bE0R bE1I + bE0I bE1R´ ,bQ3 = 3

√
2d
³
2 bE0R bE0I bE1R + bE20R bE1I − bE20I bE1I´+ bE1R bE1I − 6³ bE0R bE1R − bE0I bE1I´ .
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The solution for the velocity component f is plotted in Figs. 7.1 and 7.2 for different values

of φ1 and φ2 and for a fixed time τ = 2π as a function of the suction/blowing velocity V0, given

by d = V0
2
√
νω
. The values d = 0, φ1 = 0 and φ2 = 0 refer to the classical Stokes problem. It

is noted that the boundary layer thickness is controlled by the suction velocity (V0 < 0) i.e., it

decreases with an increase in the suction velocity.

In case of blowing (V0 > 0) , the boundary layer thickness becomes large as is expected

physically.

Figure 7.2 gives the effect of material parameter of third grade fluid. It is observed that

with an increase in third grade parameter φ2, the boundary layer thickness rapidly decreases

in the case of suction (V0 < 0) and increases in the case of blowing (V0 > 0), when compared

with the viscoelastic case [25] and viscous case [54].

Fig. 7.1. Influence of suction/blowing on the velocity distribution at τ = 2π
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Fig. 7.2. Influence of suction/blowing on the velocity distribution at τ = 2π

7.4.5 Oscillating plate with acceleration/deceleration (Third grade fluid with

d = 0, c 6= 0, φ1 6= 0, φ2 6= 0)

In this section, the superposition of two time dependent functions is taken into account. One

of which is due to the oscillation of the plate with imposed frequency ω and the second is an

exponential increase or decrease of the velocity amplitude of the plate with the parameter β0.

For d = 0, c 6= 0, φ1 6= 0 and φ2 6= 0, solution (7.33) takes the following form

f (η, τ) = exp
h
cτ +

³ eC0R + eC1Rφ1 + eC2Rφ21´ ηi× cos hτ − ³ eC0I + eC1Iφ1 + eC2Iφ21´ ηi
+φ2{e(3cτ+k3η)

heq1 cos³3τ − ek4η´+ eq2 sin³3τ − ek4η´i
−e3(cτ+k1η)

heq1 cos 3³τ − ek2η´+ eq2 sin 3³τ − ek2η´i},
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or

g (η, τ) =
f (η, τ)

exp (cτ)
= exp

h³ eC0R + eC1Rφ1 + eC2Rφ21´ ηi× cos hτ − ³ eC0I + eC1Iφ1 + eC2Iφ21´ ηi
+φ2{e(2cτ+k3η)

heq1 cos³3τ − ek4η´+ eq2 sin³3τ − ek4η´i (7.39)

−e(2cτ+3k1η)
heq1 cos 3³τ − ek2η´+ eq2 sin 3³τ − ek2η´i},

where

eq1 =
eael +ebenea2 +eb2 , eq2 = eaen−ebelea2 +eb2 , ea = 9

2
[
³ek21 − ek22´ (1 + 6φ1c) + 12ek1ek2φ1]− 3c,

eb =
9

2
[2ek1ek2 (1 + 6φ1c)− 6φ1 ³ek21 − ek22´] + 3, el = ek41 + ek42 − 6ek21ek22, en = 4ek31ek2 − 4ek1ek32,

ek1 =
³ eC0R + eC1Rφ1 + eC2Rφ21´ , ek2 = ³ eC0I + eC1Iφ1 + eC2Iφ21´ , eC0R = −qpc2 + 1 + c,

ek3 =
³ eE0R + eE1Rφ1 + eE2Rφ21´ , ek4 = ³ eE0I + eE1Iφ1 + eE2Iφ21´ , eC0I = −qpc2 + 1− c,

eC1R =
eP

− eC0R −
eC0I
− eC0R

" eP eC0I − eQ eC0ReC20I − eC20R
#
, eC1I = " eP eC0I − eQ eC0ReC20I − eC20R

#
, eE0R = −qp9C2 + 9 + 3C,

eC2R =
eP1
− eC0R −

eC0I
− eC0R

" eP1 eC0I − eQ1 eC0ReC20I − eC20R
#
, eC2I = " eP1 eC0I − eQ1 eC0ReC20I − eC20R

#
, eE0I = −qp9C2 + 9− 3C,

eE1R =
eP2
− eE0R −

eE0I
− eE0R

" eP2 eE0I − eQ2 eE0ReE20I − eE20R
#
, eE2R = eP3

− eE0R −
eE0I
− eE0R

" eP3 eE0I − eQ3 eE0ReE20I − eE20R
#
,

eP = c
³ eC20R − eC20I´+ 2 eC0R eC0I , eQ = 2c eC0R eC0I − ³ eC20R − eC20I´ ,eP1 =
1

