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Preface

Navier-Stokes equations are the most fundamental equations in Newtonian fluid mechanics.
But for the last few decades it has been generally accepted that the Newtonian fluids, which
have a relationship between the stress and the rate of strain, do not explain several
phenomena observed for the fluids in industry and other technological applications.
Rheological properties of non-Newtonian fluids are described by their so- called constitutive
equations. Due to complexity of fluids, several models mainly based on the empirical
observations have been proposed. Amongst the several non-Newtonian fluid models, the
second and third grade fluid models have attracted the attention of many researchers. The
attraction of such fluid models stems largely due to the fact that their constitutive equations
have been derived on the basis of first principle and unlike many other ‘phenomenological’
models, there are no curve fittings or parameters to adjust. Though in both of these grades,
there are material parameters that need to be measured.

The equations of motion for second and third grade fluids are highly non-linear and much
complicated than the Navier-Stokes equations. There are very few cases in which exact
analytical solutions of the Navier-Stokes equation can be obtained. These are even rare
when the governing equations for non-Newtonian fluids are considered. Moreover, the
equations for second and third grade are of higher order than the Navier-Stokes equations.
However, there is no corresponding increase in the number of boundary conditions. In these
methods, solutions can be found by assuming certain physical or geometrical properties of
the flow field.

It is necessary here to mention that in chapters through 2-7 (which are all
published/accepted papers), there are number of contributing authors but the major
contribution is of the author of this dissertation.

Keeping all the above motivations in mind, the layout of this thesis is as follows:

1) Inverse solutions for modeled non-linear equations that govern the steady flows of a
second grade fluid are discussed in chapter 2. The solution for stream function,
velocity components and pressure are obtained from the non-linear equation by
considering two illustrative forms of the stream function. The presented graphical
results indicate that increasing magnitude of viscoelasticity decreases the velocity.

2) In chapter 3, the non-linear compatibility equation for the swirling flows of a second

grade fluid is modeled. The studies of swirling viscoelastic flows have been



3)

4)

5)

6)

motivated by applications in rheology and tribology. The analytical solutions for the
steady and unsteady axisymmetric flows of Newtonian and second grade fluids are
obtained. The analytical solutions are built for the streamlines, velocity and vorticity
components. Finally, the results are also compared with the corresponding solutions
for the Newtonian fluid.

Chapter 4 deals with the modeling of equations for the unsteady flow of a second
grade fluid in plane polar, axisymmetric cylindrical and spherical polar coordinates.
The expressions for the streamlines and velocity components are given through the
solution of the involved highly non-linear equations. Inverse methods have been
employed for the solutions. Several previous results have been deduced from the
presented analysis.

The work of chapter 5 is concerned with the unsteady flow of a third grade fluid over
an infinite plate. The velocity field is obtained by solving a non-linear equation. Two
flows induced by the plate are considered. These flows are generated due to the shear
stress. Both analytical and numerical solutions of non-linear equation with non-
linear boundary conditions are developed. It is observed that there is a very good
agreement between the numerical and perturbation solution for small values of t

(t <1). For t greater than 3, there is a sufficient discrepancy in the results that the

perturbation solution can no longer be accepted and the results from the numerical
solution should only be used. However, when shear stress has an oscillatory
character, then perturbation results are acceptable.

The objective of chapter 6 is to discuss the unsteady flow of a third grade fluid
over an infinite plate with variable suction. The non-linear equation resulting from
the momentum equation has been solved using similarity transformation and

perturbation technique. It is noted that for short time (r:4), a strong non-

Newtonian effect is present in the velocity field and velocity behaves as a Newtonain

case for large time (z =100).

Chapter 7 is devoted to the flow of a third grade fluid over a porous plate, which
executes oscillations in its own plane with superimposed blowing or suction. The
modeled non-linear equation has been solved for the velocity field. Moreover,
increasing or decreasing velocity amplitude of the oscillating porous plate is
examined. Finally, it is seen that several interesting results of the previous studies

can be taken as the special cases of the presented analysis.
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Chapter 0

Introduction

Multicomponent flows whether occurring in nature such us debris flows, avalanches, and mud
slides, or in industrial applications, such as fluidized beds, solids transport and many other
chemical and agricultural processes, present a formidable challenge to engineers and scientists.
To model and study the flow and behavior of such complex fluids, one can use either statistical
theories or continuum theories, in addition to the phenomenological/experimental approaches.

Due to various properties of real fluids there are many models. The simplest model is Navier-
Stokes model which is used for fluids of low molecular weight. However, it is well known that
materials with complex structures such as solutions and melts of polymers, plastic and synthetic
fibers, certain oils and greases, soap and detergents, certain pharmaceutical and biological fluids
fall into the category of non-Newtonian fluids. During the last several years, generalization of
Navier-Stokes model to highly non-linear constitutive laws have been proposed because of their
interest in applications to industry and technology. In order to explain several non-standard
features, such as normal stress effects, rod climbing, shear thinning and shear thickening, Rivlin-
Ericksen fluids [1] of differential type are introduced. These fluids are rather complex from the
point of view of partial differential equation theory. Nevertheless, several authors in fluid
mechanics are now engaged with the equations of motion on non-Newtonian fluids of second
and third grade. In particular, some authors are interested in studying n-grade fluids as self-
consistent models and not as approximating models. Therefore, in studying dynamics they
ask that all the flows meet the Clausius-Duhem inequality and that the specific Helmholtz free

energy of the fluid is a minimum at equilibrium [2]. On the other hand, it is under the same



hypothesis that the Navier-Stokes model is studied. That is, it is always assumed that some real
fluids exist such that Navier-Stokes or n—grade fluids are exact models, and not truncations of
viscoelastic fluids. Moreover (as noted in refs. [3,5]), different assumptions could heavily affect
the rest state stability. Under these thermodynamically hypothesis, several results concerning
existence and stability have been obtained [3,4, 5].

The formulation of shear stress for non-Newtonian fluids is a difficult problem, which has
not progressed very far from a theoretical standpoint. However, there is no single model which
clearly exhibits all the properties of non-Newtonian fluids. For a more fundamental under-
standing, several empirical descriptions have established rheological models. For example, in
most of these models, a significant drag past solid walls has been observed. A discussion of the
various differential, rate-type, and integral models can be found in Schowalter [6], Huilgol [7],
and Rajagopal [8].

The flow of non-Newtonian fluids has gained considerable importance because of its appli-
cations in various branches of science, engineering, and technology: particularly in material
processing, chemical industries, geophysics, and bio-engineering. The study of non-Newtonian
fluid flow is also of significant interest in oil reservoir engineering. For a variety of reasons,
non-Newtonian fluids are classified on the basis of their behavior in shear. A fluid with a linear
relationship between the shear stress and the shear rate, giving rise to a constant viscosity, is
always characterized to be a Newtonian fluid. As a constant viscosity relation is not always a
Newtonian fluid relation because there are fluids like a second grade fluid, a convected Maxwell
fluid, and an Oldroyd fluid A and B that are certainly non-Newtonian, but also show a constant
viscosity. Second grade fluid model is a subclass of differential type fluids for which one can rea-
sonably hope to obtain analytical solutions. The fluids of differential type have usually higher
order partial differential equations than the Navier-Stokes equations. So the issue of whether
the ‘no-slip’ boundary condition is sufficient to have a well-posed problem is very important.
This question cannot be answered in any generalization for fluids of grade 2 or grade 3, one can
provide some definite answers, while some partial answers are possible for fluids of grade n [9].

In general, for fluids of the differential type of grade n, the equations of motion are of order
(n+1). Thus, if n > 1, then the adherence boundary condition is insufficient for determinacy.

The standard method used to overcome this difficulty is to resort the perturbation that lowers



the order of the equation [10 — 16], which is not mathematically rigorous. In fact, the workers
are aware of this, but in the absence of any rational method for generating additional boundary
conditions, they have no other way out of the impasse. It is possible that in flows in unbounded
domains, we can obtain additional conditions based on the asymptotic structure of the flow at
infinity. Mansutti et al. [17] showed that results by perturbation method and of augmenting
the boundary conditions agree remarkably well. Rajagopal and Gupta have also discussed this
issue in the reference [18] and studied the steady flow of a second-grade fluid past a porous
plate. In another paper, Rajagopal [19] studied some unidirectional flows of a second grade
fluid. In [20], Foote et al. studied the problem for the flow of an elastico-viscous fluid on an
oscillating porous plate. Hayat et al. [21 — 25], Asghar et al. [26] and Siddiqui et al. [27 — 29]
discussed the flows of differential type fluids in various geometrical configurations.

In many fields, such as food industry, drilling operations and bio-engineering, the fluids,
either synthetic or natural, are mixtures of different constituents such as water, particle, oils,
red cells and other long chain molecules; this combination imparts strong non-Newtonian char-
acteristics to the resulting liquids; the viscosity function varies non-linearly with the shear rate;
elasticity is felt through elongational effects and time-dependent effects. In these cases, the
fluids have been treated as viscoelastic fluids. Because of the difficulty to suggest a single
model which exhibits all properties of viscoelastic fluids, they cannot be described as simply
as Newtonian fluids. For this reason, many models or constitutive equations have been pro-
posed and most of them are empirical or semi-empirical. For more general three-dimensional
representation, the method of continuum mechanics is needed. One of the most popular models
for non-Newtonian fluids is the model that is called the second-grade fluid. Several authors
[30 — 36] in fluid mechanics are now engaged with the equations of motion of second grade
fluids.

Exact solutions are very important not only because they are solutions of some fundamental
flows but also because they serve as accuracy checks for experimental, numerical and asymptotic
methods. Navier-Stokes equations are non-linear partial differential equations for viscous fluids.
For this reason, there exist only a limited number of exact solutions in which the non-linear
inertial terms do not disappear automatically. These analytic solutions become even rare if non-

Newtonian constitutive equations are considered in the equations of motion. This is because the



resulting equations are highly non-linear partial differential equations. While studying second
grade fluid the equations, in general, are one order higher than the Navier-Stokes equations. The
third order equations of the second grade fluid flows, in general, require an additional boundary
and/or initial condition in addition to those required for solving the Navier-Stokes equations.
The necessity of this extra condition can be avoided by the application of the inverse method.
This provides the motivation that, in some specific situations, the inverse method becomes
attractive in studying the non-Newtonian fluids.

Usually, in the inverse method, the boundary conditions are not prescribed and solution
of the differential equations are sought by assuming specific geometrical or physical properties
of the field. Nemenyi [37] has given an excellent survey along with the applications in various
fields of the mechanics of continua. Kaloni and Huschilt [38] used the inverse methods to study
plane steady flow problems of a second grade fluid. Siddiqui and Kaloni [28] employed this
approach to find the exact solutions for steady flows of a second grade fluid in plane polar,
axisymmetric cylindrical and axisymmetric spherical coordinates.

There is a large class of processes which can be considered from the mathematical point of
view as the motion of the fluid (liquid) between two parallel plates, moving towards each other
or in opposite directions with a constant velocity. These include such processes as the motion
of a fluid through a hydraulic pump and the motion of the underground fluid. We can observe
that when the plates are approaching each other in a second grade fluid, the effort required is
smaller than that when the plates are moving apart. When the plates are approaching each
other it is of potential type and when they are moving away then it is of rotational nature.
For such considerations the horizontal components of the velocity u, v, do not depend on the
vertical components z, whereas the vertical velocity w depends linearly on the distance between
the plates. This brings the motivation to model this situation in a second grade fluid and then
to discuss few specific solutions of our interest in chapter 2. The contents of this work has been
published in Archives of Mechanics, 55, 373 — 387 (2003).

The swirling flows have great importance in a number of industrial and practical applica-
tions. Spiral galaxies, atmospheric or oceanic circulation, bathtub vortices, or even stirring tea
in a cup, are examples that illustrate the ubiquity of swirling flows at all scales in nature. In

such flows the flow is usually axisymmetric (independent of the meridional angle #) and second



component of the velocity Vp, is expressed in terms of the swirl Q (angular momentum per
unit mass). The resulting equations arising from the balance of linear momentum, are highly
non-linear partial differential equations whose general solution in closed form is not possible to
obtain. Few specific situations are considered in order to find the analytical solution of these
equations both for Newtonian and non-Newtonian cases. Eleven steady and non-steady flows
are discussed. This work has been published in Nonlinear Dynamics, 35, 229 — 248 (2004).

In chapter 4, the time dependent flow equations are modeled in plane polar, axisymmetric
cylindrical, and axisymmetric spherical coordinates. The obtained equations are coupled by
introducing the stream functions into a single equation. The governing equations thus obtained
are highly non-linear partial differential equations, whose general solution is not possible even
for the Newtonian fluid. The solutions of these equations help to understand the properties and
behavior of the non-linear fluids. Applying the inverse method on the most general equation
we have proposed solutions to that equations, and in return the conditions are obtained on the
fluid, which have the given solutions. Several limiting situations along with their amplifications
are deduced and are compared with the known results already given in the literature (both for
Newtonian and second grade fluids). This attempt is accepted for publication in Mathematical
Problems in Engineering.

Although the second-grade fluid model is able to predict the normal stress differences, which
are characteristics of non-Newtonian fluids, it does not take into account the shear thinning
and thickening phenomena that many show. The third-grade fluid model represents a fur-
ther, although inconclusive, attempt toward a comprehensive description of the properties of
viscoelastic fluids. With this in view the flow of an incompressible unidirectional thermody-
namically compatible third grade fluid over an infinite plate is analyzed in chapter 5. The
infinite plate is placed along x—axis and y—axis is perpendicular to it. The plate is under a
variable shear stress depending upon time. Incidentally, the time-dependent shear stress makes
the boundary conditions non-linear. T'wo different situations are discussed when shear stress is
proportional to e’ and e™? respectively. In the former case for positive A, numerical and per-
turbation solutions are obtained whereas in the latter case, only perturbation solution is given.
In the former case, it is observed that there is a very good agreement between the numerical

and perturbation solution for small values of ¢ (¢t < 1). For ¢ greater than 3, there is a sufficient



discrepancy in the results that the perturbation solution can no longer be accepted and the
results from the numerical solution only should be used. However, when shear stress has an
oscillatory character, the perturbation results are acceptable. It is found graphically that with
an increase in second and third grade parameter the velocity decreases and the boundary layer
thickness decreases. This analysis has been accepted in Canadian Journal of Physics.

Chapter 6 is devoted to study the unsteady problem of an incompressible third grade fluid
past a porous plate. The infinite porous plate is aligned along the x—axis and flow is planar. The
flow is induced due to sudden motion of a plate. The modeled flow equation is a highly non-linear
partial differential equation with all non-zero third grade material parameters. Also the equation
is of fourth order and there are only two boundary conditions. Here, the partial differential
equation is converted into an ordinary differential equation using similarity transformation,
which has been solved using perturbation in the inverse powers of time. It is observed that with
an increase in suction, the boundary layer thickness decreases and with an increase in blowing,
the boundary layer thickness increases. It is also noted that for short time (7 = 4), a strong
non-Newtonian effect is present in the velocity field and velocity behaves as a Newtonian case
for large time (7 = 100). These observations are published in Mathematical and Computer
Modelling 38, 201 — 208 (2003).

The flow of a third grade fluid induced due to the oscillations of a porous plate is presented
in chapter 7. We have considered the thermodynamical third grade model and flow is unidirec-
tional with constant suction/blowing. The modeled equation is a third order partial differential
equation which is solved by perturbation method. The porous plate is executing oscillations
in its own plane with superimposed blowing or suction. An increasing or decreasing velocity
amplitude of the oscillating porous plate is also examined. It is found that with the increase
in material parameters of the third-grade fluid the velocity boundary layer thickness decreases
in the case of suction and increases in the case of blowing and the amplitude of oscillation
decreases for acceleration and increases for deceleration. Results for second grade and viscous
fluids are obtained from the present analysis as the special cases. The contents of this chapter

have been published in Mathematical Problems in Engineering 2, 133 — 143 (2004).
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Chapter 1

Preliminaries and basic equations

1.1 Introduction

This chapter deals with basic definitions and derivations of the governing equations which will
provide background for the succeeding chapters. The general expression for the nth-Rivlin-

Ericksen tensor is also derived.

1.2 Non-Newtonian fluids

An abundance of literature deals with the solution of various types of fluids. Amongst these
fluids, the Newtonian fluid is the simplest to be solved, not only numerically but also analyti-
cally. The governing equation that describes the flow of a Newtonian fluid is the Navier-Stokes
equation. A literature survey indicated that applications of Newtonian fluid is very limited.
This is due to the fact that many fluids used in the chemical, mechanical and other industries
deviate from the Newtonian fluids. They are non-Newtonian fluids and there has been relatively
scarce information about these. Now, non-Newtonian fluids are increasingly being recognized
as more appropriate in modern technological applications in comparison with Newtonian flu-
ids. Because of the non-linear nature of the dependence of stresses on the rate of strain for
non-Newtonian fluids, the solution of flow problems for these fluids in general are more difficult
to obtain. This is not only true of exact analytical solutions but even of numerical solutions.

The non-Newtonian nature of the fluids also increases the order of the differential equation in
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general. Due to complexity of fluids, there are several proposed models. In the present thesis
we will consider subclasses of the differential type fluids namely second and third-grade fluids.

The constitutive equation for second-grade fluid is

T=—pl+ pAi +a1As+ agAf, (1.1)

where T is the Cauchy stress, —pl is the spherical part of the stress due to constraint of
incompressibility, p is the scalar pressure, I is the identity tensor, u, a1 and a9 are measurable
material constants. They denote, respectively, the viscosity, elasticity and cross-viscosity. Aj
and Ay are Rivlin-Ericksen kinematical tensors [1] and they denote, respectively, the rate of

strain and acceleration. The Rivlin-Ericksen kinematical tensors A,,, are described as [1]

Ay = I,
A1 = (gradV)+ (gradV) ', (1.2)
An
A ddt + A, (gradV) + (gradV)' A, n>1,

in which V denotes the velocity field, grad is the gradient operator, T is the transpose and
d/dt(-) = % (+) + (V-grad) () is the material time derivative, where first term describes the
local part and the second term is the convective part. Using Egs. (1.1) and (1.2) into the
balance of linear momentum

av
e px+divT, (1.3)

and making use of some vector identities we get the following equation

1 1
grad | 2p V2 +p—o <v.v2v+Z |A1|2>} +p[Vi—Vx(V xV)] (1.4)

= MV2V+a1 [V2Vt + \V& (V X V) X V] + (011 + 042) diVA% + pX.

In above equations V? is the Laplacian operator, p is the constant density, x is the body
force, V; = 0V /0t, and |Ai| is the usual norm of matrix A;. We name above equation a
Master equation as it will help us to model the governing equations in Cartesian, plane polar,

axisymmetric cylindrical and axisymmetric spherical coordinates, which will be used in the next
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chapters.

Second order fluids are dilute polymeric solutions (e.g. polyisobutylene, methyl-methacrylate
in n butyl acetate, polyethylene oxide in water, etc.). The equation is frame invariant and ap-
plicable for low shear rates. A detailed account on the characteristics of second grade fluids
is well documented by Dunn and Rajagopal [3]. Theoretical investigations by Dunn and Fos-
dick [39] and Fosdick and Rajagopal [2] have indicated that for an exact model, satisfying the
Clausius-Duhem inequality and the assumption that the specific Helmholtz free energy be a

minimum in equilibrium, the following conditions must hold:
>0, a1 >0, a;+ay=0. (1.5)

A detailed discussion regarding the signs of the material parameter has been given in Dunn and

Rajagopal [3]. For third grade fluid , the expression for T is

T = — pI+ pA1 + o1 As + aAT + B1 A3 + By (A1Ag + AsAy) + 55 (trA?) Ay, (1.6)

where (3,35, and (5 are additional material constants. Fosdick and Rajagopal [2] has dis-
cussed the thermodynamics of fluids modeled exactly through Eq. (1.6). The Clausius-Duhem
inequality and the assumption that the specific Helmholtz free energy is minimum at equilibrium

provide the following restrictions
K > Oa o] > 07 | a1 + a |§ V 24MB37 61 = 52 = 07 63 > 0. (17)

1.3 Equation of continuity

The conservation of mass for compressible fluid is

dp

o T(V-pV)=0. (1.8)

13



For incompressible fluid above equation simplifies to

V-V =0. (1.9)

1.4 Strain rate and vorticity tensors

The velocity gradient tensor VV can be decomposed into a symmetric part D and antisym-

metric part W

1 1
D= (VV+VV) =2y, W= (VV-VVI)=_u, (1.10)

Do | =
Do =

where - is called the rate of strain tensor and w is called the vorticity tensor. Also it is noted
that v = (VV 4+ VVT) is equal to the first Rivlin-Ericksen kinematic tensor. The vorticity is
defined by

w=VV-VVI =V xV. (1.11)

The reason for this is two fold. First, the rules governing the evaluation of vorticity are some-
what simpler than those governing the velocity field. For example, pressure gradient appear
as a source of linear momentum in Eq. (1.3), yet the pressure itself depends on the instanta-
neous distribution of V. By focusing on vorticity, on the other hand, we may dispense with
the pressure field entirely. The second reason for studying vorticity is that many flows are
characterized by localized regions of intense rotation (i.e. vorticity). Smoke rings, dust whirls
in the street, trailing vortices on aircraft wings, whirlpools, tidal vortices, tornadoes, hurricanes

and the great red spot of Jupiter represent just a few examples.

1.5 Gradient operator

The gradient operator is defined as

0 0 0 0
8_% —ela—xl _+e3_7 (112)

V=e 0xo 0xs

in which e; (j = 1,2,3) are unit vectors.
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1.6 Gradient of a scalar

The gradient of a scalar point function can be calculated as

9o 9o 9é 9o
¢ = el—¢ +e2—¢ —0—e3—¢

Vo =e 8—963 ox1 0xo 03

1.7 Gradient of velocity

The gradient of velocity V is defined as

0 A%
VV = <eza—xz) (Viej) = eieja—wz,

where a matrix representation is given by

ovi 9Va OVs
o1 o1 ox1

ovi oVvp  OVs

Ors Oxo  Oxa

o Ve OVs
8953 8953 afbg

and V; (i = 1,2,3) are the velocity components.

1.8 Divergence of a vector

The divergence of a vector is defined by

0 ov;

V.V = (eia—x) (Viej) =ei-ejg = by

Vi _OVi  OVa  OVy
al‘i N 81‘1 8232 @IIZ3‘
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1.9 Curl of a vector

The curl of a vector is

0 %
VxV = <ezaﬂ§¢) X (Vjej) =e€; X ejé)—a:j-

)

(1.16)

oV 0V, ovy  0Vs oV O0Vi
= e|(z——5—|te|——5—)+es o m )

8%2 8x3 6%3 le 6$1

1.10 Divergence of a tensor

The divergence of a tensor is defined by

0 0S;j
V-S= <ek8—xk> . (Sijeiej) = ej 8331 .

1.11 Non-Cartesian frames

(1.17)

All the definitions for gradient and divergence of a tensor remain valid in a non-Cartesian frame,

provided that the derivative operation is also applied to the basis vectors as well. We illustrate

this process in two important frames, cylindrical and spherical coordinate systems.

I3
¥
F .
y=rsn &
7 / x=rcos & X
e Sg=z

Fig. 1.1. Cylindrical coordinate system
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1.11.1 Cylindrical coordinates

In cylindrical coordinate system, points are located by giving them values to {r, 6, z}, which

are related to {x = x1, y = x2, 2 = x3} by (see Fig. 1.1)

xr = rcos, y=rsinh, z=z,

1
r = (x2+y2)2, 6 = tan~! (g), z=z.
x
The basis vectors in this frame are related to the Cartesian ones by

e, = cosfl e, +sinf e, e, =coste. —sind ey,

eg = —sinf e, +costle,, e, =sinb e+ cost ey.