2

³ eC21R − eC21I´+ 2c³ eC0R eC1R − eC0I eC1I´+ 2³ eC0R eC1I + eC0I eC1R´ ,eQ1 = eC1R eC1I + 2c³ eC0R eC1I + eC0I eC1R´− 2³ eC0R eC1R − eC0I eC1I´ ,
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eP2 = 3c
¡
E20R −E20I

¢
+ 6E0RE0I , eQ2 = 6cE0RE0I − 3 ¡E20R −E20I

¢
, eE1I = " eP2 eE0I − eQ2 eE0ReE20I − eE20R

#
,

eP3 =
1

2

¡
E21R −E21I

¢
+ 6c (E0RE1R −E0IE1I) + 6 (E0RE1I +E0IE1R) ,

eQ3 = E1RE1I + 6c (E0RE1I +E0IE1R)− 6 (E0RE1R −E0IE1I) , eE2I = " eP3 eE0I − eQ3 eE0ReE20I − eE20R
#
.

The parameter c = β0/ω gives the variation of the amplitude of the plate velocity and

c = 0, φ1 = 0 andφ2 = 0 implies the classical viscous case. The solution (7.39) is plotted in

Figs. 7.3 and 7.4 for (τ = 2π, φ1 = 0, φ2 = 0)and (τ = 2π, φ1 = 0.1, φ2 = 0.1) , respectively.

Figs. 7.3 and 7.4 show the variation of β0, φ1 and φ2. It is noted that with an increase in third

grade parameter φ2 the amplitude of the oscillations rapidly increases/decreases according to

β0 > 0/β0 < 0.

Fig. 7.3. Influence of increasing or decreasing amplitude of the plate on the normalized velocity

distribution at τ = 2π.
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Fig. 7.4. Influence of increasing or decreasing amplitude of the plate on the normalized velocity

distribution at τ = 2π.

7.5 Conclusions

We have presented here results for the flow field of a fluid, which is called the third order fluid

or the fluid of grade three, on an oscillating plate with superimposed blowing or suction. The

analysis presented is further concerned with an increasing or decreasing velocity amplitude of

the oscillating plate. It is noted that suction causes reduction in the boundary layer thickness

as expected. Also, the amplitude of the oscillation decreases for acceleration and increases for

deceleration when there is an increase in the material parameters of the second and third grade

fluids. In addition it is also found that the results in references [54] and [25] can be recovered

as the special cases of the problem considered by taking the parameters φ1 and φ2 equal to zero

and φ2 to be zero, respectively. This provides a useful mathematical check.
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Chapter 8

Concluding remarks of the thesis

In this dissertation, the analytical solutions of non-linear equations governing the flow for a

second-grade and third-grade fluids are obtained.

1. For second grade fluid two dimensional unsteady equations are derived in Cartesian,

Plane-Polar, Axisymmetric Cylindrical in terms of swirl, and Axisymmetric Spherical

Coordinates. Equations then are coupled in terms of the stream function so-called the

compatibility equations. Several different forms of the stream function are taken. In each

problem of stream function, the various possibilities of getting the analytical solutions are

discussed. The expressions for velocity profile, streamline and pressure distribution are

constructed in each case.

2. The present second grade models as well as solutions are more general and several results

of various authors Aristov and Gitman [40], Berker [41], Riabouchinsky [42] , Lakshmana

[43] , Roy [44] , Siddiqui et al. [28] , Goldstein [51] , Jaffery-Hamel (by Squire) [46] , Jahnke

et al. [53] and Landau and Liftshitz [47] .can be recovered in the limiting cases.

3. For a third grade fluid since the equations are much more complicated, so only the uni-

directional flows are considered in three different situations:

4. In the first case flow is generated due to a variable shear stress and our investigation

shows that the perturbation technique is adequate for the case when the variable shear

stress has as oscillatory character, however, if the shear stress grows exponentially with
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time then the perturbation solution can be accepted only for small values of time. For

moderate to large values of time, the numerical solution must be used.