The velocity V, a tensor S, gradient operator, gradV and divV in terms of these coordinates

are respectively given by

V =V,e, + Voep + Ve, = (V,, Vp,V2), (1.18)

S = Siere.+ Spereg+ Sr.ere, + Spreger + Sgpegeq + Sg.epe. + S.re.e;

+S.0e.e9 + S e.e.,

where a matrix representation is given by

Srr ST'G Srz
Sor  Seo  Se- | s
Szr Sz@ Szz
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V = (cosf e, —sinf ey) (cos@

. 0 cosf 0
+ (sinf e, + cos b ep) (SIHQE . 80) +e
~ Tor " r00 "0z \or'rae9z)
0 10 0
VV = <er§ + 055 + ez$> (Vrer + Vyey + Vse,)
—eeav—i—eeav—i—eeav—i—ee lﬁ—ﬁ
— rCr or r€0 or rCz or 0Cr r 00 r
+epe 18%—#‘/ eelav+ aV—i—eeav
0\ o0 %00 T e, T,
where a matrix representation is given by
AVy. Ve oV
or or or
10V Vo 10Vp | Ve 10V
r 00 T r 00 r r 80 ’
IV, AV V.
0z 0z 0z
ov, 1 8V9 Ve oV,
VoV =or T 9z’
where we have used the following relations
0 0 0 0 0
Eer = 0, Eeg =0, Eer =0, %er = ey, %eg =
0 0 0
%ez = O, aer = 0, geo = O, gez =0

18
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or r 00

9

0z
—l—eeavz
22627

(1.20)
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1.11.2 Spherical coordinates

In a spherical coordinate system, points are located by giving them values to {r,8, ¢}, which

are related to {x = x1, y = x9, 2 = x3} by

x = rsinfcos¢, y=rsinfsing, z=rcosh,
/22 1 12
ro= Va2+y2+22, 60 =tan ! (x——W), ¢:tan*1(g>.
z x
9
Z .
o rsin &
z=rcosd | N
# :
F i
R I
M =ramn fan @
A : Y
v 4 P rem &

» x=rsin Fros @

Fig. 1.2. Spherical frame of reference

The basis vectors are related by

e, = e;sinfcos¢+ essinfsing + egcosd,
eg = ejcosfcosg+ eycosfsing —essind,
e; = —ejsing + ezcos o,

19



and

e; = e.sinflcos¢ + egcoslcosd — eysin g,
ey = e;sinfsing + eypcosfsing + ey cos P,
e3 = e,cosf —egsin .

In spherical coordinates we have the following:

V_ 2_._ 12_._ ;2
%o T80 T % rsind 0g’

VvV = <eT% + eQ%% + e¢ﬁ%> (Vre, + Vheg + Vyey)
= eg(Ve +V999+Ve)+elg(Ve + Voeg + Vyey)
T op NTET odsdo] 07“89 rCr 0€o o€
+e¢r siln 9375 (Vrer + Voeg + Voey)
ee%vLee%—i-ee%—i-ee EBVT_E e 1%
e e T g T\ 0w 0\ o0

+e¢er< ! 8Vr—%>+e9e i%+e¢eg< ! %—ﬁco’w)

rsinf O¢
1 9V, V., V
+e¢e¢< - —¢+—+—000t9>

rsinf 0¢ r

1A Iy e
ar or or
= | 1o% _ Y 19Vp | Ve 19V
r 960 r r 90 r r 00 ’
1 9V, Y 1 Ve VY 1 Ve Ve Vo
rsinf O¢ r rsinf O¢ r cot f rsinf O¢ + _Tt + r cot f

20
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V.-V = <er2+e91£+e L 9
or r

0 10
= <e,~5> - (Veer 4+ Voeg + Vyey) + (eg;%) “(Vrer + Voeg + Vyey)

1 0
+ <e ) (Vee, + Voeg + Vyey)

qbrsinH@_qﬁ
_ Our up  10up up  ugcos® 1 Oug
- Or * r +7“ 00 + r + rsinf  rsinf 0¢
10, 10 . 1 Oug
- r2or (r ur)+r89 (uebme)ersinQ o

In deriving above expressions we have used the following relations

2e —ep =0 2e =0 2e =e 2
or " or " ar T e " a0
0

0
e, = e4sinf, —eg=ezcosl, a—¢e¢ = —e,sinf — ey cosb.

99

0, €y = —€r, 0,

9
00 °
0o

1.12 Symmetric and antisymmetric part of the velocity gradi-

ent

Eulerian description of acceleration is given by

aza—V—F(V-V)V:%.

o (1.25)

Since L = VV =L;; is a second rank tensor and as every tensor of rank 2 can be written as a

sum of symmetric and antisymmetric tensors, therefore
1 T 1 T
L:§<L+L>+§<L—L>:D+W, (1.26)

where the symmetric part D is called the rate of strain tensor and antisymmetric part W is
called the vorticity tensor. We know that the strain tensor is defined by

1
gij = 5 (uij +uji) =

. (L+LT).

| =
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Hence

1
D =5 (uij +uji) = €ij,

1
W=7 (uij — uj) = wij.

1.13 Rivlin-Ericksen tensor

The n—th Rivlin Ericksen tensor is defined as

d'I”L
An (t) = —Ct (T) |7—:t, n = 1,2,

drm

At start we assume that there is no deformations at 7 = ¢
Ag=C(7) |r==1

and

AL(D) = G ()] = - [(R () TR ).

In above equation we have used C = F'F as the right Cauchy-Green tensor.

Consider
d d 0, 0 [dE, ou;
B — F — — L _ — 2 e = L
dT( t(T)) dr 8(Ej 8$j (d’i‘) 8$]’ ’
where the position of the particle is &; and
d T_|d T| T
) = R T =
Therefore
d _d T B T d d T
- C(N] = — |Fe(7) Ft(T)}—Ft(T) - Fe (1) + Fo () —Fi ()

= Fi(1)"L+LF (7).

At 7 =1t, F; (1) =1, and thus
A=L+L".
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(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)
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Similarly from the definition (1.29) for n = 2 we have

Ay (t) = [Ct ()] |r=t=

d
o2 {d_ [Ct (T)] |r=t}
d )

= = [Ft( ) L+ LF; (r

- Pimm>FL+Fm>

2 d
dr
(1.36)

dr

dL.  dLT

= L'L+F () =
+F () d7+ dr

Consider

dL d (OVi\ _ 90 (dVi\ _ 9 [9V
dr E(@@)@@(dT)ﬁxj{@T—i_(v V)V}

ooV o 9 oL av;
= Orom, Tom, VVitVig VY=g oz,

= g—L-i-L L+V-VL. (1.37)
=

Similarly
LT LT
@ %L L TLTiv.vL (1.38)
dr or

and thus, Eq. (1.36) becomes

.
Ay(t) =L'L+F, ()" [B—L +LL4V - VL+ (a{;

5 +LTLT+V.VL )Ft(T)JrLTL].
=

Again at 7 = ¢, Fy (1) =TI and, therefore

Ay (t) = LTL+gL+LTL+V VL+88L +LLT+V. VL +L'L
T
_ 9 T T T T T
= 4 <L+L )+L (L+L >+<L+L >L+V-VL+V-VL (1.39)

+LTA;+AL+V - -VA,

A
= §A1+LTA1+A1L+V-V(L+LT> :%

) d
= <8T+V V>A1+A1L+LTA1 aAl—i—AlL—i—LTAl.

Similarly

d
As(t) = EA2+A2L+LTA2 (1.40)
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We use a different procedure to find a recurrence relation. We know that the strain in the fluid
is measured by looking at the length of a fluid element ¢t = 0 to ¢t. Let dX be the fluid element
at X and dx at x then the length at time ¢ is

dz? (t) = C (t) : dXdX. (1.41)

Also
dé? (1) = C (1) : dXdX. (1.42)

We know that

Clr) = B OF @) =[F@OF @] FBEOE @

T

= F'0) F (1) F(@)F ()= (F () CrF ()

and
dr . -1 T d" 1
7 (C(7)) = (F~ (1)) T C () F (1)
dr "
T JE—
P (1) |4 (€L ()| F () = 0 ()
at T =1
d’n
F' (1)A,F(7) = —
(1) (r) = 55 (C())
dX"FT (1) AF (1) dX =%C (r) : dXdX
A, : dxdx —ﬁd@( )|
n - _d’Tn T) |r=t -
Forn=n+1
A - dxdx = (L ge2 ()
mh x xde drm T
d dA,, d d
= E<An s dxdx) = = cdxdx + Ay, E(dx) dx+An.de (dx).
As
4 (ax) = L (Pdx) = LFdx = Ld
ar "\ T ar *) = X = X
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SO

A,
Ap 0 dxdx :dd sdxdx + A, Ldxdx + A,
T

dA,,
= ( p +AnL+LTAn> s dxdx
-

and thus
dA,

T

+A,L+LTA,,

An+1 =

where (:) indicates the product of two tensors.

25
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Chapter 2

Few inverse solutions involving

second grade fluid

2.1 Introduction

In general the second grade flow equations are more complicated because of the addition of
non-linearities in the stress function. As a result the solutions are smaller in number. As the
non-linearities grow the complexities in solving these equations and their interpretation also
grow. As a result the solutions are further restricted in comparison to viscous fluids in terms
of the methods available. One such attempt has been made in this chapter, where we have
considered the two dimensional flow equations and then introduced the stream function to
obtain the compatibility equation. Solutions then are found by assuming specific forms of the
stream function giving way to a large class of exact solutions. In each case, the expressions are
constructed for the streamlines, velocity components and pressure distributions. Finally, the
obtained expressions are compared with the known results in the literature.

Thus the problem at hand is the two-dimensional flow of a second-grade fluid near a stag-
nation point which has been discussed over the last few years. Actually, in 1911, one of the
Prandtl’s students, Hiemenz, found the stagnation point flow which are analyzed exactly by the
Navier-Stokes equations. With this motivation we extend the work for the second grade fluid.
In stagnation point flow, a rigid wall occupies the entire z—axis, the fluid domain is y > 0 and

the flow impinges on the wall orthogonally. The y—axis behaves as an imaginary wall and fluid
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flows on both sides of this wall. Thus, the flow near y—axis needs to be analyzed. The dividing

streamline is given by ¢ (z,y) = zF (y) + G (y) .

2.2 Governing non-linear equation

Let us consider two parallel plates (see Figs. 2a,b,c) in some incompressible fluid (liquid) whose
size is much larger than the distance between them h << [ (where h is the distance between the
plates and [ is the length of the plates) and suppose that they are moving towards each other or
in opposite directions. We note that when the plates are moving towards each other (see Fig.
2a.) the force required is lesser as compared to that when they are moving against each other
(see Fig. 2b.). Of course it varies with the different character or grade of the fluid (liquid).
For Newtonian fluids (liquids) like water these experiments are much easier to perform than
the non-Newtonian fluids (liquids). For general analysis since we are dealing with viscoelastic
fluid in this chapter, so that the fluid considered between the impermeable or permeable plates
is having the viscous as well as elastic properties, and one will have to put extra stress while
approaching the plates towards each other or in opposite directions.

We also assume that the horizontal velocity does not depend on the vertical coordinate
(u # u(z), v # v(z)) whereas the vertical velocity depends linearly on the distance between

the plates (w o z). Thus, the velocity field become [40]
U:U(I‘,y,t), ’U:’U($,y,t), w:—2¢z, (21)

where ¢ is the relative velocity of the plates (assumed constant).
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| | apim I/{[

fluid i Fized penmeable plates
o e e T Z=h

. |pona

Fig. 2a. Fig. 2b.

Z-358

¥

zy-plane
Fig. 2c.

Fig. 2. Geometry of the problem: (a) moving impermeable plates (b) fized permeable plates

and (c) horizontal and vertical coordinates

Using the velocity components defined in Eq. (2.1), the continuity equation (1.9) and Eq.

(1.4) in component form give

% + g—z = 2¢. (2.2)

% +p [% - vw} = <u + a1%) V2u — aqvV2w + pxy, (2.3)
88_1;1 +p {% + uw] = (u + a1%> V0 + aquV2w + +pxo, (24)
% s, (2.5)

where x = (x1, X2, x3) is the body force, and the modified pressure and the strength of the

vorticity are defined as
1 1
p1L=p+ §p (u2 +v2 4+ 4(/52,22) — a1 [uViu 4oV + 1 ‘A%} , (2.6)
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ov  Ou
~(2:-3): 20
V2P=V.-V=u?+>+ 4¢>2z2,

| A% = tr (A~ A]) = tr (A7) =4 0N L (2 aggr o (284 20N
L ) ~ " \oz Ay oy Ox)

Differentiating Eq. (2.3) with respect to y and Eq. (2.4) with respect to x and using

in which

integrability condition p1,, = p1y, We obtain the following compatibility equation

Ow o 0 B 0\ s 0 0
oo (eg)d - (rrad) (-0 oo

+aq u2 + v2 V2w + 20V2w| .
ox oy

Defining the velocity component in terms of the Stokes’ stream function % through the

following relations

_ 4,
u = ¢x + 3y V=Y - oo (2.9)
we see that the Eq. (2.2) is satisfied identically and Eq. (2.8) become
o (204 2) 9210 (ol +y 2 V2 — {4, V) } (2.10)
ot Ox oy ’ ’

0 0 0
- (umla >v4¢+a1 [2¢v4w+¢< oy >V4w— {w,v%}]
)
P axX2 8yX]_ )
in which
V4 — VQ . v2
and

8¢3( 1)) _8_¢3(V2¢).

2
{¢ v ¢} n Ay dy Oz

Remark 1 The solution ¥ = 0 of Eq. (2.10), corresponds to liquid potential motion, known

as the motion near the stagnation point.

We now consider the following special cases:
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e For steady case 0/0t = 0 and Eq. (2.10) becomes

p [zw%/; + ¢ G% + ya%> V3 — {y, v%}} (2.11)

0 0 0 0
= uV'v+a [mv% +9 <% + ya—y> Vi~ {v, v%}] ~p (%XQ - 8—yxl> .

Note that for steady cases, the continuity equation, the modified pressure fields, the
velocity components in terms of stream function and the vorticity vector remains the

same whereas the velocity field becomes independent of time.

e For ¢ =0 Eq. (2.10) gives

0 0 0 0
p &V%/f - {%V%ﬁ}} = <,u + ala) Vi —ay {y, Vi) —p (@Xz - 8_yX1> . (212)

Here it is stated that the Eq. (2.12) is obtained when the velocity field, modified pressure,

velocity components in terms of stream function and the continuity equation are

Viz,y,t) = [u(z,y,t), v(z,yt), 0],

po= p+t %p (v + %) — ay [uv2u+vV2v+ i ]A%@ ,

ou\ 2 ov\? ou  ov\?
A} = 4<%> +4<8_y> +2<a_y+%> , (2.13)

o0 ob ou o
oy’ VST o oy

e For steady case Egs. (2.12) reduces

0 0
—p{Y, V) = pVi —oq {9, Vi) —p <%X2 — 6—y><1> : (2.14)

e Eq. (2.10) for unsteady viscous case is (see ref. [40])

0 0 0 0 0
P [(%’ + a) V3 + ¢ (CU% + ya_y) V3 — {w, ng}} =uVi—p <%X2 - 8_yX1> .
(2.15)
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When ¢ =0 Eq. (2.15) reads as

V2¢ {v, VQI/}}} = uViy — p( 0 X2 — aaym) (2.16)

When ¢ = 0 and the flow is steady then Eq. (2.15) gives (see ref. [41])

0 0

B 200 — o odey o Ly 9
p{, Vi) = pviy p(axm ayX1>‘ (2.17)
e For creeping unsteady flow of second grade fluid when u = ¢x+ o, U= oy — 9% we have

0) g Y I W I
(M—i—oélat) Vi+ay [2¢V ¢+¢<$am +y8y> Vi —{y, V%) =p oz X2 ayXl .
(2.18)
e For ¢ =0 Eq. (2.18) is
0 0 0

</H- a1 > Vi — o {9, Vig} = (835X2 - 8_yX1> . (2.19)

For steady flow above expression is

0 0
pVi — oy {9, Vil =p (gn - 8_yX1> : (2.20)

For viscous fluid Eq. (2.18) is (see ref. [41])
0 0
4 f— — — —
PV =p <8x><2 8yX1> - (2.21)

Note that the creeping flow for unsteady and steady viscous cases is the same. Also the
velocity components, continuity equation, vorticity function and velocity components remain
the same as in non-creeping flows but the modified pressure is slightly changed, that is, for
second-grade fluid

=p—m quu—i—vVQv—F }A2’ (2.22)
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and for viscous fluid the modified pressure is

P (2.23)

I
=

2.3 Solutions of some special types

Here we note that the compatibility equation (2.10) is highly nonlinear differential equation
and it is not possible to find its analytic solution in closed form. Even, Eq. (2.10) has no closed
form analytic solution for the Newtonian fluid. In order to obtain the solution various workers
[24,26, 38,41, 42] assumed particular form of the stream function. Our interest in this chapter
lies in finding the analytic solutions for the following two forms of the stream function: that is,

flow where the stream function is linear with respect to x or y

¥ (z,y) =y& () +n(z). (2.25)

These type of flows are called the plane stagnation flows. Equation (2.24) represents the flow
of a fluid in the neighbourhood of a stagnation point; the motion can be joined at a distance
with a potential flow about a stagnation point. Here, the stream function is linear in y and
once it strikes the boundary it becomes stagnant and then moves towards horizontally. Then

it does not remain linear in y rather purely becomes a function of x.

2.3.1 Solution when ¢ (z,y) = y¢ ()

Substituting the value of ¢ given in Eq. (2.24) into Eq. (2.10) we obtain

plo (3" +xg") — (€€ —€€")] = p" +an [ (3™ +a€V) - (€67 —&€V)],  (2.26)

where £ (z) is an arbitrary function of x and primes denote the derivative with respect to x.

The above equation can also be written as

i [Mgm _|_p{(€/2 _ 55//) —¢ (25, +$£//) }] — Olli {(—§§IV + 25,5/” _51/2) —¢ (25/// +$§IV)}‘

dx dx
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Integration of above equation yields
pe" +p (€7 —€6") = ¢ (26" +2¢")] = an [(—€€V +26'€" — €") — ¢ (26" + V)] (2.27)
Let us assume a particular choice for the function ¢ as:
£(x) =0 (14 Xe”") — oz (2.28)

in which d, o5 and A are arbitrary real constants. Making use of Eq. (2.28) into Eq. (2.27) we

easily find
4
§=—H" 19 (2.29)
p— Q105 g5
Putting the value of § in Eq. (2.28) we get
4
(o) = (22 - ) ae™) - o (2:30)
P — 0110'5 g5
and the stream function ¢ given by Eq. (2.24) become
1105 4¢] -
zy) = | —225 2200 (1 4 AeT5T) — day. 2.31
0@ = | LT = 22y (1 0e7) gy (2.31)

It is remarked here that the stream function (2.31) for a; = ¢ = 0 gives the results as
discussed by Berker [41], and for ay = ¢ = 0, A = —1, ‘“Z—s = —U (U > 0) we recover the
solution of Riabouchinsky [42].

Using Eq. (2.9) the velocity components are

4
u= [LE’Q - —ﬂ (14 A7), (2.32)
P — Q105 g5
4
v =2¢y — [L‘:’? — —ﬂ yAose’®”. (2.33)
P — a105 05

In order to find the pressure field we substitute Egs. (2.32) and (2.33) into Egs. (2.3) and

(2.4), and then integrating the resulting equations we obtain
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2,2 1
pP1 = po -+ HGACs ( - %) 5% — 3P [62 + 4¢? (y2 + 22) — 62/\262"5‘”] (2.34)

+o [aAo—5 (@os — 2002y — 4¢) 7" + @ \20? (3 + @) e%75% 4 8¢2} ,
where pg is an arbitrary constant, known as the reference pressure.

In order to understand the streamline flow pattern we keep the stream function fixed i.e.,
¥ (z,y) = Q11 (say) and solve the resulting expression for y in terms of the variable z. This
particular procedure in two-dimensional flow in which one variable is expressed in terms of the
other variable is called the functional form. In this way one can see the streamline flow pattern

through graphs.
Eq. (2.1.6) for ¢ (x,y) = Q11 gives the following expression

n
_ 2.35
Y (1+ Xe%%) e — x¢’ (2:35)
where
4
e= 275 ¢ (2.36)

T 1-Ad? o5
in which v = p/p is the kinematic coefficient of viscosity and A = «;/p is the second-grade
parameter.

Fig. 2.1. is plotted for ¢ = o5 = A= 1, u/p = 0.5, a1/p = 0.1, ¥ = 15,20, 25, 30, 40. Fig.
2.1. describes the continuous streamline flow pattern. It should be mentioned here that these

graphs simply defines the pattern of the flow for a particular choice of the stream function.
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Fig. 2.1. Streamline flow pattern for ¢ (z,y) = [—&2 —42L y (14 Xe?5") — oy

pP—Q10y o5

2.3.2 Solutions when v (z,y) = y¢ (z) + 1 (x)

To find another class of solution of Eq. (2.10) we use Eq. (2.25) into Eq. (2.10) to get the

following nonlinear differential equation

2¢ (yé-// + 7,]//) + ¢{y ({/l +$£Il!) + :L,,rllll}

p (2.37)
_{y (é—/é—l! _ 55///) + (7715// _ 677/”)}

26 (y&™V +n1V) + ¢{y (¢ + 2€V) + a0V} ]

_ ,UJ(yé-IV +77[V) + o
e ey (e — )

From Eq. (2.37) we have the following equations:

(é-lé-IV o é—gV)

=0, (2.38)
—d) (3§IV + $§V)

p [(5/5// - gg///) — ¢ (35// +x§///)] +,U€IV — |:
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and

(77/§IV . §77V)

/5//_5/// — ¢ " + zn™)] + v _
p L€ =&n") =& (2" + an™)] 4 ™ —en o (31 4+ 2n)

=0, (2.39)

where £ () and 7 (x) are arbitrary functions of the variable . Integrating these equations with

respect to « and then taking the constants of integration equal to zero we have

(—§§IV + 2515/// . 5//2)
qum +p £I2 - ffﬂ —¢ 25/ + a:f” —« =0, (2.40)
[( ) ( )] 1 —¢ (25/// + :L'flv)

& — &'V +a'e"
pn" +p (W€ —&n") =6 (20 +an")] — =0. (241
_77//5// o ¢ (277/// 4 xnIV)
Here it can be seen that Eq. (2.40) is exactly the same as of Eq. (2.26). The solution of
Eq. (2.26) is given in Eq. (2.30). In order to obtain the solution of Eq. (2.41) we substitute

the solution given in Eq. (2.30) into Eq. (2.41) and get

16 (1 +Xe75) Y + (4 3a10) 'Y — pd (1 + Xe?5%) " — 2pgm" + SAo? (p— ozlag) e”n' = 0.
(2.42)
Clearly to obtain the general solution of Eq. (2.42) is not easy. For analytic solution of

above equation we consider the following cases:
Casel Whena; #0,¢0#0,05=1, A=0

We have from Eq. (2.42) as
oaan” + (u+ 3a16) 'V — pan’™ — 2p¢n” = 0. (2.43)

The above equation is of fifth order and for solution we substitute n” = A (z) and get

@A + (4 3a1¢) A" — paA — 2ppA = 0. (2.44)
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Taking A (z) = p (x) e* the above equation becomes

a16P" + {31 (6 + ¢) + pu} P + {3a1 (8 4+ 2¢) + 2u — pd} P' = 0.
Writing P’ (z) = R (z), Eq. (2.45) reduces to

a1dR" +{pu+3a1 (¢ + )} R — {(3a1 — p)§ + 2p + 616} R = 0.