5. In the second case the concept of variable suction is used when all the three third grade

material parameters are non-zero and the introduction of the similarity parameter leads

to the solution. It is found that with an increase in suction, the boundary layer thickness

decreases and with an increase in blowing the boundary layer thickness increases. Furhter,

it is noted that for short time (τ = 4) a strong non-Newtonian effect is present in the

velocity field and velocity behaves as a Newtonian case for large time (τ = 100).

6. Finally, in the third case the third grade thermodynamic model is considered with su-

perimposed blowing or suction and with an increasing or decreasing velocity amplitude

of the oscillating plate. It is noted that suction causes reduction in the boundary layer

thickness as expected. Also, the amplitude of the oscillation decreases for acceleration

and increases for deceleration when there is an increase in the material parameters of the

second and third grade fluids. In addition it is also found that the results of viscous and

second grade fluid are recovered as a special cases of the present analysis.

7. The results of Stokes I & II problem [55], Teipel [30] , Erdogan [50] , Turbatu et al. [54] ,

Hayat et al. [25] , can be recovered as special cases of the present analysis of third grade

study.
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TABLE A

Summary of the differential operators involving the ∇− operator in
rectangular Cartesian coordinate system (x, y, z)

(∇ ·V) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

, (A1)

¡
∇2s

¢
=

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
, (A2)

τ : ∇V = τxx

µ
∂vx
∂x

¶
+ τxy

µ
∂vx
∂y

¶
+ τxz

µ
∂vx
∂z

¶
+ τyx

µ
∂vy
∂x

¶
+ τyy

µ
∂vy
∂y

¶
+τyz

µ
∂vy
∂z

¶
+ τ zx

µ
∂vz
∂x

¶
+ τ zy

µ
∂vz
∂y

¶
+ τ zz

µ
∂vz
∂z

¶
, (A3)

[∇s]x =
∂s

∂x
, [∇s]y =

∂s

∂y
, [∇s]z =

∂s

∂z
, (A4)

[∇×V]x =
∂vz
∂y
− ∂vy

∂z
, [∇×V]y =

∂vx
∂z
− ∂vz

∂x
, [∇×V]z =

∂vy
∂x
− ∂vx

∂y
, (A5)

[∇ · τ ]x =
∂τxx
∂x

+
∂τyx
∂y

+
∂τ zx
∂z

, [∇ · τ ]y =
∂τxy
∂x

+
∂τyy
∂y

+
∂τ zy
∂z

, (A6)

[∇ · τ ]z =
∂τxz
∂x

+
∂τyz
∂y

+
∂τ zz
∂z

,

£
∇2V

¤
x
=

∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

,
£
∇2V

¤
y
=

∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

, (A7)

£
∇2V

¤
z
=

∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

,
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[V ·∇W]x = vx

µ
∂wx

∂x

¶
+ vy

µ
∂wx

∂y

¶
+ vz

µ
∂wx

∂z

¶
,

[V ·∇W]y = vx

µ
∂wy

∂x

¶
+ vy

µ
∂wy

∂y

¶
+ vz

µ
∂wy

∂z

¶
, (A8)

[V ·∇W]z = vx

µ
∂wz

∂x

¶
+ vy

µ
∂wz

∂y

¶
+ vz

µ
∂wz

∂z

¶
,

{∇V}xx =
∂vx
∂x

, {∇V}xy =
∂vy
∂x
, {∇V}xz =

∂vz
∂x
, {∇V}yx =

∂vx
∂y
, {∇V}yy =

∂vy
∂y
,

{∇V}yz =
∂vy
∂z

{∇V}zx =
∂vz
∂x
, {∇V}zy =

∂vz
∂y
, {∇V}zz =

∂vz
∂z

, (A9)

{V ·∇τ}xx = (V ·∇) τxx, {V ·∇τ}xy = (V ·∇) τxy, {V ·∇τ}xz = (V ·∇) τxz,

{V ·∇τ}yx = (V ·∇) τyx, {V ·∇τ}yy = (V ·∇) τyy, {V ·∇τ}yz = (V ·∇) τyz,(A10)

{V ·∇τ}zx = (V ·∇) τ zx, {V ·∇τ}yy = (V ·∇) τ zy, {V ·∇τ}zz = (V ·∇) τ zz,

where the operator (V ·∇) = vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
.
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TABLE B

Summary of the differential operators involving the ∇− operator in
cylindrical coordinate system (r, θ, z)