The above equation is second order and its solution can be written as

e ST e ST
R (z) = Azexp (%) x + Agexp (chlld) T,

where A3 and A4 are arbitrary constants and

c:?>0z1(5—i-c/5)-ﬁ-u7 d:3oz1((5—i—2g25)—i—2,u—p(57 P 46
011(5 011(5 P — &1

Equation (2.47) can also be written as
R (z) = Aze™® + Age™",

where

—c—+/c2—4d —c++/c2—4d
m= | | = | |

In order to find 7 (z) we make back substitutions to proceed as

P (x) = /R (x)dx = / (Aze™® + Aye™®) dx = i—jemlz + i—zemﬂ + As

and 4 (z) = P (z) ¢® implies that

A (2) = 2B erme f AL (mae g oo
mi mo
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which after taking ” = A (z) gives

Az 4m) A am)
)= ——=2 e\Wtmir T2 o Udm2)r Al L Agx + Ag, 2.48
77() m1(1+m1)2 m2(1+m2)2 > 6 ! ( )

where A; (i =5,6,7) are constants of integrations. Substituting Eqs. (2.30) and (2.48) into
Eq. (2.25) one obtains

vy = v “a — ¢ (A+x)| + Ase” + Agz + Ar (2.49)
— Qa1
= sellTme 4 R — selltma)e,
my (1 +mq) ma (1 + mg)

The velocity components and the pressure field are respectively given by

I
p—Qq

— 46, (2.50)

u =

8 4 (dm)r g m AL 251
mi (14 mq) m2(1+mg)e tAsen 4 A ( )

v =20y —

1
po= po—gplal+ AG+40% (yF +27) — dydds] (2.52)

2 2

A_3562(1+m1):c + 2A3A4 e(2+m1+m2)x + A_362(1+m2)a: + A§€2x

m mima2 m3

4¢2 2A3A5(2+3m1+m%) €(2+m1)$ + 2A4A5(2+3m2+m§) 6(2+m2)m
(2+m1)m1(1+m1) (2+m2)m2(1+m2)

+011

The streamline flow pattern for 1) = Q99 (say) is given as

- Az (1+m1)x
y——— " P oy (2.53)
1700 | el 4 Ase® 4 Agr + Ay
where
4 1%

The streamline flow pattern is plotted in Fig. 2.2. forp =a=A=1, u/p = 0.5, a1 /p = 0.1,
Ai=10@E=3-17), ¢v»=15,20,25,30,40.
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-1 -0.5 0 0.5 1
X

Fig. 2.2. Streamline flow pattern for
V(z,y)=y|-L- —o@d+a)| + — A3 o(mi)z 4 As (I4me)z 4 Ao 4 Agr + Ag

p—aq my (14+my)> ma(1+mz)?
Case 2 When a1 #0, ¢ =0, 05 =1, A#0
then Eq. (2.42) after using § = -£— becomes
a1 (1+2%)nY + (p—a)n™V —p (1 +2%) 0" + (p — 1) Ae®) = 0. (2.54)

To find the solution of Eq. (2.54) we make few substitutions to reduce its order. For this

purpose we put 7’ = A () which leaves it into a form which is one order less, that is
o1 (1A AT + (p— o) A" — p(14 Ae®) A" + (p— 1) Ae" A = 0. (2.55)

Now substituting A (z) = P (z)e” in BEq. (2.55) and then P (z) = R () into the resulting

expression we get

1+ Xe®) R" + (34 4)\e®) R"
o | ) ( ) =p[R"+ Q2= R+ (1-20e") R (2.56)
+(346Xe") R+ (1+4Xe”) R

The Eq. (2.56) is third order. Its order can be reduced further by multiplying by e® and then
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integrating. After this process we have
a1 (1+Xe") R" + [(2a1 + p) + 200 2e”] R’ + [ + p — (201 — p) Ae”] R = 0, (2.57)

where for simplicity the constant of integration is taken equal to zero.

The solution of Eq. (2.57) for A = 0 is given by
R(z) =Cse™* + Cgelatp)/eale, (2.58)
Employing the same procedure as in case 1 we can write
of ~(p/an)
n (IE) = —C5£L‘ + m(]@e prea)r + C7€x + 087 (259)

where C,. (r = 5,6,7,8) are arbitrary constants. The stream function, the velocity components

and the pressure field in this case are respectively given as

2

Y (2,y) = ——y + | ~Csa + — L Coe™ P/ 4 Cre® 4 Gy (2.60)

p— p(a1+p)
u = p_“al, (2.61)
=C LC —(p/al)z —C X 2.62
v = 5+(a1+p) 6€ 7€, (2.62)

1 1—
p = po—=p ag + 052 + 20756(1—0/01)56 + 2&0756(1—0/041)33 (2.63)
2 (a1 —p)
C2e20 4 £ c=2p/ar)s _ 0 2T ((1=p/ar)z
al al
+a + (£ —1) Craelt-rlans ,

— =3
=

where

aq o
) CI/Q— Y
o]+ p p— Q1

2l
|
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and the stream function for 1) = Q33 (constant) is given by the following functional form

1 A2
= —— |—-Qs33—C
Y & 33 5$+1+A

Coe~ /N 4 Cre® 4+ G|, (2.64)

where
v

T1-A

€2

The streamline flow pattern is sketched in Fig. 2.3. for ¢ = A = 0, 05 = 1, u/p = 0.5,
a1/p=0.1,C,=1(r=5-8), ¥ =15,20,25,30,40.

20
10 __ —
h 401
L — ]
20k /—’_' 40 T
_:|| - . ) -
-1 -0.5 0 0.5 1 1.5

Fig. 2.3. Streamline flow pattern for

2

¢(x, y) = £ Y+ _05$+m6166_(p/0‘1)$ + Cre® + Cy

p—a1

41



20 15
Lk 21
W0 F— _,
201 40

|
|

I
—
|

Fig. 2.4. Streamline flow pattern for negative second-grade parameter for

a? _
(0 (.%', y) = p_,%ly + |—Csx + p(a11+p) Cge (p/ar)z + Cre® + Oy

‘.I r ) é
10 F e ]
5 — ]
- 30 . ]
20F ]
: |
10 F :
_J- _I...: - I.'.- I (] 1 J.

Fig. 2.5. Streamline flow pattern for positive second-grade parameter for

a? _
(0 (.%', y) = p—fa—ly + |—Csx + p(a11+p) Cge (p/ar)z + Cre® + Oy
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2.4 Concluding remarks

In this chapter, the analytical solutions of non-linear equations governing the flow for a second-
grade fluid are obtained. Two different forms of the stream function are taken. In each problem
of stream function, the various possibilities of getting the analytical solutions are discussed. The
expressions for velocity profile, streamline and pressure distribution are constructed in each case.
Our results indicate that velocity, stream function and pressure are strongly dependent upon
the material parameter 1 of the second grade fluid. It is shown through graphs that increase in
second-grade parameter («; = 0.15) leads to decrease in velocity. Also decrease in second grade
parameter (a3 = —0.5) increases the velocity (see Figs. 2.4 and 2.5). The present analysis are
more general and several results of various authors (Aristov and Gitman [40], Berker [41] and

Riabouchinsky [42]) can be recovered in the limiting cases.
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Chapter 3

On solutions of some non-linear
differential equations arising in

Newtonian and non-Newtonian

fluids

3.1 Introduction

This work is motivated by the analysis of Lakshmana [43]. Lakshmana’s [43] work is extended
by considering the unattended parameters and then extended to second grade fluid. The mathe-
matical modelling and the solution given are important from the understanding of second grade
fluids. The work has great importance in a number of industrial or practical applications. Spiral
galaxies, atmospheric or ocean circulation, bathtub vortices, or even stirring tea in a cup, are
examples that illustrate the ubiquity of swirling flows at all scales in nature.

In this chapter, we develop the governing equation for an axisymmetric swirling flow of
a second grade fluid, which is highly non-linear. The primary purpose of this chapter is to
establish some analytical steady and unsteady solutions of the non-linear equation arising in the
swirling flows both in Newtonian and non-Newtonian fluids. The solutions are obtained using

various analytical methods including the Lie group method. The expressions for streamlines
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and velocity components are given in each case explicitly. The obtained solutions are also

compared in context of second grade without swirl and with the results of viscous fluid.

3.2 Governing equation for swirling flow

Let us consider the swirling flows in a second grade fluid in which the second component
(f—component) of the velocity is not zero. The compatibility equation obtained from the
Stokes’ stream function is to be solved by assuming a specific form of the vorticity. This gives
us two unknown velocity components i.e., V. and V.. In order to obtain the Vj component of
the velocity we substitute the stream function and its derivatives in the compatibility equation
which comes from the Stokes’ stream function. The angular momentum per unit mass about

the axis of symmetry of the flow is

Q=rVy. (3.1)

Note that we take the z—axis along the line of symmetry of the flow or we can say that
flow is symmetric about z—axis. The velocity components (V;., Vy, V) are independent of the
meridional angle 6. If the meridional component of velocity Vy vanishes at every point of the
flow, whereas V,. and V, are non-zero, then we obtain an axisymmetric flow and if the meridional
component of velocity Vy does not vanish in the flow field region then the flow field is usually
expressed in terms of the swirl 2.

For the axisymmetric flow with the swirling motion, the velocity field is

Q(r,z1)

V= ‘/,,‘(T,Z,t),
r

, Vi (ryz,t)| . (3.2)

On using above equation into Eqs. (1.4) and (1.9) we can write

ovy Ve 0V,
o T T =0 (3:3)
o [ov, Qo0 9\ [Ow ,  wy Q0
8r+p[8t —WV T 87"] __<“+alat> (&)‘“1 [VZW“_?&)*T?@TE Q}
(3.4)
19p ploQ V:0Q  V.0Q) O\ 1 Vo0 pag Y 0
7’89+r [(% + r 87’+ r 82’} _<M+a18t> TE Q+a1[r 62EQ+ r@rEQ  (3.5)
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op oV, Q00 0 9 9 w Q0
Fan [(’% ol - 82] <u+alat>vvz+a1 [Vr(vw =) - 5. B2, (3.6)
where
2
po= prao(vievie ) o v (v - L) Lo s vovir 1A,
2 r2 r2 r2 4
oV, \ 2 V. ov,  oV,\? Vi \ 2 109 20\% 2 /002
2 _ oVr z oV Ir el el
‘Al‘ o 4<8r> +4(8z> +2<8z+8>+4<r> +2<7“87“ 7“2) +r2<8z)’
2 10 2 0?2 10 0?2 aV, aV,
2 _ o 2_ 9o Lo o _OVe OV
Ve or2 r8r+82’ B Oor2 r8r+8z2’w or 0z (3.7)

Differentiating Eq. (3.4) with respect to z and Eq. (3.6) with respect to r and then subtracting

the resulting equations we obtain

Oow 0 0 o Qo0 o [ Qo0
[E*a—@"” 5z WV2) - a<_28_>+a_<_2a_>] (3.8)

- <u+a18><v2w_i>+a {%(V%:ﬁ)whg’z (V2w — ) V.)
ot r2 1

_0 (Qor0) | o (QoE0
or \r2 0z 0z \ 72" or

Introducing the Stokes’ stream function ¢ (r, z,t) through

_ 1% 10y
Vr= rdz’ VZ_T@T (3:9)

the continuity equation (1.9) is identically satisfied and Eq. (3.8) gives

18(¢,E2w) 209 . 2 022
a(r,z) +r28 82

- O\ u 2 OE*Q 10(QE%Q) 10 (4, E*) V-
B <M+a18t>Ew+ T‘Q 0z r 0(rz) +; d(r,2) r2 0z vl

p | B>, + B+ (3.10)

Assuming p # p(0) will reduce Eq. (3.5) in the following form

o 1 10y 02 10y 00 0\ 1
[ L{ 10000 1Y (0, 2) Ly

ot r Oz Or 1 Or 0z
* [_r&z@zEQ rarart
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or

o0 19,0 O\ . 10 (v, E%Q)
o5 250 (i) o S i

where
9.0 _ovon  owon
O(r,z)  Or 0z 0z Or’

(3.12)

It should be pointed out that the Egs. (3.10) and (3.11) are the compatibility equations
for the present axisymmetric swirling flows. These equations for a; = 0 reduces to the results
of Goldstein [51]. In the next section we will find the solutions of these equations for both

a1 =0 and a3 #0.

3.3 Analytic solutions

It is clear that the general solution of Egs. (3.10) and (3.11) is not possible because of the high
nonlinearity. Thus, we discuss the special cases of these highly nonlinear partial differential
equations by imposing specific conditions on the stream function ¢ and €. Let us first begin to
find the particular solutions of Newtonian fluid both for steady and non-steady cases. Then we
employ similar procedure in order to obtain the steady and unsteady solutions for the second

grade fluid.

3.4 Steady cases 0/0t(-) =0

3.4.1 For viscous case oy =0, ) =1(r,2) and Q = Q(r)

Here Egs. (3.10) and (3.11) reduce to

1o(y, B>p) | 2 0y
r A(r2) r2 9z

2
Lnd (4 1)

E*) = vE%, (3.13)

= . .14
r Oz dr dr? rdr 0 (3.14)

Differentiating Eq. (3.14) with respect to variable z we get

8%
92 0
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which upon integration gives

U(r,z) = f(r)z + g(r), (3.15)

where f(r) and g(r) are arbitrary functions to be determined. If we substitute Eq. (3.15) into
Eq. (3.13), we get two non linear differential equations for f(r) and g(r) which is not possible

to have the solutions. In order to get rid of this difficulty we let
E*U = ar?, (3.16)

which leaves Eq. (3.13) as an identity and Eq. (3.15) along with Eq. (3.16) gives

P10 o
or2  ror 022

B2 (1) + 9(r) = ( )z —ar?

or
(RF LAY (g 1de\
dr?  rdr dr2  rdr)

which finally helps in writing

f  1df
d’g 1dg
W — ;% = CL7"2. (318)
The solutions of above equations are
f(r) = Ar*+B, (3.19)
ar? 9
g(r) = 5 +Cr*+ D, (320)

in which A, B, C and D are constants of integration. On using the values of f(r) and g(r)
from Eqgs. (3.19) and (3.20) into Eq. (3.15) we obtain the following expression for the stream
function

U(r, 2) = (Ar® + B)z + <Cr2 + D + 62—1;4> : (3.21)
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Substituting Eq. (3.21) into Eq. (3.14) we obtain
s 2 1d
(Ar +B)— +v (dﬂ - dr) Q=0. (3.22)

Clearly V,. and V. can be obtained through Eq. (3.21). For the determination of Vp = Q/r
we have to solve Eq. (3.22) for Q. In order to find Q we substitute n = d€2/dr to get

a_ (1 _A_B
dr_n r2 v rv)’

which gives

From d€)/dr = n we now write
T2
Q(r) =© / r1=De= % dr + 41, (323)

in which ¢ and 1 are constants.

On setting B = 0 and ¢ = Ad; /v, Eq. (3.23) gives the solution of Lakshmana [43] i.e.

r2
Q(T) =0 <1 — e_AZV ) . (3.24)
From Eq. (3.18) the velocity components are
10¥ 1
‘/;,. = —;E = —;AT2 = —A?’, (325)
100 1 1 1
= o= ;(2147‘2 +2Cr + 5(17’3) =2(Az+c)+ §ar2, (3.26)

whereas the velocity component Vy = Q(r)/r can be obtained through Eq. (3.24) as

T T

Q 2
L} <1—e Az—> (3.27)

The vorticity components are defined through

100 _ oV, OV, 1090

) 59 82’ 8T ) 57; = ;Ea

& = (3.28)

Cr oz
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which in the present case take the following form
Ad r2
G =0, Cp=w=—ar, ¢, = —re . (3.29)
When B # 0, then solution of Eq. (3.23) by using Mathematica is given by

st (27 (-2) )

where T'(a, x) is the incomplete gamma function which is the generalization of the gamma

(3.30)

function T'(«) (see Appendix 1). The velocity components and the vorticity components for

B #0 are

B
V., = —(Ar+?), =2(Az+C) + ar (3.31)
B
_ L 2
e (4]
roor v 2v
Ad .2
¢, =0, p=w=—ar, (,= 7167142_1/. (3.32)

Here we remark that on setting B = 0 in Egs. (3.30) to (3.32) we readily recover the solution
given by Lakshmana [43]. Moreover, by letting a = 0 in equations (3.31) and (3.32) we recover
the result of Roy [44].

On setting A =0 in Eq. (3.22), we obtain the following solution for Q(r)

() =+ (5,7 ) (3.3

and the corresponding velocity and vorticity components are respectively given by

B 1 EQ 14 2v—B
’f‘:__7 2 = _ v 5 . 4
V, " V,=2C+ = ar , Vo= 7’+r(21/—B>r (3.34)
_ _B
¢ =0, (g =—ar, (, =701 v, (3.35)

where ¢; and ¢y are constants.
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3.4.2 For ay #0, Q=Q(r), v =1(r, z)

For this case Eq. (3.11) is

dr2  rdr

B[&pd(dm 1@)} oy d <d2Q 1@)

dr2  rdr
where 5 = a3 /p is the second grade parameter. Differentiating Eq. (3.36) with respect to z

and then integrating twice we get

P(r,z) = f(r)z+g(r). (3.37)
Again assuming E%¢ = ar? leaves Eq. (3.19) as an identity and Eq. (3.37) becomes

U(r, z) = (Ar* + B)z + (C’r2 +D + (%7"4> . (3.38)

On differentiating Eq. (3.38) with respect to z and substituting in Eq. (3.36) we have

d3Q

B(Ar? + B)— — (5

r

(3.39)

dr? dr’

a3 (Ar® + B) +W> e _ <(1 _ g)(Arz +B) - V> dQ

The general solution of Eq. (3.39) is not easy to obtain, therefore, we give some specific
cases:

Equation (3.39) for B = 0 can be written as

ﬂ[ d<d2Q 1dQ> dQ}_dZ_Q 1dQ

S (L L [P Ll 4
dr \ dr? rdr dr dr?2  rdr (3.40)

v

In order to find the solution of Eq. (3.40) we put dS2/dr = n, to have the following equation
d
——=+ )\17"% — (M +7%)my =0, (3.41)

where A\ = — (1+5LA).

The solution of Eq. (3.41) is given as

- 1+ A
7’22637‘TJ B =n |: + 1,—’L'T':|

, —ir} +ecrz Y 2
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and by putting n = dQ2/dr we have the following

o) = [ m.0)ar

(3.43)

where c3 and ¢4 are arbitrary constants, and J and Y are Bessel functions of first and second

kind, respectively.

The velocity and vorticity components are

1 Q 1
V, = —Ar, VZ:Q(Az—l—C’)—i-iarz, %—?—;/772<7’)d7”,

0
¢, =0, Cp=—ar, szl—/ng(r)dr.

Equation (3.39) for A = 0 can be written as

rv|Tdr \dr2  rdr) dr|  dr2  rdr

B[ d<d29 1dQ) dQ]_d?_Q 1dQ

The solution of Eq. (3.46) is obtained through Mathematica and is directly given as

r2 B r’v
Q = C Co— F - 2
(’I“) C5+C32 p q|:2y’ >2Bl3:|

wwellih G-EIHE

where T3, ¢4, and ¢5 are constants. The velocity and vorticity components are

1 B 2
v, = 0, vz=2c+§ar2,ve=65+eggqu[ T”}

Z 9 Y
20" 2Bf

aelf{3h- B L))
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(3.46)

(3.47)
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Cr = 07 C@Z—GT’, (349)

T°C3 B 2y _ B r2y
- S oFgl1+e =23~ FolZ2 9 7Y
Cx p q[ +2y’3’235}+c3p q[Q “oBg

Selfo -2} {3 3h0) 3
e ol{{ih - B8

where pFq (generalized hypergeometric function) and G (the Meijer function) are defined in

Appendix 2.

3.4.3 For a; #0,Q2=0, ¢ =1(r z)

Here Eq. (3.11) is automatically satisfied and Eq. (3.10) becomes

1O, E*p) 2 9% 4 4, 19(, EY) 2 9,y
P [r a(r, z) r2 0z 9. DY b Y = r O(r,z) r2 8zE vl (3.50)
The above equation can also be written as
1 8(¢’ E27/’/7“2) Hoq _ 8(1/), E47/’/7“2)
P [r (r, z) By =a (r, z) ' (3:51)
For solution of above equation let us take
E* = ¢(r) (3.52)
and obtain
% {rp (2@ — 7’4,0/) + o <r2<pm —3ry + 3(;3,)} — pr? (7'4,0” - <p,> =0 (3.53)
0z ’

where primes indicate differentiation with respect to r. Differentiating Eq. (3.53) with respect

to z and then solving the resulting equation we have

W(r, z) = Nr)z + a(r), (3.54)

where A\(r) and a(r) are functions of integration.
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Since E? = ¢(r), so Eq. (3.54) becomes

2 2
<% _ %% 4 %) (Ar)z 4+ a(r)) = o(r),

or
1" 1 !’ " 1 !
<)\ ——A>z+<& ——&)zgp(r)
T T
or
PN G i S s (3.55)
r ! r - . .

The solution of first equation is

A=ci— + Dy (3.56)

and so Eq. (3.54) becomes
¥(r,z) = (C1r® + D) z + a(r), (3.57)
in which C; = ¢1/2 and D; are arbitrary constants.

Using Eq. (3.57) into Eq. (3.53) one obtains

rp (Cir* + D) <2<,0 - r<p/> — pr? <r<,0” — gol) + o (C17% + Dy) (7“2@”, —3rp + 3<,0/> =0.
(3.58)

For viscous (Newtonian) case we get the following equation from Eq. (3.58)
vr?p’ + (Cir? + Dy — v)re —2(C1r% + D) = 0. (3.59)

The particular solutions of Eq. (3.59) are obtained by Berker [41]. However, we give the
general solution of Eq. (3.59) with the help of Mathematica as follows.

- 017"261 1 2 — D1 Dl 017"2

where T' is the gamma function and Cy, C are arbitrary constants.
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For a; # 0 and D; = 0 the solution of Eq. (3.58) is

2
_ 2 4—v/C1 B v _ v __v r
e (r) cor® +cir X pFq [{1 2015},{2 2015,3 2015}745] (3.61)

coclitn o fion f-sEa}) 2

Equation (3.61) can be written as

(1) = 91 + £190, (1) + €3009(7), (3.62)

where

% 14 14 14 7"2
@1(7’) = T 1ﬁqu|:{1_m}’{2_2016’3_2015}’E:|7

c[{oenone- 2o 5]

©

[\

—~
3

~—
I

In order to find « (r) we write

!

Yz 6% d 1~/
a — P 7“5(;04 ) =(r) = ear? + e101(7) + €3¢5(r),
and integration yields
~ ré 1 1 r2
a(r) = 52§ 4+e1 [ ;gpl(r)dr +eg |7 ;@2(7")(11" + 545 + 5. (3.63)

Using Eq. (3.63) in equation Eq. (3.57) we obtain

4 2
p(r, 2) :Ar22+52% —i—al/r/%(pl(r)dr—l—e;),/r/%(pg(r)dr—i-a;% + €5. (3.64)

Thus, the velocity and vorticity components in this case are

2 1 1
Vi=—-Ar, V=0, V, =24z + 62% +e4+ €1 / ;gpl(r)dr + &3 / ;@2(r)dr, (3.65)
1 1
57‘ = 07 50 = —&2T — 51;()01(71) - 83;()02(7“), fz =0. (366)
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The Eq. (3.58) for C1 = 0 can be written as
a1D1r2gom — r(ur? + 3y D1) + (ur? — r?pDy + 3a1D1)go/ +2rpD1p = 0. (3.67)

The solution of Eq. (3.67) is identical to that given by Siddiqui et al. [28]. The stream

functions is thus given

¥ = 2D +egritegri+eigtes / r ( / r ( / b3 (1) dr) dr) drer / r ( / r ( / b4 (1) dr) dr) dr.

(3.68)
In Eq. (3.68)

dp—pDy ,  pr® 201Dy pD1 pr?
=7 1F1 = 1F1 ~1
¢3 (T) r |: 2M ’ 37 2041D1 ) ¢4 (T) ur 2M ’ ) 2C¥1D1 ’

and g, €7, €8, €9 and e1¢ are constants and 1F1 is the confluent hypergeometric function of the
first kind and is the special case of pFq for p = 1 and ¢ = 1 (see Appendix 2). The confluent

hypergeometric function can be obtained from the series expansion

0z 0(0+1) 2, i 9) (3.69)

w|,ﬂr

k::O

Remark 2 Some special results are obtained when 6 and b are both integers.

1. If 0 < 0, and either b > 0 or b < 0, the series yields a polynomial with a finite number of

terms.

2. If b = 0 or negative integer, then 1F'1(60,b;z1) itself is infinite.

3.4.4 Q(r) = Q2+

We now specify our problem by considering the particular choice of Q(r),
Q(r) = Qor® + U, (3.70)

where Qg and €; are constants. Using Eq. (3.70) in Eq. (3.11) we get
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ov

As p #£ 0, Qo # 0 it implies that %—‘f =0 and thus ¥ = ¥(r).
With this Eq. (3.10) becomes

EY =0, (3.71)
which can also be written as
0 (10 0 (10
(== (2= U = 0. .72
rar (7’87“) <r87’ <T87’>> 0 (372)
Integrating four times we get
U(r)=A+Br’+Cr*+Dr’lnr, (3.73)

and the corresponding velocity and vorticity components are

0 — _ _
V, =0, 1/9:(207«+71, V,=2B+4Cr’+D(1+2Inr), (3.74)

— D
Cr = 07 CO = —8Cr — 2?7 Cz = 2907 (375)

where A, B, C, D, Qg and Q; are constants.

3.5 Unsteady cases

In this section our interest lies in obtaining the unsteady solutions for viscous and second grade

fluids.