(∇ ·V) =
1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

, (B1)¡
∇2s

¢
=

1

r

∂

∂r

µ
r
∂s

∂r

¶
+
1

r2
∂2s

∂θ2
+

∂2s

∂z2
, (B2)

(τ :∇V) = τ rr

µ
∂vr
∂r

¶
+ τ rθ

µ
1

r

∂vr
∂θ
− vθ

r

¶
+ τ rz

µ
∂vr
∂z

¶
+ τ θr

µ
∂vθ
∂r

¶
+ τ θθ

µ
1

r

∂vθ
∂θ
− vr

r

¶
+τ θz

µ
∂vθ
∂z

¶
+ τ zr

µ
∂vz
∂r

¶
+ τ zθ

µ
1

r

∂vz
∂θ

¶
+ τ zz

µ
∂vz
∂z

¶
, (B3)

[∇s]r =
∂s

∂r
, [∇s]θ =

1

r

∂s

∂θ
, [∇s]z =

∂s

∂z
, (B4)

[∇×V]r =
1

r

∂vz
∂θ
− ∂vθ

∂z
, [∇×V]θ =

∂vr
∂z
− ∂vz

∂r
, [∇×V]z =

1

r

∂

∂r
(rvθ)−

1

r

∂vr
∂θ

, (B5)

[∇ · τ ]r =
1

r

∂

∂r
(rτ rr) +

1

r

∂

∂θ
τ θr −

τ θθ
r
,

[∇ · τ ]θ =
1

r2
∂

∂r

¡
r2τ rθ

¢
+
1

r

∂

∂θ
τ θθ +

∂

∂z
τ zθ +

τ θr − τ rθ
r

, (B6)

[∇ · τ ]z =
1

r

∂

∂r
(rτ rz) +

1

r

∂

∂θ
τ θz +

∂

∂z
τ zz,

£
∇2V

¤
r
=

∂

∂r

µ
1

r

∂

∂r
(rvr)

¶
+
1

r2
∂2vr

∂θ2
+

∂2vr
∂z2

− 2

r2
∂vθ
∂θ

,

£
∇2V

¤
θ
=

∂

∂r

µ
1

r

∂

∂r
(rvθ)

¶
+
1

r2
∂2vθ

∂θ2
+

∂2vθ
∂z2

+
2

r2
∂vr
∂θ

, (B7)

£
∇2V

¤
z
=

1

r

∂

∂r

µ
r
∂vz
∂r

¶
+
1

r2
∂2vz

∂θ2
+

∂2vz
∂z2

,
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[V ·∇W]r = vr

µ
∂wr

∂r

¶
+ vθ

µ
1

r

∂wr

∂θ
− wθ

r

¶
+ vz

µ
∂wr

∂z

¶
,

[V ·∇W]θ = vr

µ
∂wθ

∂r

¶
+ vθ

µ
1

r

∂wθ

∂θ
+

wr

r

¶
+ vz

µ
∂wθ

∂z

¶
, (B8)

[V ·∇W]z = vr

µ
∂wz

∂r

¶
+ vθ

µ
1

r

∂wz

∂θ

¶
+ vz

µ
∂wz

∂z

¶
,

{∇V}rr =
∂vr
∂r

, {∇V}rθ =
∂vθ
∂r
, {∇V}rz =

∂vz
∂r
,

{∇V}θr =
1

r

∂vr
∂θ
− vθ

r
, {∇V}θθ =

1

r

∂vθ
∂θ

+
vr
r
, {∇V}θz =

1

r

∂vz
∂θ

, (B9)

{∇V}zr =
∂vr
∂z

, {∇V}zθ =
∂vθ
∂z
, {∇V}zz =

∂vz
∂z

,

{V ·∇τ}rr = (V ·∇) τ rr −
Vθ

r
(τ rθ + τ θr) , {V ·∇τ}rθ = (V ·∇) τ rθ +

Vθ

r
(τ rr − τ θθ) ,

{V ·∇τ}rz = (V ·∇) τ rz −
Vθ

r
τ θz, {V ·∇τ}θr = (V ·∇) τ θr +

Vθ

r
(τ rr − τ θθ) ,

{V ·∇τ}θθ = (V ·∇) τ θθ +
Vθ

r
(τ rθ + τ θr) , {V ·∇τ}θz = (V ·∇) τ θz +

Vθ

r
τ rz, (B10)