3.5.1 When «o; =0, Q = Q(r,t) and ¢ = ¢(r, 2)
Eq. (3.11) become
oY 10y 00N 0 10

5‘?55‘”(@75)920 (3.76)

o7



which gives

w(ﬁ Z) = f(r)z + g(r), (3'77)

and on putting E%¢ = ar?, we get

b(r,2) = (Ar® + B)z + (Cr2 + D + gr4). (3.78)

As before, using Eq. (3.78) into Eq. (3.76) we obtain

2
0 Lo, p00 & 10

a7 o VgE )0 =0 (3:79)

In order to find the solution of Eq. (3.79) we use three different methods:

Method 1

On introducing

o1 =h(t)r, Q= Q(c1), (3.80)
into Eq. (3.79) we readily obtain
1 (dh Bl dQ d*Q 1 dQ2
— 18y S LI L L 81
71 [h3 {dt h(t)} a%] oy [da% o1 dal] 0 (3.81)
Choosing h(t) such that
% — Ah(t) = —AXR3(1), (3.82)

we get from Eq. (3.81) the following ordinary differential equation

d%Q - B—v ds?
VdT‘_% + <A)\O'1 -+ < o1 >> dT"l = O, (383)

where ) is a constant. The Eq. (3.83) is similar to that discussed in section 3.2. The solution

of Eq. (3.83) is found through Mathematica and is given as

™ N2
Q(o1) =cr — 062_% <Q> r [(1 - E) , AAUl] , (3.84)

v 2v 2v
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where cg and c7 are constants.

To obtain the solution of Eq. (3.82) we put h~2 = ® to have the following equation

dd -
— +2A® =24\ (3.85)
dt
The solution of Eq. (3.85) is
d = (N 4 cge 24, (3.86)
Since ® = h™2 so
h(t) = (N + cge 24173, (3.87)
Also o1 = h(t)r gives
o1 = (X + cge 2473, (3.88)

Using the value of 02 from Eq. (3.88) in Eq. (3.84) we get the unsteady solution of Eq.
(3.79) as

— —1+E —
_B [(AX 2 B AXr?
Q(r,t) =cg+ 102" 2 <7> r [(1 - 5) o 086_2At)] , (3.89)

where cg, cg and cjg are constants.

The velocity and vorticity components are respectively given by

1
V, = —Ar VZ:2(A2+C)+§CLT2, (3.90)
— ,1+£ —
co cio,_B [AX v ( B) ANr?
Vv, = =429 (22 ri(1-=),— ,

’ r r < v > [ 2v) " 2v (X + cge24t)

_ 1(B_q) —A2__ A
¢ =0, Co=—ar, C,=cror s (N+ese 2402007 ¢ T (3.91)

For B =0, Eq. (3.83) become

d?Q 1dQ AN dQ
Bt A .92
do?  o1doy y o1 doy 0, (3.92)
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which is exactly the same as discussed by Lakshmana [43]. The solution is given as

(—A—jafﬂ | (3.93)

Using Eq. (3.88) in Eq. (3.93) we have

)= 1o (B ] st

and the corresponding velocity and vorticity components are

V,=—Ar, V= - [1 — exp <_21/(1 n 0116_2At)>} , Vo=2(A24+0C) + 7077 (3.95)
¢, =0, Cp=—ar, (, = A% e_2v(1+:;i*2f“) (3.96)
T ) 0 ) z l/(l +011672At) ) .
where ¢7 is the constant of integration and c11 = cg /X.
When A = B =0, then Eq. (3.83) become
o 0?2 10
A (S P I o g .
o " (37“2 r 81") 0 (3:97)
which upon using the similarity transform
r
N = N (3.98)
reduces to
d’Q 1.,dQ2
— +(2n; — —)— =0. 3.99
g T (399)
The solution of Eq. (3.99) is
Q
Qm) = ——re "+, (3.100)

in which €25 and 23 are constants of integration and which on using 7, = ZL\/E gives

Qy .2
Qmy) = —726‘47 + Q. (3.101)
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Consequently, the velocity and vorticity components are

1 Q 2 1
V=0, Vo== Qs — =2e Bt |, V. =2C + =ar?, (3.102)
r 2 2
Vg Vp
=0 = — = — 4+ —. 3.103
Cr y CO ar, Cz 87“ + r ( )
Method 2

Here we apply separation of variable method to obtain the solution of Eq. (3.79). For that
let us assume

Q(r, 1) = &(rm(t), (3.104)
into Eq. (3.79) to have the following equation

~ 1, d¢ A€ 1de\
é.W_;(AT +B)$—I/<W—;$>—O7

(3.105)

where prime denotes the differentiation with respect to time. We now discuss two cases in order
to study Eq. (3.105).

Case 1 7 (t) = 0 implies that 7j(¢) =constant= 7o (say) and Eq. (3.105) becomes a steady
case which is already discussed in section 3.4.1.

Case 2 If 7] (t) # 0 then we choose 77 such that

—A1(constant),

which is solved to give the solution

ﬁ(t) = )\Oe_Alt,

(3.106)
where \g is an arbitrary integration constant and Eq. (3.105) become
261 dé -
2 4+ (A2 + B)—v) =+ \£=0.
Var? + r ((Ar®+B) —v) dr Al

(3.107)

When A\; = 0, we again have the steady case discussed in section 3.4.1. For A\ # 0 we
discuss few possible cases which are described as:
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Subcase 1 For A # 0, B # 0, we have the following solution

& (r) = 031F1 [;;1 f g—ﬂ (3.108)

Subcase 2 For A # 0, B =0, we have the following solution
& (r) = 1765 1F1 [1 4oL 2, A—TQ] (3.109)

2A° 2v
winc[ {0 - 2o on A2

Subcase 3 For A =0, B # 0, we have the following solution

G0 = ety (W) (3.110
X [(57 K B;yzy,rﬁ + 0gy/m2a BV T BQ_VQV,T _jl r <2—B;>

where d3, 04, 05, dg, 07, and dg are constants, K is the modified Bessel function of the second
kind, I is the modified Bessel function of the first kind, 1F'1 is the confluent hypergeometric of

first kind, and G is the Meijer function. The complete solution in all the subcases is given by

Qy (r,8) = & (1) hoe M, Qo (1,8) = & (1) Moe ME, Qs (r,8) = &5 (1) Age M (3.111)
and the velocity and vorticity components for subcases 1 and 2 are

1 1~
Vi =—Ar, V,=2(Az+4C) + =ar?, Vig = —51 (r) Moe ™M, Vag = ;52 (r) Aoe M, (3.112)

2
1 dE _ 1 d§ _
Cr = 07 CO = —ar, Clz - r dr 1>‘ Alta C2z - r dr 2 Alt‘ (3113)
The velocity and vorticity components for subcase 3 are
V,=0, V,=2C+ 2(1,7“ Vg = —53( ) doe ™M, (3.114)
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1d¢
ﬁAoe**lt. (3.115)

Cr:()a COZ_G’T7 C3z:;dr

3.5.2 For ay #0, Q= Q(r,t) and p = ¢(r, 2)

Eq. (3.11) become

o (9°Q 109 1oy (O30 162Q 199
B[a(a_ﬂ—;5>—;§<—8T3—;—8r2 ﬁﬁ)} (3.116)
_ (o2 _1ovon) (o0 100
o rezor] "\ar T ror

Differentiating Eq. (3.116) with respect to z and then integrating twice with respect to z

we obtain as before

V(r,z)=f(r)z+g(r) (3.117)

and E% = ar? gives

¥ (r,2) = (Ar® + B) z + (C’r2 + D+ %7’4> : (3.118)

Using the value of ¢ from Eq. (3.118) in Eq. (3.116) we have the linear differential equation

for determination of €2

2 3 2
5[8 (89_189)_%<Ar2+3)<@_189+ 189)}

ot \or2 ror o3 rorz ' r2or
_Jor 1, o0 9’Q 199

In order to get the solution of Eq. (3.119), we introduce product of two functions as in

viscous case

Qr,t) = E(ra(), (3.120)
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which on inserting in Eq. (3.119) gives

n(t) (d% 1dE\ 1, € 1d%  1dE
ﬁ[w (W‘F%)‘FW +5) (m#m*&%

(3.121)

For § = ﬂpl = 0, B = 0,we obtain the case already discussed in previous section. For 8 # 0,

B =0, we discuss two cases 7 (t) =0 and 7l (t) # 0.

Case 1 If 7 (t) = 0 then 7) (t) =constant= 7), and we obtain the case already discussed in

section previous section.

Case 2 If 7j (t) # 0 then we choose 7) such that

SN

= constant = — g (say)

which leaves Eq. (3.121) in the following form

3¢ 2¢ 3 -
BAr2d—€—[B(A2—A)—y]r%— [v—B (X — A) — Ar?] %—Ayf:().

The solution of Eq. (3.123) is given by
. {1 + Q—j} :

5(7”) = 0247”2 pFq

N {1+2%5}
FegsrCAB=BA) /A P

A A
1-%+25.2-%+2%) 5

|\

{1220} o0 {252 2

(3.122)

(3.123)

(3.124)

2

where ca4, co5 and cog are constants and the velocity and vorticity components are

V= —Ar, V,=2(4240C) + %Wz, Vo =Toe 18 (r),
.
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*Aﬁl%

Cr = 07 CB = —ar, Cz = )\06 r dT"

where \g is an arbitrary constant.

3.5.3 For V,=—-Ar, V.=2(Az+C)+1ar? a1 =0
we observe that Vy =V (r,t) is governed by (3.11) with © = V. Since

100 10Q
r oz ror|

¢ = (Cr»CGa Cz) = |~

Writing
10
C:= g (V) =¢

ror

we obtain from (3.11) the following equation

aC ¢ v [

(3.126)

(3.127)

(3.128)

(3.129)

In order to find a class of exact solutions of Eq. (3.129) we apply symmetry group methods

to find its symmetries and its reduction. The basis of our discussion is a theory conceived by

S. Lie. Lie developed a general theory dealing with symmetries and group properties of differ-

ential equations. The theory of Lie is a valuable tool for solving ordinary differential equations

and partial differential equations. The word symmetry is used in our everyday language in

different meanings. In the one sense symmetric means something like well proportioned and

well-balanced. The symmetry generators of (3.129) are

N- 2
Y = o

Xz = em% - Are”‘t% - #e%‘t(%?
Xy = €2At% - AreQAtg + QACGQAt(%7
Yo = altr) g
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as well as the infinite superposition symmetries X, = « (¢,7) 9/9¢, where « satisfies Eq. (3.129)
(see for e.g. [16] and refs. therein for symmetries of evolution equations). The linear parabolic
equation

9 ¢ 1

AT (8.131)

also admits a similar Lie algebra of symmetry operators given by

)
no= o (3.132)
_9
Y2 - C_—v
o¢
Y )
Ys = UmtTa
50 ) =0
Y, = 4= 4 47— — (P +20)—
f P+ 4T (T+t)<a¢’

Yo = a(f,?)%,

where « satisfies Eq. (3.131). The Lie algebra of symmetry operators can be represented by

the following table:

IEJ III'.'J 'Il!‘?l Ill‘l 1Il.“\ 11[4 11lrzr

Y, 0 0 2, 2X,-2X, | X

v, 0 0 () Y X

Y, 2.X, 0 0 v

X, 2X,—4x, |0 2x, | v,

I.A aF '1‘1 a3 '\;(.I' III' 7 '1Il 7 1-'
Table 3.1.
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Here

o = Tay+ 2oz, (3.132a)

where « satisfies Eq. (3.131) . Thus if we know a solution to Eq. (3.131), Egs. (3.132a, b) enables
us to generate new solutions. For example, if ¢ = 71/2 is a solution, then so is 4TF/2 + 7°/2
which is solution from Eq. (3.132b). This means that we can generate an infinite number of
polynomial solutions by repeatedly using Eqs. (3.132a,b).

As a consequence of the similarity of the Lie algebras of operators for both the parabolic
equations, one can transform Eq. (3.129) to the simpler form Eq. (3.131). The invertible point

transformation that reduces Egs. (3.129) to (3.131) is

- 1 -1
T = ﬂ(1—e2f"f) , (3.133)

eAt

= —1/4_—3 At 241\ 1/2 Ar? 2t
C = \/’l_“V /6 2 (1—6 ) Cexp[—§<m .

To obtain the solution of Eq. (3.131) we write

(=XMT (% (3.134)

and get
X+ G + W) X = 0, (3.135a)
%% = - (3.135h)

where A is the arbitrary separation constant and prime denotes the differentiation with respect
to r. The transformation X =7~ %/2X converts Eq. (3.135a) into Bessel function of order zero
ie.,

_2:// = ~—
X 47X +AX =0. (3.136)
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The solution of (3.136) is given by
?(F) = [5170 (\/§7> —i—SQ?o (\/§7>] , (3.137)
or
7(7) = \/% [3170 (\/§F> +$2?0 (ﬁ?)} ,
and finally, from Eqs. (3.134), (3.135b) and (3.137) we have

SR =T 570 (VAT) + 670 (Var) |, (3-138)

where Jj (\/i?) is the Bessel function of the first kind of order zero and Y (\/i?) is the
Bessel function of the second kind of order zero. The solution of Eq. (3.131) viz. Eq. (3.132) is
in the transformed coordinate system (f, T, Z) In the usual coordinate system (¢,7,() we have

the following form via Eq. (3.133)

24At— _>\92_At Ar2e24t
C <7’, t) = € 24(1-e24) exp [m (3139)
N At N At
X 010 \/;1—62Atr +02Yo \/;1—62Atr ’
where 01, do and X > 0 are constants and the velocity components are
Q 1 1,
V., =—Ar, Vy = P r¢dr, V, =2(Az+C) + For (3.140)

Remark 3 One can use Eq. (3.132b) together with (3.139) to generate infinitely many solutions
of (3.8.3).
3.6 Conclusions

We have developed the governing equations of motion for the axially symmetric swirling flow
of a second-grade fluid. Some exact, analytical, steady, and non-steady solutions for the non-

linear equations of Newtonian and second-grade fluids are obtained. Various methods are used
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for obtaining the solutions of non-linear equations. The model and the analytical methods
employed in this chapter have been shown to be useful for the theory analysis of viscoelastic
fluid. Our analysis shows that the results obtained here are more general and several results
obtained by different authors such Lakshmana [43], Roy [44], Berker [41], Siddiqui et al. [28],

and Goldstein [51] can be recovered as special cases.
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Chapter 4

Inverse solutions for unsteady flows

of a second grade fluid

This work contains two parts In first part we develop the equations of motion in unsteady
plane polar, axisymmetric cylindrical and axisymmetric spherical coordinates is given In the
second part we solve these equations by choosing specific forms of the stream function in these
coordinate system. The fluid equations and their solutions are important in the sense that
the entire geometry of the system changes as one moves Cartesian coordinate system to these
coordinate systems. For example, the flow in a pipe, flow around a cylinder, flow into a thin slit,
flow around a sphere and flow between coaxial cylinders and spheres, can not be demonstrated
in Cartesian coordinates.

This chapter is concerned with the modelling for the unsteady flow of a second grade fluid in
unsteady plane polar, axisymmetric cylindrical and axisymmetric spherical polar coordinates.
The analytical solution in each case are obtained by taking appropriate forms of the stream
functions. The governing non-linear equations are solved in order to obtain the velocity compo-
nents for flows in plane polar, axisymmetric cylindrical and spherical coordinates. The solutions

obtained by the present analysis are also compared with the existing results in the literature.
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4.1 Modelling for second-grade fluid in plane polar coordinates

The unsteady velocity field is defined by
V = [u(r,0,) v (r.0,1),0]. (4.1)

On substituting

o 19p b

VP o= T T o (42)
_ 1 1
Po= pt5p| VI —ar (VVV) - 1| AT, (43)
ov | (Vo L _ 20 2, U 20u
VV—|:<VU 2 7’289>’ <Vv 7’2+7’289 , 0], (4.4)
0 o | O 9 u 20v\ 0 9 v 2 0u
at[vv]_[at@“ = r280>’8t<vv r2+r280>’0}’ (4:3)
ov v 10u
V x (V x V) = [vw, —uw, 0], (4.7)
V2(V x V) x V = [0V, uV?w,0] (4.8)

into Egs. (1.4) and (1.9), we obtain the continuity equation and component form of momentum

equation, in the absence of body forces, as follows

ou u 10v
oty tros = 9
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op ou 0 9 u 2 0v 9 . .9
3 +p [E —vw] = (M+Q1E> <V U= 3 - ﬁ%) — 1vViw + (o + ag) [divAf]
(4.10)
10p ov B 0 9 v 2 0u 9 . 9
~59 TP [(% —i—uw] = <u+a16t> (V V-3 + = 69) + a1uVow + (a1 + asg) [leAl]e,
(4.11)
op
5 = 0. (4.12)
On using the following results
2, L 20v _ 10w op v 20u_ O
Vu-a T mes — voer VU@t Ees T o (4.13)
d

. o (| A |2 . 1 | A |2
[leA%]r = E( 21 ), [leA?]0:;%< 21

the Egs. (4.10) and (4.11) become

5, 10 T (@) (129) o o (A1)
ar—l-p[at—vw}—(u—i—alat) <—T86>—a1va+(oz1+a2)8r< 5 ,  (4.14)

10p v B J\ Ow 9 o (| A?]
Tae—l-p[at—i-uw}(u—i-alat) ar+0‘1“v“+(0‘1+“2)89< 5 . (4.15)
Equations (4.14) and (4.15) can also be written as
0 ou B 0 1 0w 9
55’1 +p [E — vw} = <u + al&) (—;%) — a1vV-aw, (4.16)
10 ov B 0 Ow 9
;%Slep [EjLuw} = </L—|—O&la> E—l—aluv w, (4.17)

where
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(4.18)

1 0 0
Sl = p+§p(u2+v)+a1<u v w)

20~ "or
o (B (53 (5 113)]
In order to obtain the compatibility equation we define the stream function ¢ = ¢ (r,0,t)
through
10y o

A (4.19)

we see that the continuity equation is satisfied identically and vorticity equation becomes

ov v 18u_ (62 10 1 92

i I e T — _\72
w= 8r2+7*87’+r2892>¢ V24, (4.20)

T
Using Egs. (4.19) and (4.20) into Egs. (4.16) and (4.17) we obtain

05 [1% _, ] 1 o\ 0 _, 8%,
Wﬂ{————ﬂﬂ <“+alat>%v¢‘ 15V, (4.21)

a8 9? o\ 0 0
8—91—/)[ Btg)@ ¢ w] <u+alat> —V%) -« 8‘gv4¢ (4.22)

To obtain the single equation in terms of stream function we use the integrability condition
S0 = Sigr to eliminate the pressure gradient. This can be obtained by differentiating Eq.
(4.21) with respect to 6 and Eq. (4.22) with respect to r and then subtracting the resulting

expressions i.e.

[r—v% {v, v%}} =r <u + ay a) Vi —on {9, Vi), (4.23)
where
2, 0? 10 1 0? 4, w2o2
VoY = (W—F;E—Fj@)w,vwvvw, (4.24)

9 (4, V2) ROV 0P OV
a(r,0) ~— or 80 00 or
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It is to be noted that the Eq. (4.23) for steady case reduces to the equation as discussed by
Siddiqui et al. [28].

4.2 Modelling of second grade fluid in axisymmetric cylindrical

coordinates

Here the velocity field is

V =u(rz1t),0,w(r, z1)]. (4.25)
Using above equation, we have
[0 195 0p
VP = {ar’ 00’ 8,2] ) (4.26)
U
V2V = [vzu - 5.0, v%} : (4.27)
9 oo v |9 (o2, U 9 o2
= [VPV] = vV, = [8t (Vu— )05 V20|, (4.28)
~ ow Ju
VXV‘[O’Q__<W_$>’O]’ (4.29)
2 2 %
\Y (VXV):[O,—(V Q——2>,0 , (4.30)
2 _ 20 O 20 O
VA(VXV)xV=|-w|V — 3 , 0, u |V =ik (4.31)
V x (Vx V) = (wﬁ, 0, — uﬁ) . (4.32)
From Egs. (1.4), (1.9) and (4.25) to (4.232) we get
ou u Ow
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p ou 0 u -~ Q .
ar +p [(% — wQ] (/L + ()11&) (V2u - —) — qw (VZQ — ﬁ) + (a1 + ag) div (A%)r,

2
(4.34)

1 Gp

~55 = 0. (4.35)

0 g [20 18] = (s o) e (- 2) i 41130

0z ot
where ) )
v2=%+%%+%, Q= Z—f—% (4.37)
Using the results
v%-% - —%—? V2w22—§+9, div (42), = ]AI] +2§ (uQ>+Q—2
div(A?), = 0, div(A}), = %% Ay? - %% (uﬁ) , (4.38)

2y _ T\ _ (a2l _ 4 [%% ’ ow ’ uy? Iu 8_“’
tr(Ar) = tr<A1A1)_‘A1}_4<ar> +4<8z> v (7) 2 mrar)

the Egs. (4.34) and (4.36) can be rewritten as

9  [ou B 9\ 90 b O
o +p [8t+wg] = <M+Oé18t)$—041w VQ—ﬁ) (4.39)
20 [ ~ 2
+ (1 + ) 55 } ‘ 8_<UQ>+_ )
op | [ow ] 2\ (0 O 2y Q
a—-i- [E—FUQ] = —<M+C¥16t> <8T+T> 041U<VQ Tg) (4.40)
20 ( ~
o) |57 |AT] - 20 ()
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Defining the generalized pressure

(3041 + 20&2)

ng%p(u2+w2)+p—a1 [u(V%—%)—i—wVQw}— "

|A7| (4.41)

where ) ) )
ou ow u\ 2 ou Ow
2 _ ou “ e et

}A1|_4<8r> +4<8z> +4(r> +2<82+ 81“) '

we rewrite Egs. (4.39) and (4.40) in the form

89S,  [ou =] 9\ 99 vx O
S [ () Boove (- ) oo

08y | [ow = S] o\ [0 @ o Q) 2(aita) d (o
0z +p[8t +uQ}_<M+a18t>(8r+r>+alu<vg_r2>_ r 8r<uQ)’

(4.43)
To find the compatibility equation we define
199 194
=_-27 R 4.44
YT Y r or (444)
and note that the continuity equation is satisfied identically and vorticity function is
~ Qw du 1 (% 180 % 1 o~
Q=—-—=—"|=—% -2+~ |=-=F? 4.45
or 0z r (87“2 r Or + 022 r ¥ (4.45)
where
2 10 0?
F?= — -~ 4+ —. 4.4
or?2  ror 022 (4.46)

Using Eqgs. (4.44) and (4.45) in Egs. (4.42) and (4.43) we obtain
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or " P\voato: T ar 2 (4.47)

1 2\ o 90 1 o (09 B 20\’
= <M+Oé1at> —E%)— 15, E4¢——(041+0é2) {2£<§ ) )_<r2 >

95, [1 0% 9 B

08 | % OEW| 1 O\ 0 o~ aq,z; o~ 0 (o) E*
3 [Tataﬁ& = S\ptag ) gy, Ew* (ta2) 5 { 5,7
(4.48)

Differentiating Eq. (4.47) with respect to z and Eq. (4.48) with respect to r and then
subtracting Eq. (4.47) from Eq. (4.48), we obtain

) ~ o A ~ 4
p [%a—EQ - {w,E%/rQ}] - %(umla) B — an {§, B4 /r?} (4.49)
2 E2\ 10 (E2 ?
(o tar) ‘E<a— ~ )7&( ; ) ’
where - ~ - ~
~ o~ o1 000 (B2 oY o (EX)
{¢7E ¢/T}E£< 2 >—§E< 2 > (4.50)

Equation (4.23) for steady case reduces to Siddiqui et al. [28].