{V ·∇τ}zr = (V ·∇) τ zr −
Vθ

r
τ zθ, {V ·∇τ}zθ = (V ·∇) τ zθ +

Vθ

r
τ rz,

{V ·∇τ}zz = (V ·∇) τ zz,

where the operator

(V ·∇) = vr
∂

∂r
+

vθ
r

∂

∂θ
+ vz

∂

∂z
.
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TABLE C

Summary of the differential operators involving the ∇− operator in
spherical coordinate system (r, θ, φ)

(∇ ·V) =
1

r2
∂

∂r

¡
r2vr

¢
+

1

r sin θ

∂ (vθ sin θ)

∂θ
+

1

r sin θ

∂vφ
∂φ

, (C1)

¡
∇2s

¢
=

1

r2
∂

∂r

µ
r2
∂s

∂r

¶
+

1

r2 sin θ

∂

∂θ

µ
sin θ

∂s

∂θ

¶
+

1

r2 sin2 θ

∂2s

∂θ2
, (C2)

(τ :∇v) = τ rr

µ
∂vr
∂r

¶
+ τ rθ

µ
1

r

∂vr
∂θ
− vθ

r

¶
+ τ rφ

µ
1

r sin θ

∂vr
∂φ
− vφ

r

¶
+τ θr

µ
∂vθ
∂r

¶
+ τ θθ

µ
1

r

∂vθ
∂θ

+
vr
r

¶
+ τ θφ

µ
1

r sin θ

∂vθ
∂φ
− vφ

r
cot θ

¶
(C3)

+τφr

µ
∂vφ
∂r

¶
+ τφθ

µ
1

r

∂vφ
∂θ

¶
+ τφφ

µ
1

r sin θ

∂vφ
∂φ

+
vr
r
+

vθ
r
cot θ

¶
,

[∇s]r =
∂s

∂r
, [∇s]θ =

1

r

∂s

∂θ
, [∇s]φ =

1

r sin θ

∂s

∂φ
, (C4)

[∇×V]r =
1

r sin θ

∂

∂θ
(vφ sin θ)−

1

r sin θ

∂vθ
∂φ

, [∇×V]θ =
1

r sin θ

∂vr
∂φ
− 1

r

∂ (rvφ)

∂r
,

[∇×V]φ =
1

r

∂

∂r
(rvθ)−

1

r

∂vφ
∂θ

, (C5)

[∇ · τ ]r =
1

r2
∂

∂r

¡
r2τ rr

¢
+

1

r sin θ

∂

∂θ
(τ θr sin θ)−

1

r sin θ

∂

∂φ
τφr −

τ θθ − τφφ
r

, (C6)

[∇ · τ ]θ =
1

r3
∂

∂r

¡
r3τ rθ

¢
+

1

r sin θ

∂

∂θ
(τ θθ sin θ) +

1

r sin θ

∂

∂φ
τ θφ +

(τ θr − τ rθ)− τφφ cot θ

r
,

[∇ · τ ]φ =
1

r3
∂

∂r

¡
r3τ rφ

¢
+

1

r sin θ

∂

∂θ
(τ θφ sin θ) +

1

r sin θ

∂

∂φ
τφφ +

(τφr − τ rφ) + τφθ cot θ

r
,
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£
∇2V

¤
r
=

∂

∂r

µ
1

r2
∂

∂r

¡
r2vr

¢¶
+

1

r2 sin θ

∂

∂θ

µ
sin θ

∂vr
∂θ

¶
+

1

r2 sin2 θ

∂2vθ

∂φ2

− 2

r2 sin θ

∂ (vθ sin θ)

∂θ
− 2

r2 sin θ

∂vθ
∂φ

, (C7)

£
∇2V

¤
θ
=

1

r2
∂

∂r

µ
r2

∂

∂r
vθ

¶
+
1

r2
∂

∂θ

µ
1

sin θ

∂

∂θ
(vθ sin θ)

¶
+

1

r2 sin2 θ

∂2vθ

∂φ2

+
2

r2
∂vr
∂θ
− 2 cot θ

r2 sin θ

∂vφ
∂φ

,

£
∇2V

¤
φ
=

1

r2
∂

∂r

µ
r2

∂

∂r
vφ

¶
+
1

r2
∂

∂θ

µ
1

sin θ

∂

∂θ
(vφ sin θ)