4.3 Modelling of second-grade fluid in axisymmetric spherical

coordinates

The velocity field for this case is
V =[u(R,0,t), v(R,0,t), 0]. (4.51)

Using above we have
ou 2u 10v
V-V = 8R+E+E%+EC ot 0, (4.52)
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s_|9p 10p _1 0Op
~ |OR’ R08’ Rsinfo¢|’

2u 2w 2 OJv v 2 Ou
2y — 2, U 2ZU e ov 2, v 20U
v Viu-m et e ) \VU T e T ) 0

V2V, _ [(V%t—% 20, cot@—i%>, <V211t— w2 aule>’0}’

R R2 R2 96 R2sin?0  R2 00
— Ov v 1 Ou
V = Q- - 4+ - _-“
v {0’ 0R=3r 1R RB@} ’

Vx(V xV)=[vQ, —vQ,0],

_ Q
VI(VxV)=10,0 V- ——
(V>xV) {7 ’ R2sin20]’

_ Q — Q
VZ(VxV)xV=|-0(VO0-——ro ), u(VO-———,0].
(VX V) x [ v( R2sin29> u( R2sin20> }

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

On using the results (4.52) to (4.59) into Egs. (1.4) and (1.9) we obtain, in the absence of body

forces, the following equations

Qu  2u, 10v, v p=0
R "R " Rog "RV

op ou =] 0 2 2u 2w 2 Ov
8R+p[8t ”Q} - <“+0‘18t> <v“ m o R289>
— Q )
—Qqv (VQQ — m) + (a1 + ag) div [A%]R,
10p o  — 0 9 v 2 Ou
b 2l = g B e
Rae)”[aﬁ“ } <“+a18t> <V“ R2sin29+R280>
— Q )
+aqu <V2Q - m) + (a1 + ag) div [Aﬂa,
1 0p A2
Ronf0o (a1 + ag) div [A1]¢,
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where

1 1
P = praplVP-m (v'v2v+ZrA% r), (4.64)
ou u 10v u 2 v v 1ou\?
2 2 u 1lov ., v ov v  1lou
A2 = trA? _4<@R> +4<R+R80> +4(R+Rcot9> +2<8R R+R89> ,
0 0 1 0
2 2 _ in—
V' = @R (R 8R>+R23in980 (Smeae)’ (4.65)
and € is the vorticity function.
On using the following values
2u 2w 2 Ov 1 0
2 —_— — —_— =
Veu = R cotf — 2 50 R0 90 (Q2sind), (4.66)
VQU_L_F&@ = @+Q
R2sin’0  R200  OR R’
2 0 g/u Q
[divaT], = 28R|A| Rsind 90 [(R RCOW)QSIHH}+
=2
oAl _ L0 e 20 .
[divAi], = 28:9' | 7R (u+vcot9)Q+Rcot9 :
[divAZ] s = 0. trA; =V .V =0,
equations (4.61) to (4.63) are
op ou  — d 1 0 .
P {E —UQ] - <“+O‘18t> |:Rblnl989 (Qsm&)} (4.67)
— Q (a1+ag) 0
_ 2 _ —|A4?
e (v mare) T2 ar ™
=2
2 0 /u v ) Q
‘|‘(Oél+042) m%(R—FRCOte)QSIDG—FE
10p v =/ o Q 9= Q (a1 + o) 0 2
Rae”[aﬁug] - (aR R>+O‘1“<VQ R251n20>+ ST A
(a1+ag) 0
+ 7 28R (u+vcot6)Q+Q cot (4.68)
1 9p
Renf0o 0. (4.69)
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On defining ( |
3a1 + 20

1
Sy =p+5p VI —ar (V-V?V) - ——— A, (4.70)
the Egs. (4.67) and (4.68) can be rewritten as
053 ou B 1 g\ 0 9= Q
SR TP [81& —UQ] = ~Zund <u+a18t> 50 (Qsinf) — g (V Q RQSin29>
=2
2 0 [u . Q
+ (o + a2) Rsin0_0<§+}_{ 0t9>Q51n9+E (4.71)
1085 [ov o\ (00 T W 0
— 793 Q| = At el O —
Raoo " [aﬁ“ ] <“+O‘18t> (aR+R>+O‘1“ v R2sin29>
+M 2i(u+vcot0)ﬁ+§2cot9 (4.72)
R OR ' ’
Introducing the Stokes’ stream function
1 oy 1 onp
_ e S = S 4
200 " N o =cosf (4.73)
the continuity equation is identically satisfied and vorticity function become
= Ov v 10u 1 —
Q= ——D? 4.74
R TR TR0 RV o2 (4.74)
where
0? 1—o02 02
D* = : 4.
9RE " TRZ 902 (4.75)
Substituting Eqgs. (4.73) and (4.74) in Eqgs. (4.71) and (4.72) we obtain
0Ss 1 00y 1 o _o—
— = —=——0D 4.
8R+p[R28t80 Ba—o2)or’ Y (4.76)

1 o\ 0 o a1D*¥ oY
T R (’““%)t)@ DY =i oyon

20 ([ 109 o D (D%))?
Flanta) |\ mp5 {<ﬁ%+3( )aR>D2¢’} R3(1—02)]’
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083 o 1 9y 1 -
0o p[&1—a2%+R2(1_g2)a_gD 1/’] (4.77)
= 9 1 9 o OllDA% 8@
_M 2i L@ + o @ DQE . g (D2E)2
V1 —o2 OR\R300 R*(1-0%2)0R) \V1—02 R (1_02)% )

Differentiating Eq. (4.76) with respect to o and Eq. (4.77) with respect to R and then

adding the resulting equation we get

iz M eS| 6

A - o o Y -
_ <,u+0412> ﬂ—al {E D%y }i2(a1+a2) { D? (% R )+R3(17¢72)%D2¢
a ot 2 ’ = N

l-0o R?2(1—0?)

where
_ D%\ o[ DWW N\ o[ D%
{w’ (1 02)} = 9R 00 <R2 - 02)> T 90 0R <R2 - 02)> - )

Note that the Eq.(4.78) for steady case reduces to Siddiqui et al. [28].

4.4 Solutions

In this section we apply inverse method to obtain the solution of non-linear partial differential

equations in sections 4.1, 4.2, and 4.3, by considering the specific forms of the stream function.

4.4.1 Flow where ¢(r,0,t) = r"F(0,t)

We choose

P (r,0,t) =r"F(0,t) (4.80)

in which the arbitrary function F' depends upon 6 and ¢ and n is an integer. Using Eq. (4.80)
into Eq. (4.23) we obtain

oG 0G oF 0
OH oF 1 .,
- {nF—aH —(n—4) _89H r
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In above equation

G(0,t) = n?F(0,t)+ % = < + %) F(6,t), (4.82)
H(0,t) = ((n—2)2+ 8—2) G(0,1).
o0
Taking n =0, Egs. (4.81) and (4.82) yield
[aa—(t; - 22—?6’ ] = (u + o §t> Hr 2 — 4a1%—§HT , (4.83)
G6,t) = % =H(0,t) = <4+ 8802 > G(0,t)
and which gives the following equations
p%—f _— (4.83a)
92k ag G+ uH + 0418;; _— (4.83D)
4041H(Z—§ _— (4.83¢)
where
G = 8;0};, =4G + %2065 (4.84)

It is worth mentioning that for a; = 0 and 0; (-) = 0 we get Jeffery-Hamel flows [46] and
for 0 () = 0 we recover the analysis of reference [41] .

Equation (4.83a) implies that G # G (t) which shows that G is steady and hence from Eq.
(4.84) H is steady. From Eq. (4.83c¢) we assume %—Ig # 0 (since 2 9 =0= F # F(0) and
which contradicts the assumption (4.80)) which implies H = 0. Using these informations in

Eq. (4.83b) we get

OF 0°F
- _. 4.
a6 a7 " (4.85)
The solution of above equation is
F(0,t)=A7(t)0 + B7 (¢), (4.86)
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where A7 (t) and By (t) are arbitrary functions.

Now the expressions for stream function and velocity components are given through Egs.

(4.80) and (4.19) as

¥ (r,0,t) = A7 (t)0 + Br (t), (4.87)
u=r"1A47(t), (4.88)
v=0. (4.89)

For n=1 Eq. (4.81) becomes

oG 0G  OF 0 OH oOF
p [E — {F% + WG} 7“_1] = (M + 041@) Hr? —ay [FW + 3WH} rmt (4.90)

which give rise to the following equations

88_65 = 0, (4.90a)
% (FG) = 0, (4.90b)
(u + a1%> H = 0, (4.90¢)
FB@_];I + 3%—§H = 0, (4.90d)
where
G—F—i—a;TI;,H—G—i-?T(j. (4.91)

Now Eq. (4.90a) indicates that G is steady and hence through Eq. (4.91) H is steady and
from Eq.(4.90c) we get

0’°G
— +G=0 4.92
892 + ( )
whose general solution is
G (0,t) = Ag (t) cosf + Bg (t)sin#, (4.93)

where Ag (t) and Bg (t) are arbitrary functions of ¢. Substitution of Eq. (4.93) into Eq. (4.900)
yield
F (6,t) = C (t) [Ag (t) cos 8 + Bg (t)sin 6] ", (4.94)
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where C'(t) is function of integration. The stream function (4.80) and velocity components

(4.19) are respectively given by

¢ (r,0,t) = rC(t)[Ag(t)cosd+ Bg(t)sinf] ", (4.95)
u = C(t)[Ag(t)sin® — Bg (t) cos 0] [As (t) cos O + Bs (t)sin6] 2,  (4.96)
v = —C(t)[As(t)cosf+ Bg(t)sinf] . (4.97)

For n =2 we have following from Eq. (4.81)

oG oG 0 OH _OF
— —2F—| = — | Hr % — oy |2F— +2—H|r 2 4.
p[@t ae] (“*0‘1&5) r 0‘1[ 2 "~ a0 ]r : (4.98)
which yields
0G 0G
a2 Vw2 L (FH) = 0 (4.98D)
2 lat 180 - ) .
where
0’F 0’G
G=4F +~—— H=-"_—_. 4.99
TR 96° (4.99)
For the special case a; = 0 we get
0 0 0*F 0? 0’F
— —2F—= | |4F 4+ — | =0, —5 (4F + — ) =0. 4.1
<8t ae)( " 392> O ae2< " 092> 0 (4.100)
In order to solve Eq. (4.100) we let
F(H,t)z%—i—@(s), s =0+ agt (4.101)
to get (for @ # 0)
d°Q  dQ
e + 45 =0. (4.102)
Solving Eq. (4.102) and then inserting in Eq. (4.101) we obtain
F (0,t) = a4+ azcos2 (0 + at) + azsin2 (6 + at) , (4.103)
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where ag, as, as and a4 are the arbitrary constants. The stream function and velocity compo-

nents are

Y (r,0,t) = r?[ag+ agcos2 (0 + agt) + azsin2 (0 + apt)] (4.104)
u = 2r[—agsin2 (0 + apt) + azcos2 (6 + aot)], (4.105)
v = —2ras+ azcos2(0+ apt) + agsin2 (6 + apt)] . (4.106)

For a; # 0, Eq. (98a,b) gives

OF 0PF oOF OPF
Yor Yo %o e = 0 (4.107
0 OF O°F 0’F  O*'F
(“ * al&) (”W ’ W) 2o <4FW ¥ W) = o), (4108

where a5 (t) is arbitrary function. The possible solution of Eq. (4.108) for as (t) = 0 is given by

Y (r,0,t) = 12[0cos20 + 0y sin20] €', u = 2r [—Bg sin 20 + 67 cos 20] e,

v = —2r[fpcos20 + 6 sin 20] e, (4.109)

where A2, 6p and 61 are arbitrary constants.

For other value of n, Eq. (4.81) requires to satisfy

0G 0

E = O, <M + Olla) H= O, (4109&)
0G oF
OH oF

where G and H are described in Eq. (4.82).
from Eq. (4.82)2 H # H (t) and we get H = 0. Eq. (4.109c¢) is solved to get

n—2

G(0,t)=Cy(t) F*Z, n #£0.

in which C (t) is function of integration.
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Eq. (4.110) together with Eq. (4.82) forms a non-linear partial differential equation for the

determination of F' (except when n = 2), which is given as

2
ZTZ—FTL?F—C& (t) F"2". (4.111)

The solution (stream function and velocity components) of Eq. (4.111) for n = 1 and

Cy (t) =0 is given by

=1 (Ag (t)cosf + By (t)sinf), u= —Ag (t)sinb+By (t) cosf, v = — (Ag (t) cos@ + By (t)sin6) .
(4.112)
The solution (stream function and velocity components) of Eq. (4.111) for n =2 and C; (t) #0

is as follows

Y = r? [ClT(t) + Ajo (t) cos 20 + Byp (t) sin 29] , u=2r[—Aj (t)sin20 + Byg (t) cos 26] ,
v o= =2r [C]“T(t) + Ajo (t) cos 20 + By () sin 26} , (4.113)

in which A; (¢t) and B; (t) (i =9, 10) are arbitrary functions.
For ¢ = (r,t), Eq. (4.111) becomes

0
(u + a1§> Vi — pV2, = 0. (4.114)
On letting
Y (r,t) = @y (1) ! (4.115)

equation (4.114) becomes

19 0 (10 (0 ,10 [ 08\
r or [Tﬁr {r@r <T or )H —¢ ror (T or > =0 (4.116)

which on simplification gives

2P dd
2 1 1 262 2
2 'H"_dr — 7D = (Aglnr + By)re, (4.117)
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where
PAs

&G =—r
A+ a1 s

For steady case the solution of Eq. (4.114) is
Y (r) = Asr®Inr + Bsr? + CsInr, (4.118)
where A5, By and Cs are arbitrary constants and the velocity components are

u=0, v=— (C’gr_l + (A5 +2Bs) r + 2A57“lnr) . (4.119)

Here we remark that the solution given in Eq. (4.118) is in agreement to that given in Siddiqui
and Kaloni [28].
The solution of Eq. (4.117), after substituting in Eq. (4.115), for Ay = By = 0 is given as

¥ (r,t) = [Aalo (r€s) + BaKo (ré5)] e (4.120)

and the velocity components are
u=0, v=_E& [—Aui(rés) + BaKy (rés)] e, (4.121)
where I, (x) and K, (z) are the modified Bessel functions of first and second kind, respectively.

4.4.2 Flow where z/AJ(r, z,t) =1"F(z,t)

Inserting

~

U (r,z,t) =1"F (2,t) (4.122)
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into Eq. (4.49) we get

n(n—2)r"" 38F+ n- 18822};t—4n( 2)7"2”_5F%—}Z7

p (4.123)
~{nrgE - -2 R
o n(n— 2)2 (n—4)r"2F +2n(n — 2) r”_3%2§
- gt ot 104F ’
n—
+r Gr
6n (n—2)* (n —4)r?TFGE
—a1 | +2n(n—2) {nFEE — (n - 4) L ZE | 2
+ {nF%— —(n—2) %—5%175} r2n=3
3n(n—2)% (n—4)r>»"FIE 2 (n — 2) (3n — 2) 25
—2(a1+a2) OF 8F | (OF 0*F | 002F 0°F\ , 2n—3
Bz 022 + ((92’ 0z4 +20z2 dz3)r
For n =2, Eq. (4.123) reduces to
o\ O*F BF  0'F, OOF OF 0*F _0*F O3°F
2F =2 F 2 —_— 2 .
<“+alat>a4 ( a3+a4> 0‘1( a5>+< )<8z8z4+ 8z28z3>
(4.124)

The first integral of Eq. (4.5.3) is
PF O’F  (OF\® OF, O'F  (PF\® 18°F,

2F——|— ) ——/— | = 2 F—r- — | —-—=—= | (4.125

H53+P( 972 <8z) 0z o 8z4+(8z2> 295 | 412

OPF  (9°F\?
2F — —
o ( 92 " <8z2> ’
where we have taken the function of integration equal to zero. In order to solve Eq. (4.124) we

define
F(z,t)=N+Q(z+2Nt)=N+Q(s), s=z+2Nt (4.126)

to obtain the following equation

Q PQ  (dQ\*) d'Q | (d*Q\’ dQ &*Q Q\
“@“(2 W‘(E))‘QO“( d_+(d_> o 27@%@)

(4.127)
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Letting a1 = ag = 0 in Eq. (4.127) and assuming

Q = Apps™® (4.128)

we get the following relation
e (A — 1) (A — 2) $773 + Apaphs (2(Ng — 1) + 1) s2(Ps 1) = 0, (4.129)
On choosing A\¢ = —1 we readily obtain Ajp = 2v (v is the kinematic viscosity). The

expressions for stream function (4.122) and velocity components (4.44) are

O(rzt) = r? [N +2v(z+ 2Nt)_1} , (4.130)
u = —2ur(z+42Nt)"?, (4.131)
vo= -2 [N Yoz 2Nt)_1} . (4.132)

It is noted that the solutions (4.130) to (4.132) reduces to that of Berker solution [41] when
N =0.
For a; # 0, ag # 0 we assume [46, 47|

Q= Ay (14 Cpe™®), s =2+ 2Nt (4.133)
into Eq. (4.127) and get, after a straight forward calculations, the following solution

_ —pag ags
Qs) = 5Lt (14 Cue™), (4.134)

where

ag = \/p (4a;1 + 3az) 7!

and Cp is a constant. The stream function (4.122) and velocity components (4.44) in this case
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become

- _ pag ag(z+2Nt) 2
2, t) = |IN——2 (14 Cpe™ , 4.135
0 (r20) 3T ey (1 Che )] r (4.135)
_ Kr ag(z+2Nt)
Y L A—o WY : 4.136
S Y P (130)
_ Hag ag(z+2Nt)
= |-N+ ———— 1+ Cpe™ 2r. 4.137
el A v G >] ' 10

For n =0, Fq. (4.123) gives

p% = (u+a1%> 88471;, (4.138)

pg—};% _ alaa—ia;le + (an +a2) (g—fgj +2?;§ ?;;) L (4.139)

(5a1 + dag) Z—Z% = 0. (4.140)
Since 2L = 0 thus Eq. (4.140) implies that

F(z,t) = a1 (t) z + a2 (1), (4.141)

where a1 (t) and a2 (t) are arbitrary functions of time and above expression leads to the

following values of the stream function (4.122) and velocity components (4.44)

o~

Y=F, u=r"ta; (t), v=0. (4.142)

Writing
F(z,t) = Oy (2) M (4.143)

in Eq. (4.138) and then solving the resulting equation we obtain

F(z,t) = <a15e’7z +age” " — mlgz——;—au)> et (4.144)
M5
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in which a; (i = 13,14, 15, 16) are arbitrary integration constants and

2 _ pA7
M= —FV—~ -
W4 a1y

The corresponding stream function (4.122) and velocity components (4.44) are

@:F, u:r_lg—};, v =0. (4.145)
4.4.3 Flow where (R, 0,t) = R"F(0,t)
On specializing the solution of Eq. (4.78) of the form
(R, 0,t) = R"F(o,t) (4.146)
we obtain
oG oG oF
n—2Y1 vl Y 2n—>5
p [R T {nF 9 (n—4) 9 Gl}R ] (4.147)
_ 0 n—4 OH, oF 2n—7
= <,u+oqat> HiR ol [nF 5o + H; 5o (n 6)} R
2 (a1 + a2) [ {(1 - 02) % + (2n—5) (2n —6) (Gg—f + naFGl)} R
1—o02 o n—2)o !
7 - {GB_S + (170')2 G2}
where
G H
Gl = 1_—0_2, H1 = 1_—0_2, g = 0050, (4148)
0*F 0*q
_ 2 _
G(o,t) = n(n—-1)F+(1-0o )W’ H(o,t) = (n—2)(n—3)G+(1—02) 52

D¥p =

<82 1—a2a2>_u 1 oY 1 oY

o " TR 02) Y T Ra0 ' T RYI-20R
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For n =0, Egs. (4.147) and (4.148) become

oG OF 0 OF
—20U1 -5 —4 -7
— —4— = — |H — Hi— 4.14
p|R ot pp G1R ] <u + oy 8t> 1R aq <6 180) R ( 9)
+2 (1 +ag) | (1—0%) 8(?722 (GS5) +30G % R
1— o2 OF _ 2 ’
7 - (G% - mGQ)
0*F G 0%G H
G=(1-0%) 55 G =75 H=06G+(1-0") 55 Hi = 7—3 (4.150)
Equation (4.149) give rise to the following partial differential equations
0G1 oF 0
= — G = ~VH = 4.151
BT 0, aaGl 0, <M+Oélat> 1=0, (4.151)
2
oF (a1 + a2) (1-0%) 502 (G)
Sath 9c 1-o2 oF fole! 20 2
+30G5, — (G% 1z )

Equations (4.151); 3 and Eqs. (4.150),, imply that G and H are not functions of ¢ and
hence Eq. (4.151), with the help of Egs. (4.150), 5 become

OF G _OF(_G \_ 1 _OF o0 orgr
do ' e \1-02) 1-0200 do?  OJo Oo2
Since %—5 # 0, we get ‘?;TI; = 0 and whose general solution is
F(o,t)=Co(t)o+C1(t), (4.152)

where Cj (t) and C7 (t) are arbitrary constants and the stream function (4.146) and velocity

components (4.73) are found as

, v =0. (4.153)
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For n =1, Eqgs. (4.147) and (4.148) yield

oG oG oF
-1 1 1 -3
([0 (060 PG w159
= <M+a18t> HiR°+ap [F py +5H180]R
2 (a1 + ag) (1-0%) 68722 (G% +0FGy) -5
L= | 412 (G% +0FG) - (GEE - 2%G?) ’
0’F G %G H
2 2

Equation (4.156) gives the following partial differential equations

oG, 9G,  LOF |\ 0
o 0, —p <F pye +380_ G1> = (M—i— aq 8t> Hi, (4.156)
a (FaHl +5H aF) 2 (a1 + ) (1-0%) 35 (GF5 +0FGy)
1 a_ 15| = = =5
9o do L= | 412 (G4 +0FG) - (GBE - £2%6?)

Again Egs. (4.156), 5 give that G and hence H is steady, so that the Eq. (4.156), becomes

F
MH1+P<F%+38—G1> =0

Oo do
or
0’F 92 o OPF O3F  _OF 0*°F
“[QW+W{(1_”)WH*”[F%”%W} =0 (4.157)

In order to find the solution of Eq. (4.157), we write this, after some lengthy calculations,

the following expression

3 oF
—— 21 (1 — 0?) = +4douF + pF?| =0. 4.1
803[H( a)ao—i-au +p ] 0 (4.158)
Integrating Eq. (4.158) we obtain
oy OF 2 2
2u (1 — 0 ) % +douF + pF* = C11 (t) o°+ Cio (t) o+ Ci3 (t), (4.159)

where C1; (t), C12 (t) and Ci3 (t) are arbitrary functions of the variable ¢.
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Following Landau and Liftshitz [47] (by setting functions of integration equal to zero) we

assume the solution as

F(o,t)=—-Xs(1— 02) (0 —air)™ ", (4.160)

where Ag and a7 are arbitrary real constants. Inserting Eq. (4.160) into Eq. (4.159) it follows
Ag = —2u/p. (4.161)

Using the value of A\g in Eq. (4.160) one obtains

F(o,t) = % (4.162)

Substituting Eq. (4.162) into Eq. (4.156)5 we obtain the following

a1{11“21 210(1-0%) | 10(1-02)"

96 2 1 _ 20 . 1-— 0'2 o—air (0‘7(117)2 (a'fa17)3
v (0 —ar)? (0—air)® (0—ar)’ 1102 | To(1-02) | 40(1-02)
g = ar o= ar o= ar (a1 + ag) {20 + 2 3 3
g—a1r (0‘70,17) (ofa17)
(4.163)

It can be noted from Eq. (4.163) that solution cannot be obtained for all values of the
parameter aj7. Siddiqui et al. [28] found the solution of Eq. (4.163) for steady cases when
a17 = —1, 1, 0. We are recasting the solution for the completeness. On setting a17 = £1, Eq.

(4.163) is satisfied identically and Eq. (4.162) gives
Fio=7F2v(1+o0), for a;y = £1 (4.164)
and for a17 = 0 and 7a; + 2a9 = 0, Eq. (4.162) become
2v

Fy=—(1- o?). (4.165)

The stream function (4.146) and the velocity components (4.73) for Fy, F» and Fj are

respectively given as

Y =RF (0,t),u=——,v= (4.166)

=0.



2v 2v 1—o0

E’U:E\/l—az’

w1+ o2 201 — o2
- V== .
R o027 R o

Y =RF,(0,t), u=— (4.167)

¥ =RF3(0,t), u= (4.168)

For n =2, Egs. (4.147) and (4.148) reduce to

p [% — {QF% + 22—5@1} R‘l} (4.169)

= <M+a1 8t> H{R aq [QF 90 + 4H, ao_] R
2 (o + ) { (1-02) 2 (G +20FGy)

R—3
1-o? +2 (G4 +20FG,) — GZE
0o 1 0o

9%G 1

0*F 1
Y g o=
D02’ Tt T 1252

Gt

G:2F+(1_02)W’ :1_—0_2

G, H=(1-07% H. (4.170)

On comparing the coefficients of R, Eq. (4.169) gives the following equations

oG, 0 - AN
W = 0, 8_0' (GlF) =0, </J+Ot18t> H, =0, (4.171)

OH, 6F> 2 (an + an) [ (1-0%) 2 (GL +2FGy)

o (F— + 2H, —
9o do | +2(GYE +20FG) - GYK

1—0

Equations (4.171), 3 together with Eq. (4.170) imply that Gy and hence Hj is steady. From

Eq. (4.171), we get ,
(1-0>)"'F [QF +(1-07) ZTZ} =C(t). (4.172)

The solution of Eq. (4.172) is given as
~ 1~
F(o,t)= (0> —1)Cy (t) + ne ) [-20+(1—0*){ln(c —1) —In(c+1)}] (4.173)
and the stream function and velocity components respectively are

¥ = RF(o,t),v=2(1-02) " F(o,1),
u = %{45’1(t)+6~’2(t) {1n(a+1)—1n(o—1)—3H, (4.174)

g
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where C} (t)and Cy (t) are arbitrary functions.

For n =3, Eqgs. (4.147) and (4.148) lead to the following

0G4 0G4 OF
o 6 -1 8H1 8F -1
= <M+0418t> HlR — Q1 [3]‘7 90 +3H1 80’:| R
2 (a1 + az) gy 9 ([ OF ([ A0G o s 4
=7 [(1 o) 52 Gaa +30FGy Gag +1 —02G R,
O*F -1 0?°G -1
G:6F+(1—02)W, Gi=(1-0%)""G, H= (1_02)W’ Hi=(1-0¢%)"" H. (4.176)
Equation (4.175) gives rise to the following
0G1 0G1 oF\
0 O0H, OF
(H—i_alE) Hi — oy [SFE‘i‘?’Hl%] (4.178)
 2(oq +ag) o 02 OF 0G o 9
= T [(1 0)802 G80+30FG1 G80+1—02G .

For steady (% (-) = 0) and viscous case (a; = 0), Eq. (4.178) gives pH; = 0 which on using
Eq. (4.176) becomes

2 O’F
2 —
which on integration gives
o OPF
6F + (1 —0°%) 5= = k10 + ko, (4.179)

do?
where kjand ke are constants of integration. It is observed that the solution £’ obtained in Eq.
(4.179) is only satisfied through Eq. (4.177) when the constants kjand ko are fixed to zero. So
the solution of Eq. (4.177) is

F(o)=0(0c"—1)Cs— %54 [~4+60%+30 (0> —1) {1 —In(1+0)} +In(c —1)]. (4.180)
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The stream function and velocity components are

¥ = RF(o,t),v=3R(1-0%) " F(0),
v = R [(302 ~1)Cs - 2540 + % (302 —1) Ca{ln(1 +0)} —In(o — 1)] . (4.181)

When k1 # 0, k2 # 0, we have the following solution of Eq. (4.179)

2 3 2_1)C C — 30?
1 |:6k20 +4{k10 +60 (62 —1)C5+3C (2 — 30 )} ]’ (4.182)

S 35302 1) <k2 - 656> {In(o—1) —In(o+1)}

where C; (1 =3 —6) are constants. The stream function and the velocity components in this
case are

v =R3F(o,t),u= R%, v=3R (1 - 02)71/2F(0). (4.183)

For n =4, Eqs. (4.147) and (4.148) become

(1 -0 ) 357 (GaF +4JFG1)
2
(2ot oz) +6 (GEE + 40FGy) R,
1— o2

{G8G+2o( 02)_1G2}

0’F -1
G = 12F+(1_U2)W7G1:(1_02) G,
2
H = (1_a)gf+2G Hi=(1-0%)""H. (4.185)

Following equations are obtained from Eq. (4.184)

oGy oGy a9 B
_ 52 oF
o [apOHL o OF] 21+ a9) {(1-0%) & +6} (GE +10F )
0o 0o 1— 02 {G8G+20( 02)_1G2}
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The first and third equations in Eq. (4.186) imply that G and hence H; is steady (not a
function of t). Since F' # 0, Eq. (4.186), gives % = 0, which on using Eq. (4.185), gives the
following solution

G =45 (1-07). (4.187)
Using Eq. (4.185), in Eq. (4.187) we get
2

(1—-0%) ZTC; +2G = A (1 - 0?). (4.188)

The solution of Eq. (4.188) for steady case is given by Berker [41] and in order to avoid

repetition we directly give the solution with stream function and velocity components as

F = ko (1-07), (4.189)

Y = kso (1- 202) R? u=2kso (1- 202) R? v = 4kso®\/1 — 02R?,

where k3 is a constant.

4.5 Conclusions

In this chapter, the governing time dependent equations for plane polar, axisymmetric cylindri-
cal and spherical coordinates are derived. By assuming certain forms of the stream function in
different coordinate system, we obtained closed to eleven solutions of the resulting differential
equations. The solutions obtained are found to be in well agreement to that of the previous
solutions for viscous and second grade fluids. The modeled compatibility equations in all the
three coordinate systems for steady cases reduce to Siddiqui et al. [28], whereas the solutions
successfully verifies the results of Jaffery-Hamel [46], Berker [41], Squire [46] , and Landau and
Liftshitz [47] .
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Chapter 5

Flow of a third grade fluid induced

by a variable shear stress

5.1 Introduction

The solution of third grade fluid is far more complicated than the Navier-Stokes equations and
for the second grade fluids. The second grade fluids though complicated are sometimes amenable
to certain solution methods, whereas third grade fluids do not yield solutions for these problems.
Physically, if the second grade fluids are important by shear thickening properties, third grade
fluids have the significance because of the shear thinning properties. The nonlinearity enters
further through the boundary conditions as well.

This chapter comprises the flow of an incompressible third grade fluid over an infinite wall.
The flow is induced due to a variable shear stress. The variable shear stress of the third grade
fluid make the boundary condition non-linear. This chapter is arranged as follows:

In section 5.2, the modelling of the governing equation for flow of a third grade fluid is
given. Section 5.3 deals with the formulation of the problem. Section 5.4 is decomposed into
four subsections. In subsection 5.4.1, the solution is given when the shear stress is proportional
to e* () is real and positive constant). Subsection 5.4.3 gives the analytical solution of the
problem when shear stress is proportional to ¢! (w is imposed frequency). Both the series

and numerical solutions are given in subsection 5.4.1, whereas only series solution is obtained

in subsection 5.4.3. Moreover, the results and discussion are presented in subsections 5.4.2.
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and 5.4.4. Section 5.5 synthesis the concluding remarks. It is found that with an increase in

second-grade parameter and third-grade parameter, the velocity decreases and thus boundary

layer thickness increases.

5.2 Modeling for variable suction in third grade fluid

Consider the flow of a third grade fluid over a plate. The wall is infinite in extent and thus the

velocity field depends only y and ¢. i.e.

V:[u(yvt)7 0, 0]7

which satisfies the equation of continuity. Making use of Eq. (5.1), one can write

0 Qu
0
AIZ Y ’
g 0
dy

1= 0 (2_7;)2 )

92u
Ao — 0 Oyot
2 92u 9 du 2 ’
Oyot oy
3
0 o) u2
A3 — 6y8t

Pu_ gou (0%u ’
Oyot? Oy \ Oyot

and thus through Eqgs. (1.6) and (1.7) we can write

2 ) 3
—p+ as (%Z) Mg—z + a1 (gygtg + 205 g—;)

T = s
2 ) )
ug—;‘ + 061% + 205 (2—;) —p+ 20 (g-Z) + o (O_Z

From above equation

. ou\?| o
(leT)I = —p+(342 <a—y> ] + a—y

9
ox
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. op 9 (ou\?
(divT), = ~ay + (201 + a2) o <8_y) . (5.8)

In absence of body forces, the momentum equation satisfies the following equations

p[aa—YHV-V)V] = (divT),, (5.9)
p[%—YJr(V-V) V] = (divT),, (5.10)

Y

where subscripts indicates the x and y components of the momentum equation.

From Egs. (5.1) and Egs. (5.7) to (5.10) one can write

ou _ 9pp , u &*u ou\? 8%u
gu__ %2, U, 2L i 11
ot = or M T Mazar T \ay) a2 (5:11)
Ip2
= —— 12
where
Py —p— (201 +a2) (24 (5.13)
p2=p a1 + o oy . .
Eliminating the pressure gradient between Eqs. (5.11) and (5.12) finally yields
ou 0%u O3u ou\? 0%u
— = U= ——— +6 — | = 5.14
"ot = Mo T Mazar T ﬁ3<8y> 0 (5:14)

It should be pointed out Eq. (5.14) holds for second grade fluid when 3 = 0. The equation

which governs the viscous flow can be taken for ay = 0 and 83 = 0.

5.3 Problem formulation

Let us consider the flow of a thermodynamic third grade fluid over an infinite plate at y = 0.
Choose the y—axis perpendicular to the plate. The plate is assumed under a variable shear
stress with magnitude ¢17 () where ¢; is a constant having the dimension pUp (p is the density

and Uy is some reference velocity). The governing non-linear equation is taken from Eq. (5.14)

gi;; (2_2)2] . (5.15)

as
ou d%u Pu

"o Mo e T

101



The non-linear boundary conditions for the flow under consideration are

8 0%u ou
8 —&-011a 8t+ 53< y) ] =c7(t), t>0, (5.16)

y=0

u(y,t) — 0, as Yy — 00. (5.17)
We shall now write the field equation and the boundary conditions. For that we use

a U 63;U5
pv pv

2

u - Upt Uo
—  I= == 1
U’ L =Y (5.18)

in Eq. (5.15) and the boundary conditions (5.16) and (5.17), and then omitting the bars for

simplicity we get

Ou_Pu , Pu  |0ul0u): (5.19)
ot oz oot on \on) |’ ‘
ou Pu 1 [Ou\?®
8—n+a1m+§€ (8_77> ] 0—7’<t), t >0, (5.20)
’r]:
u(n,t) — 0 as n— oo. (5.21)

In this chapter we discuss two cases (i) 7(t) = e () is real and positive constant) and
(ii) 7(t) = ™! (w is imposed frequency). In the former case since \ is positive, it is prudent
to obtain a numerical solution besides an analytical solution in the form of perturbation series
in terms of €. In the latter case, on the other hand since the solution is essentially bounded

therefore, a perturbation solution should give acceptable results.

5.4 Solution of the problem

5.4.1 Solution for case 1: 7(t) = ¢ ) is purely real (acceleration)
Numerical solution

In problems of this type, usually no initial condition is given at ¢ = 0. For example, for a second

grade fluid (¢ = 0) Hayat et al. [21] and Rajagopal [19] derived the analytical solutions for

102



a number of unsteady unidirectional flow problems, without using any initial condition. The
initial condition, if derived, can be obtained from the solution.

Because of the nonlinearity introduced on account of the third grade fluid parameter, a
closed form analytical solution, in general, is not feasible to obtain, and a numerical solution
should be sought. For the latter, it appears that an initial condition must be prescribed at
t = 0. However, as Ariel [48] has recently demonstrated in an analogous situation, the initial
condition can be deduced if appropriate transformations are used.

We choose

U (na t) = eAtf (na t) ) (5'22)

so that the differential equation for f takes the form

of 9 Bf  f o (OF\ 0% f
Bt +Af = 2 + o <8t8772+)\8772 +ce (5.23)

and the boundary conditions become

0f (0,t) | 1_ox [0 (0,8)]° _ _
(14 1) n + 5¢¢ n =1, f(o0,t)=0. (5.24)
Next we introduce the transformation
£ =M (5.25)
which leads us the boundary value problem
of B o2 Bf Of\? 0%f
of (0,t) 1 _[af (0, )] _ _
(14 L0 o 2ee [ o =1 fee9 =0 (5.27)

Equation (5.26) has only the boundary conditions at 7 = 0 and 1 = oo, but not the initial
condition at & = 0. But if we make the reasonable assumption that f is regular at £ = 0, we
do not need the initial condition to get the integration started at £ = 0. Equation (5.26) can
thus be integrated in the entire domain 0 < & < 0o N0 <7 < 0co. When one reaches &€ = 1, the

initial condition is recovered for the problem. Now either the original equation (5.19) can be
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integrated in the usual manner, or the integration can be further carried out of equation (5.26)
beyond £ = 1. We have chosen the latter approach in the present work.

The details of the integration scheme have been furnished in Ariel [48] and are omitted here,
except that in the present work the situation is slightly complicated on account of the boundary

condition at n = 0. Now we have

3
(1o 208 1, [M} —1 (5.28)

on 3 on

which is a cubic in 9f (0,€) /On, that must be solved for each value of {. Also at £ = 0, the

solution for f is

1 [
)= ——ex — ) . 5.30
iy
A=05
= =1 =2 =3 =5
Patur- Pertur- Pertur- Pertur- Peur-
28 £ Exact Ixation Exact hatian Exact batian Exact hation Exact hatian

0.2) 0] -1.533976 1. 34250 -2.186549 | -2 197751 | -5.529002 | 3570751 | -5.055150) -5.050465 | -15.25440) 50142475
02 1.331435[ 1 .336777| 2150930 - 2170357 | 3445406 3557000 [ 5.554 342 5408501 | 12355352 | 13754357
03] 1311407 |1 .32 6] 20956/ |-2146119( -3.25287 | 3500865 | -5.053507 | A1 291653 1115478 | 15334 . 67421
1| -1 maeal | -1 3060 20T - 2 S500) 5.1 25085 | 5455058 | 4. VAT G54 -7 46T | 10 2400eE | 5400, 25451
03] 0] 1257507 [ 1. 25151 6] 20851 04 | -2 07073 | -5.3256042 | 53577002 | -0.20050] -5.4600500 | 1262028 25 16652
02 -1 250540( 1 255241 | 203059565 | - 2067429( -3.247601 | 33535001 | 5.097955) 54755 11854308  A5.955162
03] -1 25350912451 30| -1 9P 87 |- 206241 [ 310124 | 333055 | 4. 7307 | B.80E757 | 10076358 554240504
111211545 1. 235351 | -1 S5 94 - 200 -2 9P| 3529000 | 4 52300) 15,30 750 892507 | 1555196055
1] 0] 11458575 -1.1:551.37) -1 55515 | -1.596505) -5.006708 | 310600965 4635551 | 5,095 ) 11 788522 -14.513306
02 1.143325]1.151:355] 15685411 |-1.590231 [ -2.9597454 | 3052031 | 4. 727Te6] 4.550096 | 11147857 -1 551751
03] 11330851 45 | 1 8231582167206 2550554 | 505095 | 4 465165) -5 0057 | 1024618 5221500
1| 160 | 1140 B5) 1.7 0 -1.545109) -2 752459 | 3004555 | 4. 255154) 590062 943550 319165407
2|0 | 09a7EES | 0.995a06) -1 AaREsE | -1 54657 | -2 675170 -2 00565 | 4. 524706) 4. 438995 ) 106351 7) 11 G505
02 0335725] 0,999 9| -1 5303 | -1 6443635 -2 644359 | 2990 | 4 6357 44004 010704 ] 11763905
03] 053972 | 0.9975EE] -1 B0EEE2 | -1 633055 -2.960951 | 267375 [ 45481 45317206 9395550 -16.255250
1 | 0530 | -0.935156] -1.575004 [ -1.625170) -2 450405 | 2555105 -3.850012) 4.267655] 577 00n] 37551574

Table 5.1 Illustrating the variation of u (0), the velocity at the plate with oy, the vis-
coelastic fluid parameter and e, the second-grade fluid parameter for A = 0.5 using (7) exact

numerical solution and (77) perturbation solution

From Table 5.1, we observe that there is a very good agreement between the numerical

104



solution and the perturbation solution for ¢ = 0 and small values of ¢ (¢ < 1). For the values
of ¢ greater than 3, there is sufficient discrepancy in the results that the perturbation solution

can no longer be accepted and the results from the numerical solution only should be used.

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Fig. 5.1. Variation of velocity profile u with n for ¢t = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 5.2. Variation of velocity profile v with n for ¢ = 2.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 5.3. Variation of velocity profile v with n for ¢ = 5.

Perturbation solution

We perturb the velocity field u in third grade parameter ¢ as follows [49] .

u (77, t; 6) = Ug (777 t) + euy (777 t) + 62“2 (777 t) +eee (530)

For ¢ = 0, Eq. (5.32) gives an exact solution for the reduced problem corresponding to a
second-grade fluid. Using Eq. (5.30) into Egs. (5.19) and the boundary conditions (5.20) and
(5.21) and then comparing the coefficients of like powers of € one obtains the following systems
up to O (62) as:

Zeroth order system

8UO 82UO 63u0
- _ = _ 5.31
ot o “ortor (5:31)
8u0 82’&0 A
- - = .32
o +O¢18nat o e”, t>0, (5.32)
uo (n,t) =0 as n— oo. (5.33)

First order system
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8U1 0 Ui 83u1 82UQ 82UQ
— .34
at o Yoot "o \ o ) (5:34)
8U1 82u1 1 8UO 3 .
8’17 alm + g <a—77 = 0, (5.35)
n=0
up (n,t) =0 as n— 0. (5.36)
Second order system
Ouz 9%us Bus ?uy [ O%up 2 Aug Oug Oy

ot~ o Mapor T o < o > 20 o o (5:37)
uy o Pa | (Ow\ D (5.38)

on " tonot T \an ) om| ‘

7’]:
uz (n,t) -0 as n— oo. (5.39)
The above systems after using the transformations
uo (n,t) = fo () e, i (n,t) = fi(n) e, wua (n,t) = fa(n) ™. (5.40)
reduce to the following:

(14 Aa1) fo' (n) — Afo =0, (5.41)
(1+ Aa) fo () =1, (5.42)
fo(n) =0 as n— oo, (5.43)
(1+3Xar) f{ () =301 = = (f0)" & (5.44)
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(14 3Xaq) f1 (0) + % (fo (0))3 =0, (5.45)

Ji(n) =0 as n— oo, (5.46)

(1+5xaa) f3 () = 5Af1 = — (f0)” F{ = 2£3 11 ¢ (5.47)
(1+52a1) f3(0) + (£ (0))" £ (0) = 0, (5.48)
fa(n) =0 as n— oo, (5.49)

where prime denotes the differentiation with respect to 7.

After lengthy but straightforward calculations, the solutions of the above systems are

fo(n) = —Aocoe™ ", (5.50)
fi(n) = Ay (cre™ " = 3ege™ M) (5.51)
fa(n) = A (c2e™®" — 5ege™ ") + By [626_02" — (2¢0 + 1) e_(200+01)n} , (5.52)

where

1 A A3ct
Ay = = — Ay = —— 00
0 N YT VT e YT T8I+ P VI3 1+3)\a1

A - —9A2A;c} B, — A2A100c1 \/7
’ 20 (1+6Xa1)” "~ (20 +1)> (1+ 5Aay) — 65X 1+ 5 a1

The expression for skin friction is given as

=T/ pUZ = [ (0) + e £ (0) + 2 A (0) 4 -] (5.53)
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From Egs. (5.50) to (5.52) we can obtain

fo(n) = Agcge™", (5.54)
! = Ay (—cBe " 4 9cte3c0n 5.55
fi(n) 1 0 )
£5(n) = As (—c3e™ 2" + 25c5e 7" + By [—036_02’7 + (2¢0 + ¢1)? e~ Geoten)n| (5.56)

5.4.2 Results and discussion

Fig. 5.1 is plotted for the velocity field uw against n for (g = 0,1,2;¢ = 1;A = 0.5 and
e = 0.1;0.5). It is observed that with an increase in the viscoelastic parameter «; the velocity
increases near the boundary but then decreases away from the boundary thus causing the
boundary layer thickness to increase. Also it is found that when oy is fixed i.e. (a3 = 0) and
the third-grade parameter is increased from € = 0.1 to € = 0.5 the velocity is again increased
near the plate and then decreased away from the boundary, though the effect of third-grade
fluid parameter is not as pronounced as that of the viscoelastic fluid parameter. Same behavior
is observed when a7 = 1 and a; = 2. In Figs. 5.2 and 5.3 the velocity field u is plotted
against n for (a3 = 0,1,2;t = 2;A = 0.5 and ¢ = 0.1;0.5) and (a7 = 0,1,2;¢t = 5; A = 0.5
and € = 0.1;0.5), respectively. The similar observations for the velocity field and the boundary
layer thickness are seen in these figures as in Fig. 5.1 except that the difference between the

velocity profiles for € = 0.1 and € = 0.5 become prominent as we increase t from 2 to 5.
5.4.3 Solution for case 2: 7(t) = ¢, ) is purely imaginary (oscillations)

Perturbation solution

We now discuss the case when the shear stress at the plate has an oscillating nature. For that

we put A =iw in 7 (t) and employing the same procedure as in section 5.3.1 one obtains

u(n.t;e) = [for (n)coswt — for (n) sinwt] (5.57)
+e [f1r (n) cos 3wt — fi1 (n) sin 3wi]

+¢? [for (n) cosbwt — for () sinbwt] + -+,
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where the expressions for the functions for, for, fir, fir, for, for are straightforward to obtain,
which can be easily obtained from Egs. (5.50) to (5.52) by letting A = iw. Separating the real

and imaginary parts we obtain

_€*R177 . e—Rln .
for = R2+ 12 (Rycos v — Ipsin i), for = R I2 (Rgsin I1n + Iz cos I1n)
6_3R177
fir = PN [R4 (Rycos3I1n+ I sin311n) — I (I3 cos 311 — Ry sin3111n))
4T 1
€7R37] . .
_m [R4 (R3 cos Isn + I3 sin313n) — I (I3 cos Isn — Rssin I3n)],
g T4y
6—3R1n
hi = g [Ra(Ticos3lm — Rysin3Li) + Iy (Ry cos 311 + Iy sin311n)]
g T4y
efRBn

_m [R4 (I3 cos Isn — Rgsin Isn) + I (Rs cos Isn + I3 sin 313n)] ,

Jarn = Ro+ Rz + Rua, for = I9+ I3 + L4,

1
R = —\/\/ (w2a1)2 + w? + w?ay,
2

2(1+wad)

1
L = —\/ (W20)? + w? — wlay,
2 (1 +wad)

1 1
Ry = —\/ w2a1)® +w? +w?, I —:t—\/ w2a1)® +w? — w2,

Ry = ! \/\/(9w2a1)2 + 9w? + 9w2ay,
2 (14 9w20?)

Is = ! \/\/(9w2a1)2 + 9w? — Jw?ay,
2 (1 + 9w2a?)

Ry = 2w2a1 (2w2a% — 3) , Iy =w (1 — 9w2a%) ,
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Ry = (67 cos Isn — by sin I577) e fsn I, = (57 cos Isn + ar sin I577) e fsn

Riz = Rig— (@1sRiz2 — bigha), T3 = Iio — (bisRi2 + @1sh2) ,

Ri2 = Riyicoslsn+ Iiisinlsn, Iz = Iy cos Isn — Ry sin Isn,
e~ Bsn

Rii = ——[(R3+2Ry)Rs + I (I3 + 2I1)],

11 R§+I§[(3+ 1) Rs + I (I3 + 214)]

I ¢ L £ 91) Re — Is (Ry + 2R

11 = M[(:ﬁ- 1) Rs — Is (R3 + 2Ry)] ,

Ry = 67(2R1+R3)n [618 cos (2[1 + Ig) n+ 518 sin (2[1 + Ig) 77] ,

Ly = e GRrRan [fgcos (21 + I3) ) — @issin (211 + I3) 7] ,

aisa17 +bisbir - bisbir —aisary
) y V18 — )
—2 —2
aty + byy aty + by

_ 2
ai = (2R1+R3)* — (2L +13)° — (RE+12),

ajlg = , @17 = 3 (@16 — bwarbig)

bie = (2R1+ Rg) (25 + I3) — 2Rs15, bir = 3 (b1 + bwondss)
a5 = (2R1+ Rs) (G13@14 — bizbia) — (211 + I3) (b13@14 + G13a14) ,
bis = (2L + I3) (@13G14 — bisbia) + (2R + R3) (b13G14 + T13a14)

au = (R§—13) (R} - I{) — 4R 11 ReIe,
biu = 2RI (RE —I§) + 2Rels (R — I7) ,

ais = a2 (R% — Ig) — 252R3[3, 513 = 52 (R% — Ig) + 2asR3l3,
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Ry = R7— (RgcoslIszn+ Igsinlsn), Ig = I7 — (Igcos Isn — Rgsin Isn) ,

R B¢ R Re - LI)@s — Fua (I Rs — Rl
8 = w[( 1Rs + II5) @1z — bia (11 R5 — Ril5)]
5e—fisn _
Iy = 2 2 [(IIRS — Ril5) @12 + bi2 (R1Rs + [1I5)] ,
Rz + I3
- 15 (@g@11 + bob
Ry = e SR (612 cos 5I1m + b1z sin 5[177) , 12 = ( _9;11 — 9 11) 7
aiy + b1y
7 - 15 (boa11 — Tob
I; = e 5fm (biz cos 511 — @2 sin5I1m) , biz = ( igll _20,9 1) ,
aiy + b
@11 = a1 — Swaibig, b1 = bio + Swaido,

aw = 25(R}—17) — (R2 - I2), bio = 50R1 11 — 2Rs 15,
ag = (R% — Ig) (5268 — 521_78) — 2Rgl1g (5258 + agl_)g) R

by = 2Rgls (agag — 5258) + (R% - Ig) (5258 + 6258) ,

ag = Rl{(R%—I%)2—4R%I%} — 4 (R} = I2) RuI2, d = + iby,
by = 11{(R%—J%)2—4R%112}+4(R%—112) R2Iy, ¢ = R +il,
a3 = (R3—13) —9(RY—1I}), b3 = 2Rsl3 + 2R\ 11, VO = Rs +ils,
@ = (R:E—13) (R} —1I}) — AR\ Rels, b= Rs+ils,

by = 2RI (R§—I§) +2Rsls (RT —I7), a= Ry +ily,

Gsag + bsbg —  asbg — agbs

= R5— bwayls, 55 =I5 + bwa Ry, a7 = N 0=
3 (ag + b5>

—30w3a

3 (a2+%)

Y

= a4 (G2a@3 — babs) — by (b3az + asbs) , Gz =

- 24w3a? — 6w

(30w2a1)? + (6w — 24w3a?)?’