¶
+

1

r2 sin2 θ

∂2vθ

∂φ2

+
2

r2 sin θ

∂vr
∂φ

+
2cot θ

r2 sin θ

∂vθ
∂φ

,

[V ·∇W]r = vr

µ
∂wr

∂r

¶
+ vθ

µ
1

r

∂wr

∂θ
− wθ

r

¶
+ vφ

µ
1

r sin θ

∂wr

∂φ
− wφ

r

¶
,

[V ·∇W]θ = vr

µ
∂wθ

∂r

¶
+ vθ

µ
1

r

∂wθ

∂θ
+

wr

r

¶
+ vφ

µ
1

r sin θ

∂wθ

∂φ
− wφ

r
cot θ

¶
, (C8)

[V ·∇W]φ = vr

µ
∂wφ

∂r

¶
+ vθ

µ
1

r

∂wφ

∂θ

¶
+ vφ

µ
1

r sin θ

∂wφ

∂φ
+

wr

r
+

wθ

r
cot θ

¶
,

{∇V}rr =
∂vr
∂r

, {∇V}rθ =
∂vθ
∂r
, {∇V}rφ =

∂vφ
∂r

,

{∇V}θr =
1

r

∂vr
∂θ
− vθ

r
, {∇V}θθ =

1

r

∂vθ
∂θ

+
vr
r
, {∇V}θφ =

1

r

∂vφ
∂θ

, (C9)

{∇V}φr =
1

r sin θ

∂vr
∂φ
− vφ

r
, {∇V}φθ =

1

r sin θ

∂vθ
∂φ
− vφ

r
cot θ,

{∇V}φφ =
1

r sin θ

∂vφ
∂φ

+
vr
r
+

vθ
r
cot θ,

{V ·∇τ}rr = (V ·∇) τ rr −
³vθ
r

´
(τ rθ + τ θr)−

³vφ
r

´
(τ rφ + τφr) ,

{V ·∇τ}rθ = (V ·∇) τ rθ +
³vθ
r

´
(τ rr − τ θθ)−

³vφ
r

´
(τφθ + τ rφ cot θ) ,

{V ·∇τ}rφ = (V ·∇) τ rφ −
³vθ
r

´
τ θφ +

³vφ
r

´
[(τ rr − τ θθ) + τ rθ cot θ] , (C10)

{V ·∇τ}θr = (V ·∇) τ θr +
³vθ
r

´
(τ rr − τ θθ)−

³vφ
r

´
(τ θφ + τφr cot θ) ,

{V ·∇τ}θθ = (V ·∇) τ θθ +
³vθ
r

´
(τ rθ + τ θr)−

³vφ
r

´
(τ θφ + τφθ) cot θ,
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{V ·∇τ}θφ = (V ·∇) τ θφ +
³vθ
r

´
τ rφ +

³vφ
r

´
[τ θr + (τ θθ − τφφ) cot θ] ,

{V ·∇τ}φr = (V ·∇) τφr −
³vθ
r

´
τφθ +

³vφ
r

´
[(τ rr − τφφ) + τ θr cot θ] , (C11)

{V ·∇τ}φθ = (V ·∇) τφθ +
³vθ
r

´
τφr +

³vφ
r

´
[τ rθ + (τ θθ − τφφ) cot θ] ,

{V ·∇τ}φφ = (V ·∇) τφφ +
³vφ
r

´
[(τ rφ + τφr) + (τ θφ + τφθ) cot θ] ,

where the operator

(V ·∇) = vr
∂

∂r
+

vθ
r

∂

∂θ
+

vφ
r sin θ

∂

∂φ
.
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TABLE D

Summary of the vector identities

∇rs = r∇s+ s∇r

(∇·sV) = (∇s ·V) + s (∇ ·V)

∇· [V×W] = W· [∇×V]−V· [∇×W]

[∇×sV] = [∇s×V] + s [∇×V]

(∇ ·∇)V =

[V ·∇V] =
1

2
∇ (V ·V)− [V× [∇×V]]

[∇ ·VW] = [V ·∇W] +W (∇ ·V)

(sδ :∇V) = s (∇ ·V)

[∇·sδ] = ∇s

[∇·sτ ] = [∇s · τ ] + s [∇ · τ ]

∇ (V ·W) = [(∇V) ·W] + [(∇W) ·V]

(τ :∇V) = (∇· [τ ·V])− (V· [∇ · τ ])

[δ ·V] = [V · δ] = V

[UV ·W] = U (V ·W)

[W ·UV] = (W ·U)V

(UV :WZ) = (UW : VZ) = (U · Z) (V ·W)

(τ : UV) = ([τ ·U] ·V)

(UV : τ ) = (U· [V · τ ])

τ · τ = τ 2, τ · τ 2 = τ 3, ...