= b4 (6263 - bzb?,) +a4 (6362 + 63b2) ’ b2 N (30(,020(]_)2 + (6&) - 240)30(%)
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1 -2 1 —9
R¢ = —\/\a@2+0b,+ai, Is = —\/\/@>+b] — a1,
6 \/§ 1 1 1, 16 \/5 1 1 1

1
Ry = \/\/(25w2a1)2 + 25w? + 25w?ay,
2 (1 + 25w2a})

1
I, = \/\/(25w2a1)2 + 25w? — 25w2ay,

2 (1 + 25w2a%)

in which for, for, fir, fir, and fag, for indicate the real and imaginary parts of fo, fi and fa,

respectively.

0.25

-0.25 ¢ a1=2
-0.5 |

-0.75 |

A1 =0

Fig. 5.4. Variation of velocity profile u with 7 for t = 7/2, e = 0, w = 0.1 and ag = 0; 1; 2.
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0.5 —
"
0.3
0.2 t=2r, w=0.5,e=0

0.1

0.1 |

02

Fig. 5.5. Variation of velocity profile v with n for t =27, ¢ =0, w = 0.5 and a3 = 0;1;2.

1
0.8 ¢t Al...o=0
/\2... 0(1:1
0.6 A3...0y=2
0.4t
=]
0.2 ¢ t=2n, w=0.5,e=.1
0
-0.2
0 1 2 3 4 5 6 7
n

Fig. 5.6. Variation of velocity profile v with n for t = 27, ¢ = 0.1, w = 0.5 and a7 = 0; 1; 2.
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1 ‘
Al...w=0.1
A2...w=0.3
0.5+ A A3...w=0.7
0
=]
-0.5
-1+t 2 Al t=2r, €=0.5,01=0.5
0 2.5 5 7.5 10 12.5 15

n

Fig. 5.7. Variation of velocity profile u with n for ¢t = 27, € = 0.5, a; = 0.5 and
w =0.1;0.3;0.7.

0 2 4 6 8
n

Fig. 5.8. Variation of shear stress 74, with  for t = 2m, ¢ = 0.1, w = 0.5 and a; = 0; 1; 2.
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5.4.4 Results and discussion

In Fig. 5.4 u the velocity is plotted against 7 for a second-grade fluid (a7 = 0,1,2;t = 7/2;w =
0.5;¢ = 0). It is observed that with an increase in the viscoelastic fluid parameter ag the
velocity decreases and thus boundary layer thickness increases. Similar effects are seen in Fig.
5.5 in which ¢ = 27 and w = 0.5 are taken instead of ¢ = 7/2 and w = 0.1. In Fig. 5.6 the
velocity u is plotted against 7 for a third-grade fluid (aq = 0,1,2;¢ = 2m;w = 0.5;¢ = 0.1).
Figure 6 shows that with the increase in third-grade parameter the velocity decreases and the
boundary layer thickness further increases. In Fig. 5.7 the velocity w is plotted against 7 for
ap = 0.5, t = 2w, e = 0.5, and for various values of oscillating frequency (w = 0.1,0.3,0.7).
It is clear from Fig. 5.7 that the amplitude of the velocity decreases with an increase of the
oscillating frequency. Fig. 5.8 is plotted for the stress 7., at any point in the fluid against 7

for various values of aj.

The skin friction at the plate n = 0 can be obtained by finding the real part in the following

equation

st | RO TR O} e @ a0 |

+ee® { fim (0) +if5; (0)} + -

where fir (0), fiz(0), f55(0), f;(0), f1;(0), f5; (0) are given as:

RiRy + 1111 1Ry — R11s
! 0 — e T 1 ! 0 e
fOR() R%—i—[g ) fO[() R%—i—[g )
1 1 2
'2(0) = ———— |6R 114+ 3Ry (I? — R?) + =Ry (R%2 — I?) — ZRsL41
fir (0) R§+I42[ 11114+ 3Ry (I3 1)+3 4 (R3 - I3) slshil
1 1 2
fir(0) = ——= |-6RiL1Iy+ 31y (I — RY) + 14 (B3 — I3) + = R3l3R4|
R2 + 17 3 3

for(0) = Rg(0)+ Ri3(0) + Ry, (0), far (0) = I3 (0) + I35 (0) + 114 (0) .

5.5 Concluding remarks

Here we have constructed the results for the flow of a third-grade fluid on a plate. The flow

is generated due to a variable shear stress of the plate and the solution of non-linear partial

116



differential equation is presented. The problem considered is more general and several limiting
cases are obtained as the particular problem of the presented analysis. Specifically, the results
for viscous and second-grade fluid flows due to a variable shear stress (which are not yet in the
literature to the best of our knowledge) can be recovered by taking a; = ¢ = 0 and ¢ = 0,
respectively. Our investigation shows that the perturbation technique is adequate for the case
when the variable shear stress has as oscillatory character, however, if the shear stress grows
exponentially with time then the perturbation solution can be accepted only for small values

of time. For moderate to large values of time, the numerical solution must be used.
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Chapter 6

Time dependent flow of a third

grade fluid in the case of suction

6.1 Introduction

We emphasize that the process of suction/blowing has its importance in many engineering
applications such as in the design of thrust bearing and radial diffusers and thermal oil recovery.
Suction is applied to chemical processes to remove reactants. Blowing is used to add reactants,
cool the surfaces, prevent corrosion or scaling and reduce the drag. Hopefully, the subsequent
analysis will help understand the phenomena in some more details.

This chapter examines the flow of an incompressible third grade fluid over an infinite porous
plate. The flow analysis has been carried out for sudden motion of a plate. The governing non-
linear partial differential equation resulting from the momentum equation is solved analytically.
For the analytic solution, the perturbation method has been employed. Special emphasis has
been given to the influence of suction and the material parameter of the third grade fluid on
the flow. Several known results of interest are found to follow as particular cases of the solution
of the problem considered. It is observed from the solution that non-Newtonian effects on
the velocity are present for small time. For large time the velocity and shear stress for the

Newtonian and non-Newtonian fluids are the same.
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6.2 Governing problem

We consider an infinite permeable plate aligned along the x—axis. We mean by permeable
plates that the plates with very fine holes distributed uniformly throughout the plate through
which fluid can flow freely and continuously. Suddenly, the plate is set into motion with velocity
Uy along the x—axis. The fluid at y > 0 is at rest far away from the plate. The velocity field

for the present flow analysis is
V=(uly,t), v(y,1), 0), (6.1)
which together with continuity equation (1.9) gives
v="VI(t)
in which V' (¢) < 0 corresponds to the variable suction velocity and thus Eq. (6.1) now becomes
V= (u(y,t), V(¢), 0). (6.2)

Using above definition of velocity, Eq. (1.4) yields

ou ou]  Ops 0%u Pu Pu
P [(% V) 8y} = o Mgt <8y28t Vo (6:3)
0*u ,0%u o*u 5 0% ou\? 82u
el Z _ 49 el ) 2=
g <ay28t2 Ve T agar Y 6y4> 682+ 5s) <ay> o
ov(t)  Op3
- ou\ 2 ou [ 9%u 9%y
p3=p— (201 + a2) <8_y> +2(381 + B3) o <m + V8—y2> : (6.5)

Eliminating the pressure p3 from Egs. (6.3) and (6.4) one can write
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2
Svingt = y@w( o +v<>ag )ﬂ@) al (6.6)

ot oy? Oy2ot oy3 oy ) 0y?
82u 83 o*u 5 0%

where 5= a1 /p, v = 6(8y + B3)/p and €1 = 5 /p. Note that p3 is a linear function in y and in
writing Eq. (6.6) we have used the expression (1.6) for the Cauchy stress tensor.

The appropriate boundary conditions are

w0,6) = Uy for t>0, (6.7)

u(y,t) — 0 as 1y — 00.

Introducing the non-dimensional variables

v v

U = U0f7 Yy = F()f, = U_gTa (68)
the governing problem becomes
Of 2 _ Of f P - (0F\? 0%
705 = 57 o s 47 (5) 2 o
_[ of 3 f of o 0'f
+& [652872+V( )8—534‘2‘/653874—‘/ 8f4j| s
fo,7) = 1, for T >0, (6.10)
f =0 as £ — o0,
in which
— V2 _ V3 _ v _
V(t)=UV(r), B= U_gﬁ’ v = U—é'y, e= U_ég' (6.11)
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6.3 Perturbation solution

Writing
Y- fV(t)dt - fV(T)dT
n=t e = (6.12)
FO,7) = foln) + - fal) + g fal) (6.13)

into Eq. (6.9) and conditions (6.10) and then equating the coefficients of like powers of 1/7 we
get the following systems:

System of order zero

fo +2nfs =0, (6.14)
fo(0,7) = 1, for T >0, (6.15)
fo(oo, 7') = 0.

System of order one

" , _ " 1 m 7 " N 2

f1 +277f1+4f1:ﬁ<f0 +§77f0 ) —Zfo (fo) ) (6.16)
fi(0,7) = 1, for >0, (6.17)

fi(oo,7) = 0.

The solution of the zeroth order system is

5 n
2
fo = 1—\/—%/6 Sde, (6.18)
0

= 1—erf(n) = erfe(n)

where erf(n) is the error function and erfc(n) is the complementary error function.
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Substitution of Eq. (6.18) into Eq. (6.16) we have

2

A7
Y 7]67377 .

/2

ovonfy s af = etz o) - (6.19)

N

3
s

Note that the solution of Eq. (6.19) is the sum of complementary function and particular

integral. The complementary function satisfies

fi +2mf +4f =0. (6.20)
Writing
e .

fr=">a (6.21)

5=0

and using into Eq. (6.20) we obtain

—Qaj 3
ito = —= =0,1,2,3,4,.,. .22
aj42 J+17 J y Ly 737 IR} (6 )

On substituting Eq. (6.22) into Eq. (6.21) the complementary function and particular integral
are of the following type

4 8
fie = ag (1 = ot = ) +ame™ (6.23)
B 3 2 7 (235, 285 2474 ; 42184 g\ 5
== - = — : 6.24
Jip = e 27 \3" 357 T3576" T 57087 )¢ (6:24)
The general solution is
4 8 B 2 2
= 1 -2+ —p* = —p6 ... 3 " L F(n)e”3 )
fi ao( gt >+ <a1n+ﬁn e+ F(ne ™", (6.25)
where
F (2 5 28 5 2474 . 42184 ,
F(n) =— - — . 6.26
) =—~"3n (3” 357 "3576" T5708" (6:26)
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Using f1(0) = 0, we have agp = 0 and thus the expression for f; is

Let us write

F(n)

fi= (a177+ i

[ee)

N3

n3> e 4 F(n)e 7.

> avni " = azn® + a5’ + ar’ + agn® + -+

n=1

On comparing Eqgs. (6.26) and (6.28) we can write

as
5

The calculations of coefficients agy,+1 are described in terms of ag in Table 6.1. as follows:

(S

as

S Q QI
c%h §|: sk

There is one constant a; in Eq. (6.27). The value of a; is calculated by imposing the fact

T 9. 3/2
7.{./

1.60000000
1.40952381
0.87619048
0.42528139
0.17053169

= —0.1172475,

7 2.8
735

ay — —

0.05858760
0.01769331
0.00478697
0.00117728
0.00026620

Table 6.1

as

3-5

0.00005584
0.00001094
0.00000201
0.00000035
0.00000006

that the displacement thickness has to vanish at ¢ = 0 [50] and get

non-dimensional distance to the plate, for various values of time and suction parameter i.e.,

7_:473:_477:

B B8 n!
ay = —ﬁ - Z:l ﬁazm-l-
n=

The graphs are shown in Figs. 6.1, 6.2 and 6.3 in which velocity varies with respect to the

0.05. For V = 0 we get the result of Erdogan [50].
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1F
=, ., T=%, G=-4, =4

LU
#... t=¢, G==%, ¥=i

U
. T=1l00 | G=-i, w=i

0.4+

LU

nF

Fig. 6.1. Variation of f with n for V (¢) = 0.

W= 005

=, T=%, G=-¢, ¥=42

#... T=%, i=-i, w=i

| =100 .

G=-f, w=E

Fig. 6.2. Variation of f with n for V (¢) = —0.05.
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Wo=0.05

=, T=%, G=-4, ¥=%

#... T=2, G=-%, w=i

H. =100 . G=-%,w=zi

Fig. 6.3. Variation of f with n for V (¢) = 0.05.

6.4 Shear stress at the plate

The shear stress at the plate is

ou 0%u 0%u ou\?
= f— | +2 — 6.31
= i bar | oV (0 5] <208, + 55 (5 (6:31)
Pu av 0%u 9u 5 Ou
302 + T +2V (¢) 3,701 + (V (1)) a—yg}

+064 {

which in terms of non-dimensional variables is

v of [ Pf =, *f]  1_[0f\°

;Uy? B 8_§+B[858fr+v(7) agﬂJrﬁV <a_§> (6:32)
N . N ey
g+ ggr + I ) 5gngy + V) 55
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Using Egs. (6.12) and (6.13) into above we obtain at y = 0 the following

T = el 63
+% (%ﬁ (0.58 - 7+ 1522) o

2 {Z& (¥ - 1) + 011977}

where
_JV)at

At = =5 =

(6.34)

Figs. 6.4 and 6.5 shows the variation of the shear stresses at the plate for various values of

time and the suction parameter. In these graphs we have taken § = —1,7=1land 5 =0,7 =0
and V (t) = 0, —1. It is clear from the graphs that for small times (UT% < 5) non-Newtonian
effects occur and for large times (UT% > 5) it become weak and behaves like a Newtonian fluid.
Moreover, it is shown in Fig. 6.5 that with the introduction of the suction parameter V, the

boundary layer thickness decreases.

. Rewtondan

-1.% . Rom - Hewtomian

£ 12
W

Fig. 6.4. Variation of shear stress at the plate for various values of time and for V (t) = 0.
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A
Fig. 6.5. Variation of shear stress at the plate for various values of time and for V (t) = —1.

6.5 Special cases

6.5.1 Casel

At V(1) =0,8=0,5=0and g =0, we obtain the familiar first Stokes’ problem [51,52] of a

plate suddenly set into motion. The solution is given by

f(n) =U[l —erf ()], (6.35)

where

S (6.36)

6.5.2 Case 2

AtV (1) =0,8#0,7 =0 and & = 0, we readily recover the result of Teipel [30], the impulsive

motion of a flat plate in a viscoelastic fluid and the solution is given by

r=v|nw+(5)am+ (5) mm+ |, (6.37)
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fo(n) = (1 - % /077 €_§2d5> , filn) = <a0177+ \%773> e,
4

e — —_— _ — R —_— —4 —_— n
fa(n) [a0277+ 5 <ﬁ ao1 15%2) Ui < = 601> n° + n } e,

where
1 31

aplr = —ﬁ, ap2 = —5 \/7—T
6.5.3 Case 3

For V (1) = K—UT, B=0,7 =0 and & = 0, we obtain the solution of the form [53]

=5
erf (# —%)
fm)=U|1- W . (6.38)

The graph is shown for K = —2,0,1,2,4,6 in Fig. 6. It is observed that for K > 23, f (1)

is exactly one and for K < —11 it is no more real.

Fig. 6.6. Variation of the function f with 7 for different values of parameter K.
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6.6 Concluding remarks

In this chapter, an analysis is made for the flow of a third grade fluid on the plate with variable

suction. The following conclusions can be drawn from the present study.

1. It is found that with an increase in suction, the boundary layer thickness decreases and

with an increase in blowing the boundary layer thickness increases.

2. From Eq. (6.12), it is again noted that for short time (7 = 4) a strong non-Newtonian
effect is present in the velocity field and velocity behaves as a Newtonian case for large

time (7 = 100).

3. Introduction of the similarity parameter 7 leads to an exact solution of the governing

non-linear partial differential equation.
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Chapter 7

Flow of a third grade fluid induced
due to the oscillations of a porous

plate

7.1 Introduction

This chapter describes the flow of a third-grade fluid on a porous plate which executes oscil-
lations in its own plane with superimposed injection (blowing) or suction. The analysis also
examines the behavior of an increasing or decreasing velocity amplitude of the oscillating porous
plate. The non-linear problem has been solved using perturbation method. The obtained results
are compared with those known from the literature. The result indicates that a combination
of suction/injection and decreasing/increasing velocity amplitude is possible for a third-grade

fluid.

7.2 Problem formulation

Here, we consider a thermodynamic compatible third grade fluid flow on a porous plate. We
choose x—axis along and y—axis perpendicular to the plate. For ¢ > 0, the plate starts oscil-

lating. The governing equation for constant suction V(< 0) can be obtained from Eq. (6.6)
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as

ou ou 82 Pu a3u 0%u [ Ou\?
— — — = 1
ot Ty =Y +B[ "3 284 o [6y2 <3y> ] ’ Ty

where Vg > 0 is the blowing velocity. The above equation holds for a thermodynamic third
grade fluid.

The expression for the shear stress is
ou Pu  %u ou
= . 2
oy = Mgy +041{V082 am}* 53(@) (7.2)
The boundary conditions are [54]
u(0,t) =U(t) = UpePo=®)t s >0, ¢>0, By = constant # 0, (7.3)

u(y,t) =0 as y— oo, (7.4)

where [, is the accelerating/decelerating parameter.

Defining the following non-dimensional parameters

77:9\/%, d_gywa TZWta C:%a

(7.5)
f:Uioa ¢1:$B7 (Z)Q 4,/27
equations (7.1) to (7.4) give

of of  19°f O3f »f f(of
or VG, = 3 O |y + VM ]“%n (8"7>’ =
f (077_) = e(c_i)Tv (77)
f—0 as n— oo, (7.8)

1 10f 0% f 0% f af\*

o= T 2y o e e () 09
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7.3 Solution of the problem

We suppose that the non-dimensional velocity f can be expanded in power series in ¢, as:

f(7777;¢2):f0(7777)+¢2f1 (7777)+"" (710)

On substituting Eq. (7.10) into Eqs. (7.6) to (7.9) and then equating the like powers of ¢y we

obtain the following systems:

Zeroth order system

2 3
afo pvadh 12T [ & fo +fd8 fo} (7.11)
on  20n
fo (0,7) = el (7.12)
fo0 as 17— oo, (7.13)
B 1 19f 9 fo & fo
To = —wa_pUO T — 5 a + d)l |: + \/_d :| . (714)

First order system

9 3
8f1 L V3d 3f1 _%%_77f21+¢1 [382];1 Jr\/_da fl] +¢>2%‘];0 <88_{70> : (7.15)
f1(0,7) =0, (7.16)
fi—0 as n— o0, (7.17)
_ 1 _ _10f O f1 O f1 dfo
= \/2wVpUOTl 2 8 T [ * \/_d } * ¢2 < 877) ‘ (7-18)

Zeroth order solution

We write
fo(n,7) = go (n) e, (7.19)
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Making use of above equation, Egs. (7.11) to (7.13) give

dgo 1429 (c—i)d*g0 dgo (c—1)

+ o —0,
g 0v3d A dnp ad
90 (0) =1,
go(00) =0

(7.20)

(7.21)

(7.22)

The solution of Eq. (7.20) along with conditions (7.21) and (7.22) is obtained by employing a

procedure used by Foote et al. [20]. The solution of Eq. (7.20) subject to conditions (7.21) and

(7.22) reads as

go(n) =e

The real part of the zeroth order solution is

fo(n) =exp [er + (Cor + Cirey + Cord?) 0] cos [T — (Cor + C11¢y + Card?) 1],

in which

(7.23)

(7.24)

9 3 s 2
A = (Co+01¢1+02¢%)»Co=ﬁ<d—\/d2+c—i>,ClzdeOJr(c DG

\/Qd— Co
C2? + 6v/2dC2C) + 4 (c — i) C1Co \/
Cy = 1 0 , = + d? + 2 +1—d?— ,
2 2 (\/§d — Co) cor ( C) ¢

cor = ﬂdi\/\/(dQ—i-c)Q—i-l—i-(d?—i-c),

o P Cor PCor + Q (vV2d — Cor)
1R = —
V2d—Cor  V2d—Cor | CZ + (V2d — Cor)”
PCor + Q (V2d — Cor) PiCor + Q1 (V2d — Cog)
Cir = D) , Car = 2 )
Cr + (V2d - Cor) C3; + (V2d — Cor)
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Py Cor PiCor + Q1 (V2d — Cor)
CQR = - 2 )
V2d—Cor  V2d—Cor | 2, + (v2d — Cor)

= V2d(Cip — 3CorCE;) + ¢ (C3r — C3;) + 2CorCor,

= V2d (3C3rCor — Cjr) + 2¢cCorCor — (Cir — Coy)
P = 3v2d(CZrCik — C3;Cir — 2CorCorCiy) + % (C3r—CHy)
+2¢ (CorCir — CorC1r) + 2 (CorC1r + CorCir),
Q1 = 3V2d(2CorCorCir + CrCir — Cg1Ch1) + C1rCir
+2¢ (CorCir + CorC1r) — 2 (CorCir — CorCar) -

The expression for shear stress at the plate now is

T

o 1 - (e—0)T 1 o
0= e To = Ae [2 + ¢ {\/QdA +(c—1) }} . (7.25)

First order solution

Using Eq. (7.24) into Eq. (7.15) we can write

df1 ofi  10%h > f1 O fi 4 _3An 3(c—i)r
or V2 on 2 on? T on?or V2 on? AT e ' (7.26)

We take the solution of above equation in the form
fr(m,7) = g1 (n) 7 (7.27)

and obtain

1—|—6¢1(C—Z

V2de, gt + 5 Lyt — Vadg, — 3 (c i) g1 = — A%, (7.28)
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The corresponding boundary conditions are

91(0) = 0, (7.29)
g1(00) = 0. (7.30)

The solution of Eq. (7.28) consists of complementary function and particular integral. The

solution of Eq. (7.28) subject to conditions (7.29) and (7.30) is

A4 B 3A
g1 (1) = 2 (P71 — &) (731)
The real part of fi through Eq. (7.27) is
fi(n,7) = e(BeTtksn) [q1 cos (3T — kan) + g2 sin (37 — kyqn)] (7.32)
—e3erthan) [q1 cos3 (T — kam) + g2 sin 3 (17 — kan)],
where
_al+bn _an—bl . 3 9= —_
q = a2+b27 Q2*a2+b2,14 f27AA+9AB+3AC+D,
_ — 1 _ _
A = V2dg,, B=5[1+6¢(c—1i)], C=-v2d, D=-3(c—1i),

9
a = [27\/§d¢>1 (k3 — 3k1k§)] + 5[(k% — k3) (14 66yc) + 12k1kagy] — 3v2dk1 — 3c,

b= [27\/§d¢>1 (3k2ky — kg’)] + g[%lk;g (14 6¢1c) — 6, (k2 — k2)] — 3v2dky + 3,

I = ki+kj—6kiks, n=A4kiky —4kik3, ki = (Cor + Cirdy + Card?)

ky = (Cor+Cudy+Cordl), ks = (Eor + Errdy + Fard?), ks = (Eor + Eir¢y + Earg?) |

Eor = \/§d—\/\/(d2+30)2+9+d2+3c, EOI:—\/ (d2 +3C)* +9 —d2 - 3C,
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Py For PyEor + Q2 (V2d — Egg)
Exr = - p) ;
V2d— Eor  V2d — Egg E2, + (V2d — Egg)
> PyEor + Q2 (V2d — Eor) P3Eor + Qs (V2d — Eor)
= 5— | » For = |
ng + (\/id - EOR) ESI + (\/§d — EOR)
B — Py For P3Eor + Q3 (V2d — Egp)
2R - P} ’
V2d— Eor V2d — Egp E2, + (V2d — Egg)

Py = V2d(E}g — 3EorES;) + 3¢ (EZr — E3;) + 6EorEor,

Q2 = V2d(3E23Eor — E3;) + 6cEorEor — 3 (E2p — EY),

Py = 3V2d(E3zE\r — E3;Evr — 2EorEorEr) + % (EYr — Efp)
+6¢ (EorErr — EorEvr) + 6 (EorE1r + EorE1R) ,

Qs = 3V2d(2EorEoiErg + EpErr — B} Fvp) + EigEny

+6¢ (EorErr + EorErr) — 6 (EorErr — EorEnr) .