(δ : τ ) =
X
i

X
j

δijτ ij
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Appendix

1. The incomplete gamma function and the gamma function are related through

ΓU (bα, x) + ΓL (bα, x) = Γ (bα) ,
where ΓU (bα, x) is the upper incomplete gamma function and ΓL (bα, x) is the lower in-
complete gamma function and are defined by

ΓU (bα, x) = Z ∞

x
tα−1e−tdt,

ΓL (bα, x) = Z x

0
tα−1e−tdt = bα−1xα1F1 (bα; 1 + bα;−x) ,

where 1F1 is the confluent hypergeometric function of the first kind. For “bα” an integer
n

ΓU (n, x) = (n− 1)!e−x
n−1X
k=0

xk

k!
= (n− 1)!e−xen−1 (x) ,

ΓL (n, x) = (n− 1)!
"
1− e−x

n−1X
k=0

xk

k!

#
= (n− 1)!

£
1− e−xen−1 (x)

¤
,

where en (x) is the exponential sum function and is defined by

en (x) =
nX

k=0

xk

k!
= ex

Γ (n+ 1, x)

Γ (n+ 1)
.

2. HypergeometricPFQ [{a1, ......, ap} , {b1, ......, bq} , bz] is the generalized hypergeometric func-
tion pFq (a,b; bz) . For example

HypergeometricPFQ [{1, 2, 1} , {2, 1} , x] = 1

1− x
.

HypergeometricPFQ [{a1, ......, ap} , {b1, ......, bq} , bz] has series expansion
pFq =

∞X
k=0

(a1)k , ......, (ap)k
(b1)k , ......, (bq)k

bzk
k!
.
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We can differentiate and integrate HypergeometricPFQ as follows:

Differentiate [HypergeometricPFQ [{a1, a2, a3} , {b1, b2} , x] , x]

=
1

b1b2

⎛⎝a1a2a3HypergeometricPFQ

⎡⎣ {1 + a1, 1 + a2, 1 + a3} ,

{1 + b1, 1 + b2} , x

⎤⎦⎞⎠

Integrate [HypergeometricPFQ [{a1, a2, a3} , {b1, b2} , x] , x]

= xΓ (b1)Γ (b2) {
∙

1

xΓ (b1 − 1)Γ (b2 − 1) (−1 + a1) (−1 + a2) (−1 + a3)

¸

+

HypergeometricPFQRegularized

⎡⎣ {a1 − 1, a2 − 1, a3 − 1} ,
{b1 − 1, b2 − 1} , x

⎤⎦
x (−1 + a1) (−1 + a2) (−1 + a3)

},

where HypergeometricPFQRegularized[{a1, ......, ap} , {b1, ......, bq} , bz] is the regularized
generalized hypergeometric function pFq (a,b; bz) / {Γ (b1) , .....,Γ (bq)} and MeijerG

MeijerG [{{a1, ......, an} , {an+1, ......, ap}} , {{b1, ......, bm} , {bm+1, ......, bq}} , bz]
is the MeijerG function

Gm n
p q

³bz/a1,......,apb1,......,bq

´
.

For example

MeijerG [{{1, 1} , { }} , {{1} , {0}} , x] = log (1 + x) ,

MeijerG
∙
{{ } , { }} ,

½
{0} ,

½
1

2

¾¾
,
x

2

¸
=

cos
√
2x√
x

.

For m = 1, n = 2, p = 2, q = 2, we have the following properties:

Differentiate [MeijerG [{{a1, a2} , {a3, a4}} , {{b1} , {b3, b4}} , x] , x]

= MeijerG

⎡⎣ {{−1, a1 − 1, a2 − 1} , {a3 − 1, a4 − 1}} ,
{{b1 − 1} , {0, b2 − 1, b3 − 1}} , x

⎤⎦ ,
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Integrate [MeijerG [{{a1, a2} , {a3, a4}} , {{b1} , {b3, b4}} , x] , x]

= MeijerG

⎡⎣ {{1, 1 + a1, 1 + a2} , {1 + a3, 1 + a4}} ,

{{1 + b1} , {0, 1 + b2, 1 + b3}} , x

⎤⎦ .
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