Hence the velocity profile up to the first order is obtained by combining the zeroth order
and first order solution in Eq. (7.10) as
) Al )
f(n,7) = Re [ef‘"e“—m + s {E (eP1 - e3An)} e3<c—z>ﬂ . (7.33)
We observe from Eq. (7.33) that this solution satisfies the boundary conditions given in Egs.
(7.3) and (7.4).

The non-dimensional stress at the plate (n = 0) is given by

1
= Vavanls 7.34
o 2vwply m (7.34)
A463(C—i)7 1 . 3 . 1 .
- A* [B{§+¢1<\/§dB+3(C_Z)>}_A{§+9¢1<A+C—Z)}]+§A3€3( )T
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7.4 Special cases

To understand the different physical aspects of the solution (7.33), we discuss some special

cases:

7.4.1 Oscillating plate (Newtonian fluid with ¢ = d = 0)

Stokes’ second problem [55,56] can be obtained by taking ¢ =d = ¢; = ¢ =0, i.e.,

fns (n,7) = exp (=n) cos (T —n), (7.35)

where NS in the subscript stands for Navier-Stokes.

7.4.2 Oscillating plate (Newtonian fluid with ¢ = d # 0)

New solutions of Stokes second problem [54] are recovered by taking ¢; = ¢y =0 and ¢ =d # 0

from solution (7.33) i.e.,

fnr(n,7) = exp (7.36)

or + (ﬁd—\/\/(d2+c)2+1+d2+c>n
X cos [7‘— (\/\/(d2+c)2+1+d2+c>77

where NT in the subscript indicates new solutions of Turbatu et al. [54].

9

7.4.3 Oscillating plate (Viscoelastic fluid with ¢ =d # 0, ¢, # 0)

The results of viscoelastic second-grade fluid [25] are readily obtained by taking ¢5 = 0 in the
solution (7.33), that is

fve (n,7) = exp [er + (Cor + Cirey + Card?) n] x cos [1 — (Cor + Cirdy + Card?) 1] -
(7.37)

Here V E stands for viscoelastic.
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7.4.4 Oscillating porous plate (Third grade fluid with ¢ = 0, d # 0, ¢, # 0,
¢y 7 0)

For c=0,d # 0, ¢; # 0 and ¢, # 0, solution (7.33) gives

f(n,7) = exp [(GOR + Cigoy + 6'2R¢%) 77} X cos {T — (601 +Cirgy + aﬂ@ﬁ) 77}

where

—1—(/52{6(3CT+E3’7) [Zﬁ cos (37 - 75477) + g2 sin (37’ - /k\477>:|

63(CT+E177) {Zl\l cos 3 (7’ — ?{:\277) + (/]\2 sin 3 (T — 7{3\27]>i| },

al+bn . an—ol
= = (]2:/\—/\,
a2 + b? a? + b?

- [27\/ dep, (k3 - 3/@11@)} ( %%) 121 kodry] — 3v/2dRy,

— [27\/§d¢1 (3%%1@ )} 212k ks — 66, (13 )] — 3v2dks + 3,
= kY4 kd—6k%K3, @o= 4k k‘g — A1 k3,

ki = (6013 + Ciroy + 6’2R¢%> , kg = (5'01 +Chioy + (721@%)%) ,
ks = <E0R + Erpéy + EZRQZ)%) ) kg = <EOI + Eirgy + Ezﬂﬁ%) ,

Corn = V2d—\/Vd*+1+d2, Cor=—\/Vd*+1-d2,
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& p Cor PCor +Q (\/ﬁd — 60R>
1R V2d—Con  V2d— Cog 631+(\/§d—60R)2 )
. PCor +Q (\@d — 601%) N PiCor + Q1 (\/id — 601%)
Cu = — ——— |, Cor = - — | >
C3, + (Vad - Con) Ct, + (V3d— Con)
. 2 Cos P.Cor + Qs (\/ﬁd - aoz%)
Cor )

V2d — Cor - v2d — Cor 631 + (\/§d - 60R>2

\/id (agR - 363363]) + 260R60[, @ — \/§d <36§R60[ - 63]) - (agR - 63[) 5

U U U 1/~ . U PN
3v/2d (ch Cip— C2 Cip— 2Cor Cor CH> +3 (c%R _ 012[) ) (COR Cir+ Cor G R) ,
3v2d (2603 Cor Cir + 6’33 Chr — 6021 511) +Cir Ciy—2 <60R Cir — Cor 511) ,

V2d =\ Vd  +9+d2, Eo = —\/Vd* +9 — &2,

Eos PoEor + Qo <\/§d - Eoz%)

~ P
Err 2 - = — —3 ;
V2d— Eor  V2d— Egg E% + (ﬁd - E0R>
~ PyEor + Qo (\/id - EOR) N PsEor + Qs (\/id — Eoz%)
Eyp = — — D) , Bor = — — P} )
Egl + (\/§d - EOR) Eg] + (\/id — EOR)
- Py Eor PyEor + Qs <\/§d — Eoz%)
Ear = ;

-~ - o —~ —~ 2
V2d— Eor - V2d — Eyg B2 + <\/§d _ E0R>

V2d <EgR - 3E0RE§1) +6EorEor, Q2 =V2d <3E§REOI - Eg]) -3 (E[%R - Eg]) ;

So = 555 L /=0 759 55 S5
3v2d (B3pBun — B3y Bin — 2BorEorBar) + 5 (Bl — By ) +6 (BorBus + BorEin)
3v2d <2EOREOIE1R + E33E11 - ESIEH) + EigEr —6 (EOREIR - EOIEH) .
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The solution for the velocity component f is plotted in Figs. 7.1 and 7.2 for different values
of ¢; and ¢ and for a fixed time 7 = 27 as a function of the suction/blowing velocity Vj, given
by d = % The values d = 0, ¢; = 0 and ¢, = 0 refer to the classical Stokes problem. It
is noted that the boundary layer thickness is controlled by the suction velocity (Vy < 0) i.e., it
decreases with an increase in the suction velocity.

In case of blowing (Vy > 0), the boundary layer thickness becomes large as is expected
physically.

Figure 7.2 gives the effect of material parameter of third grade fluid. It is observed that
with an increase in third grade parameter ¢,, the boundary layer thickness rapidly decreases

in the case of suction (Vy < 0) and increases in the case of blowing (V4 > 0), when compared

with the viscoelastic case [25] and viscous case [54].

3 c=0,$1=0, $2=0

1y +1. .. d=-2

1 +2. .. d=-1

0.8 +3. ..d=-0.5

2
0.6
0.4
0.2

7

0.2
0.4

Fig. 7.1. Influence of suction/blowing on the velocity distribution at 7 = 27
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t c=0,$1=0.1, ¢=2=0.1

0.8
0.6 |
0.4 |

0.z |

-0.2 |

-0.4 [

Fig. 7.2. Influence of suction/blowing on the velocity distribution at 7 = 2«

7.4.5 Oscillating plate with acceleration/deceleration (Third grade fluid with
d:O, C#Ov le?éo, ¢2§é0)

In this section, the superposition of two time dependent functions is taken into account. One
of which is due to the oscillation of the plate with imposed frequency w and the second is an
exponential increase or decrease of the velocity amplitude of the plate with the parameter .

For d=0, ¢ # 0, ¢; # 0 and ¢, # 0, solution (7.33) takes the following form

f(n,7) = exp [cv‘ + (C~'OR + émcﬁl + 5’23@%)%) 77} X COos |:T — (601 + C~'11<;51 + 62[¢%) 77]
+¢2{e(3”+%3”) [Zjl cos (37 - %477) + @2 sin (37’ - %477)}

_3(erthn) {q~1 cos 3 (T - EQU) + q2sin3 (7' - EQU)} 2
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or

g(n,7)

where

Cirp =

Cor =

f(n,7)

— = exp [(5’03 + Cirdy + @Rqﬁ) 77} X cos [T - (501 + Cirgy + 521%) 77]

exp (c7)
—|—¢2{e(2”+g3") [q~1 cos (37‘ — %477) + @2 sin <37‘ — %477)} (7.39)

_o(2em+3kn) [cﬁ cos 3 (7’ — E277> + @2sin 3 <T - E277>} }

al+bn . an—bl 9 (v ~
m, QQiiiQ—i—g?, *5[@1"“2)(1+6¢1C)+12k1k2¢1] 3c,

2[2%1752 (14 6¢,¢) — 66, (Ef - 755)] +3, I =ki+ ks —6k3k3, 7= 4kPky — Ak k3,
(501?, + 51R¢>1 + 52R¢%> , kg = (501 + 511¢>1 + ézmﬁ) , Cor = — Vve2+1+e,
(EOR + Eipoy + Ezmb%) , kg = (EOI + Eiréy + EQI(ZS%) , Cor = — V Ve +1—c,

S|

P C PCy; — QC ~ PCo; — QC ~

v J;I @2 k| Ciy = ~g’—920R , EOR:—\/\/902+9+3C,
—Cor  —Cor | Ci5r—Cip Cor — Cor

_ _ S s s ) I )

B Cou |G Gilon) g (PG = OCon] p \facrre - se,
—Cor  —Cor Cor — Cog Cor —Cor

Py B Eor | PaEor — Q2Eor [ Py B Eor | PsEor — Q3Eor
—For —FEor E% - E%, ’ —Eor  —Eor Egr — Egg

= ¢ (531?. — 5§1> +2CorCor, Q = 2cCorCor — (5021% - 5’31) ;
= % (5121% - 5’121> +2¢ (503 Cir — Cor 511) + 2 <5'0R Ci1 + Cor 5’1R> ;
= 513 51] + 2c (503 6’1] + 60[ 513) -2 <60R C~’1R - 60[ 51]) )
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ﬁ ZEOI — C525‘0}%
Ejr — Egg

)

P, = 3¢ (EgR — Eg]) + 6EorEpr, @2 = 6cEorEor — 3 (EgR — Eg]) , EH =

(Efg — Ef;) + 6c(EBorErg — EorBir) + 6 (EorE1r + EorErg)

N~

ﬁ 3EOI - @3EOR
Ejr — Egr

Qs = FE\rEi+6c(EorEir + EorEig) — 6 (EorEig — EorEry), Ear =

The parameter ¢ = [y/w gives the variation of the amplitude of the plate velocity and
c =0, ¢; = 0 and ¢, = 0 implies the classical viscous case. The solution (7.39) is plotted in
Figs. 7.3 and 7.4 for (7 =27, ¢; =0, ¢y =0)and (7 =27, ¢; = 0.1, ¢, = 0.1), respectively.
Figs. 7.3 and 7.4 show the variation of 3, ¢; and ¢,. It is noted that with an increase in third

grade parameter ¢, the amplitude of the oscillations rapidly increases/decreases according to

Bo > 0/By <0.

g d=0, $1=0, ¢2=0

1 +1. e o=—2

+2. Lo==1

0. 75 +3. ..c==0.5
0.5
0.25

"

-0.25
-0.5
-0.75

Fig. 7.3. Influence of increasing or decreasing amplitude of the plate on the normalized velocity

distribution at m = 2.
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o d=0, ¢1=0.1, ¢2=0.1

1 +1. .. c==-2

+2. L.o==1

0.8 +3. .. c=-0.5

+d. ..eo=0

0.& +5. .. o=0.2
0.4
0.2

L

—0.2
—0. 4

Fig. 7.4. Influence of increasing or decreasing amplitude of the plate on the normalized velocity

distribution at m = 2.

7.5 Conclusions

We have presented here results for the flow field of a fluid, which is called the third order fluid
or the fluid of grade three, on an oscillating plate with superimposed blowing or suction. The
analysis presented is further concerned with an increasing or decreasing velocity amplitude of
the oscillating plate. It is noted that suction causes reduction in the boundary layer thickness
as expected. Also, the amplitude of the oscillation decreases for acceleration and increases for
deceleration when there is an increase in the material parameters of the second and third grade
fluids. In addition it is also found that the results in references [54] and [25] can be recovered
as the special cases of the problem considered by taking the parameters ¢; and ¢4 equal to zero

and ¢, to be zero, respectively. This provides a useful mathematical check.
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Chapter 8

Concluding remarks of the thesis

In this dissertation, the analytical solutions of non-linear equations governing the flow for a

second-grade and third-grade fluids are obtained.

1. For second grade fluid two dimensional unsteady equations are derived in Cartesian,
Plane-Polar, Axisymmetric Cylindrical in terms of swirl, and Axisymmetric Spherical
Coordinates. Equations then are coupled in terms of the stream function so-called the
compatibility equations. Several different forms of the stream function are taken. In each
problem of stream function, the various possibilities of getting the analytical solutions are
discussed. The expressions for velocity profile, streamline and pressure distribution are

constructed in each case.

2. The present second grade models as well as solutions are more general and several results
of various authors Aristov and Gitman [40], Berker [41], Riabouchinsky [42], Lakshmana
[43] , Roy [44], Siddiqui et al. [28], Goldstein [51], Jaffery-Hamel (by Squire) [46], Jahnke

et al. [53] and Landau and Liftshitz [47] .can be recovered in the limiting cases.

3. For a third grade fluid since the equations are much more complicated, so only the uni-

directional flows are considered in three different situations:

4. In the first case flow is generated due to a variable shear stress and our investigation
shows that the perturbation technique is adequate for the case when the variable shear

stress has as oscillatory character, however, if the shear stress grows exponentially with
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time then the perturbation solution can be accepted only for small values of time. For

moderate to large values of time, the numerical solution must be used.

. In the second case the concept of variable suction is used when all the three third grade
material parameters are non-zero and the introduction of the similarity parameter leads
to the solution. It is found that with an increase in suction, the boundary layer thickness
decreases and with an increase in blowing the boundary layer thickness increases. Furhter,
it is noted that for short time (7 =4) a strong non-Newtonian effect is present in the

velocity field and velocity behaves as a Newtonian case for large time (7 = 100).

. Finally, in the third case the third grade thermodynamic model is considered with su-
perimposed blowing or suction and with an increasing or decreasing velocity amplitude
of the oscillating plate. It is noted that suction causes reduction in the boundary layer
thickness as expected. Also, the amplitude of the oscillation decreases for acceleration
and increases for deceleration when there is an increase in the material parameters of the
second and third grade fluids. In addition it is also found that the results of viscous and

second grade fluid are recovered as a special cases of the present analysis.

. The results of Stokes I & II problem [55], Teipel [30], Erdogan [50], Turbatu et al. [54],
Hayat et al. [25], can be recovered as special cases of the present analysis of third grade

study.
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TABLE A
Summary of the differential operators involving the V — operator in

rectangular Cartesian coordinate system (z,y, z)

Ov, % ov,,

(VV) = GE gl
d?%s  0%s  O%s

2 _ 0Os 0's 08
(V s) = 92 + 02 + 92’

vV ey, (2 vy 9vr vy vy
T VVTm<ax>—i—T;Cy(ay)+sz<az>+Tyx(ax>+Tyy<ay>
I R S R Ny A e
Tyz 92 Tzx o Tzy ay Tzz 92 )’

Os Os 0s

[Vs]z - %7 [VS]y - a_y> [Vs]z - av
_Ov, Oy _%_81}2 _%_8%
[VXV]Iiﬁy 0z’ [VXV]yiﬁz ox’ [VXV]Zic‘)x oy’

OTgr  OTye  OTuy

_ 0Ty n OTyy n OT 2y

v . - .
V-7l Ox + oy + 0z’ V-7l ox oy 0z’
Oty O1yy | O
V-rl. = Ox + oy + 0z’
0%v 0%v 0% 0%v 0%v 0%v
2 _ B p x 2 _ y y y
[V V]x Ox2 + ayz + 022"’ [V V}y* o2 + ayz + 022"’

9%v, N 9%v, . 9%v,
ox2  0y? = 0227
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Owy, ow,, owy,
V.-VW = Vg =,
[V-VW], U<8x>+vy<8y>+v<8z>
ow ow ow
V.- VW], = vm<a$>+vy<ay)+vz<a ),
ov ov ov ov ov
vV = = - — 2 — T ]
{ }zx aw ? {Vv}zy 8.%' ? {Vv}zz ax ’ {Vv}yx 5y ’ { }yy ay Y
ov ov ov ov
\% = 4 == -—= _ 2=
{V }yz 82 {Vv}zw 837 ) {Vv}zy 8y ) {Vv}zz 62’ ’ (A9>

{v. VT}xz = (V- V)74, {V: VT}a:y =(V-V) Tays {v. VT}xz =(V-V) 7y,

{V. VT}W
{V ’ VT}zx

(V-V) 7y, {V- VT}yy =(V-V)1y, {V: V'r}yz = (V-V)71,4A10)
(V- V)7, {V-V7},, =(V-V)7sy, {V-V71}_ =(V - V)7,

where the operator (V- V) = vx% + Uy(% + Uz%-
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TABLE B
Summary of the differential operators involving the V — operator in

cylindrical coordinate system (7,0, z)

10 10vg Ov,

(V-v) = rar(rvr)—i_raﬁ—i_@z’
by 10 (00 1 o
(V S) = Yo Uor +7’2892+822’
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(r:VV) = TTT(@T)+TT9(T89 T)+TTZ<8:<:>+TQT<8T)+T60<T89 r>

e (V0 o (Ove o (LOv=) | (Ove
T02\"a, ) " \ar ) T\ e ) T T oz )
Os 10s O0s
[VS]T - 57 [VS]G - ;%7 [Vs]z - &7
_10v,  Ovy _ Ov, Ov, B lg l%
[VXV]T_;89_E’ [VXV]9_82_8T’ [VXV]Z_Tﬁr(ma)_rﬁﬂ’
10 10 Too
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1 0 2 10 0 Tor — Tro
V.rl, = 29, (r Tr9)+;%799+57,29+—r ;
10 10 0
V.-1], = ;E(TTTZ)—i_;%TQZ—i_&TZZ?

0 (10 1 0% 9%v 2 Oy,
2 e g o 299
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o0 (10 1 0% 0% 2 Ov
2 - 2 (22 g% g% 2%
[V V]e Or <7“ or (me)> + r2 9p> + 022 + r2 90’
10 ov 1 9% 0%
2 _ - z — z z
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B ow, 10w, wy ow,
VoWl = () v (G ) e ()

or

B Owg 10wy wy Owg

[V.-VW], = vr<8r>+vo<r 50 + T)—i—vz(az
ow,,

, (B8)
1 0w, ow,
V-VW. = ( or ) T (F 20 ) T <E>
0wy _ Oug _ Ov,
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~ 10v, vy _10vy v ~ 10v,
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VoV, = (Vo970 L (g ), AV by = (V- V) 0+ (11— 700)
V V
(V-Vrl. = (V-V)7. — 79792, (V-V}, = (V-V)74 + 7" (Trr — Tog) ,
V V
{V-VT}QG = (V-V)T@g-i-To(Tra-FTgr), {V-VT}Gz:(V-V)Tez—i-TeTTZ, (B10)
{V ’ VT}zr = (V : V) Tar — %7_29? {V ’ VT}ZH = <V ) V) a0+ %TTZ’

{V-Vr} = (V-V)7.,

zZz

where the operator

ICERTY. P
(V- V) =vgn+ o Hvg;
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TABLE C
Summary of the differential operators involving the V — operator in

spherical coordinate system (r,0, ¢)

10, 1 O(vpsing) 1 Jug
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V-VW|, =
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(V.- Vrly = (V-V)79¢+<%> TT¢+<”7¢) [For + (700 — Tog) cot 6],
(V.V}, = (V-V)Tm—(%)wﬁ(%) [(Trr — 7o) + Torcot ],  (C11)
(V- Vrly = (V-V)rg+ (%) Tor + (%) [rro + (709 — Tog) cot 0],
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where the operator
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TABLE D

Summary of the vector identities

Vrs
(V-sV)
V[V x W]
[VxsV]
(V- V)V

[V-VV]

rVs+sVr
(Vs-V)+s(V-V)
W[V X V]-V:[V xW|

[VsxV]+s[V x V]

%V(V-V)—[VX[VXV]]
V. VW] + W (V.V)
(V. V)

Vs

Vs-1]+s[V-7]

(VV)- W]+ [(VW) - V]

—_

V-[r-V]) = (V- [V-7])
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Appendix

1. The incomplete gamma function and the gamma function are related through
Iy (a,z) + T (@, z) =T (@),

where I'yy (@, z) is the upper incomplete gamma function and I'f, (@, z) is the lower in-

complete gamma function and are defined by
oo ~
Ty (@) = / (e,
€T

T

O @) = [ e = a R @1+ ),
0

where 1F1 is the confluent hypergeometric function of the first kind. For “@” an integer

n

I'y(n,x)=(n-1)le ™y —=(n-1)le e, (),

n—1 .’L‘k
Iz (n,z) = (n—1)! [1 —e Ty y] =n-D!1-e e (z)],
k=0

where e, (z) is the exponential sum function and is defined by

“ 2k L (n+1,x)
@ =2 5 = Tt

2. HypergeometricPFQ [{aq, ...... sapt, {b1, ... ,bq} , 2] is the generalized hypergeometric func-
tion pFq(a,b;Z). For example

1
_:L"

HypergeometricPFQ [{1,2,1},{2,1} ,z] = ]

HypergeometricPFQ [{ay, ...... sapt, {b1, ... ,bq}, 2] has series expansion




We can differentiate and integrate HypergeometricPF'Q as follows:

Differentiate [HypergeometricPFQ [{a1, as, a3}, {b1, b2}, x] , z]

1 14+a1,1+as,1+as},
= —— | a1asazHypergeometricPF Q) { ! 2 3}

byby {(1+b,1+b},

Integrate [HypergeometricPFQ [{a1, a2, a3}, {b1,b2} , x| , x]
1
') I (b
2 (b)) T (b2) 2l (by — )T (bg — 1) (=14 a1) (=1 + ag) (=1 + as)

{CLl—l,CLQ—l,(Ig—l},

{bl—l,bg—l},w

* 2 (—1+a) (—1+as) (-1 +az) b

Hypergeometric P FQRegularized

where HypergeometricPFQRegularized[{ay, ...... sapt, {b1, . ,bg}, 2] is the regularized
generalized hypergeometric function pFg (a,b;2) /{I' (b1),.....,I' (bq)} and MeijerG

MeijerG [{{a1, .....;an}, {@nt1, s aptt, {{b1, i b}y {bms1, ooy bg ), 2]

is the MeijerG function

For example

MeijerG [{{1,1},{ }}, {{1},{0}},2] = log(1+=),

meier | {01 3 {01 {5 5| = =2

For m=1,n=2, p=2, ¢ =2, we have the following properties:

Differentiate [MeijerG [{{a1, a2}, {as,as}},{{b1},{bs,b4}}, 2], ]
{{—1,@1 — 1,a2 — 1} ; {a3 — 1,@4 — 1}},
{{by = 1},{0,b0 — 1,b3 — 1}},z

= MeijerG
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Integrate [MeijerG [{{a1, a2}, {as,as}},{{b1},{b3,ba}},x], 2]
{{171+a1a1+a2}a{1+a371+a4}}7
({1+01},{0,1+bp,1+b3}},2 |

= MeijerG
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