

Adv. Oper. Theory 3 (2018), no. 1, 123–136 http://doi.org/10.22034/aot.1703-1145 ISSN: 2538-225X (electronic) http://aot-math.org

PERMANENCE OF NUCLEAR DIMENSION FOR INCLUSIONS OF UNITAL C*-ALGEBRAS WITH THE ROKHLIN PROPERTY

HIROYUKI OSAKA^{1*} and TAMOTSU TERUYA²

Dedicated to the memory of Uffe Haagerup

Communicated by M. Tomforde

ABSTRACT. Let $P \subset A$ be an inclusion of unital C^* -algebras and $E: A \to P$ be a faithful conditional expectation of index finite type. Suppose that Ehas the Rokhlin property. Then $dr(P) \leq dr(A)$ and $\dim_{nuc}(P) \leq \dim_{nuc}(A)$. This can be applied to Rokhlin actions of finite groups. We also show that under the same above assumption if A is exact and pure, that is, the Cuntz semigroups W(A) has strict comparison and is almost divisible, then P and the basic contruction $C^*\langle A, e_P \rangle$ are also pure.

1. INTRODUCTION

The nuclear dimension of a C^* -algebra was introduced by Winter and Zacharias [31] as a noncommutative version of topological dimension, which is weaker than the decomposition rank introduced by Kirchberg and Winter [11]. The class of separable, simple, nuclear C^* -algebras with finite nuclear dimension accounts for, however, a large part of separable, simple, nuclear C^* -algebras covered by classification programs, in both stable finite and purely infinite cases [30]. Note that if a C^* -algebra A has finite decomposition rank, then A should be stably finite.

A C^* -algebra A is said to be pure if it has strict comparison of positive elements and an almost divisible Cuntz semigroup W(A). Here, the Cuntz semigroup

*Corresponding author.

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Mar. 28, 2017; Accepted: Apr. 27, 2017.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L55; Secondary 46L35.

Key words and phrases. Rokhlin property, C^* -index, nuclear dimension.

W(A) is said to be almost divisible if, for any positive contraction $a \in M_{\infty}(A)$ and $0 \neq k \in \mathbb{N}$, there is $x \in W(A)$ such that $k \cdot x \leq \langle a \rangle \leq (k+1) \cdot x$. Winter [30] showed that a separable, simple, unital nonelementary C^* -algebra with finite nuclear dimension is \mathbb{Z} -stable, that is, absorbs the Jiang-Su algebra \mathbb{Z} tensorially. Note that the Jiang-Su algebra \mathbb{Z} plays a crucial role in the Elliott conjecture of the classification of separable, simple, unital, nuclear C^* -algebras. Indeed, very recently the calssification theory of separabe, simple , unital, nuclear, \mathbb{Z} -absorbing C^* -algebras has been completed by Gong-Lin-Nu [5], Elliott-Gong-Lin-Niu [4], and Tikuisis-White-Winter [26].

In this paper, we first consider the local C-property for separable unital C^* algebras in the sense of Osaka and Phillips [15] and show that, when A is a local C_n (respectively, C_{nuc_n}), separable unital C^* -algebra and α is an action of a finite group G on A, if α has the Rokhlin property in the sense of Izumi [7], then the crossed product algebra $A \rtimes_{\alpha} G$ belongs to C_n (respectively, C_{nuc_n}). This is a partial answer to Problem 9.4 in [31]. We note that the Rokhlin property for an action is essential in the estimate of the nuclear dimension of the crossed product algebra by that of a given C^* -algebra, because there is the symmetry α on the CAR algebra \mathcal{U} without the Rokhlin property such that $\dim_{\text{nuc}}(\mathcal{U} \times_{\alpha} \mathbb{Z}/2\mathbb{Z}) \neq 0$ (see Remark 3.3).

In Section 3, we extend the above observation for crossed product algebras to inclusions of unital C^* -algebra of index finite type. Let $P \subset A$ be an inclusion of separable unital C^* -algebras of index finite type in the sense of Watatani [28] and let a faithful conditional expectation $E: A \to P$ have the Rokhlin property in the sense of Kodaka, Osaka, and Teruya [12]; then P belongs to \mathcal{C}_n (respectively, \mathcal{C}_{nuc_n}) when A is a local \mathcal{C}_n (respectively, \mathcal{C}_{nuc_n}), unital C^* -algebra.

In Section 4, we investigate the permanence property of inclusions with the Rokhlin property with respect to the strict comparison property. We show that under the assumption that an inclusion $P \subset A$ is of index finite type and $E: A \to P$ has the Rokhlin property, if A is a unital exact C^* -algebra that has strict comparison, then P and the basic construction $C^*\langle A, e_P \rangle$ have strict comparison. We need the exactness because in this case strict comparison is equivalent to, for x and y in W(A), $x \leq y$ if $d_{\tau}(x) \leq d_{\tau}(y)$ for all tracial states τ in A, where the function d_{τ} is the dimension function on A induced by a trace τ , that is, $d_{\tau}(a) = \lim_{n \to \infty} \tau(a^{\frac{1}{n}})$ for $a \in M_{\infty}(A)^+$.

When A has stable rank one, the condition that A has an almost divisible Cuntz semigroup is equivalent to there being a unital *-homomorphism from a dimension drop C^* -algebra $Z_{n,n+1} = \{f \in C([0,1], M_n \otimes M_{n+1}) \mid f(0) \in M_n \otimes \mathbb{C} \text{ and } f(1) \in \mathbb{C} \otimes M_{n+1}\}$ by [23, Proposition 2.4]. Note that the Jiang-Su algebra \mathcal{Z} can be constructed as the inductive limit of the sequence of such dimension C^* -algebras [8]. Then we show that, when A is a unital C^* -algebra of stable rank one, if A has an almost divisible Cuntz semigroup, then P and $C^*\langle A, e_P \rangle$ have an almost divisible Cuntz semigroup. Therefore, if A is a separable, unital, exact, pure C^* algebra of stable rank one, then P and $C^*\langle A, e_P \rangle$ are pure in the sense of Winter [30]. We stress that we do not need the simplicity of A and P. The first draft of this paper was posted on the arXiv in 2011 (arXiv.1111.1808 v.1). Very recently, Nawata [14] and Santiago [24] studied the general Rokhlin property for actions on projectionless C^* -algebras and Barlak and Szabo [3] defined the sequential split *-homomorphism, and they pointed out that the inclusion *-homomorphism from P into A is sequentially split using the inclusion map $A \to P^{\infty}$ in [12, 5.1]. However, the results presented here are of significance.

2. Preliminaries

In this section, we recall the finitely saturated property and local C-property. If we consider the class of unital C^* -algebras with finite decomposable rank (respectively, finite nuclear dimension), we can show that they are finitely saturated. We also recall C^* -index theory and present the relevant basic facts.

2.1. Local C-property and nuclear dimension. First we recall the definition of the finitely saturated property in [15].

Definition 2.1. Let C be a class of separable unital C^* -algebras. Then C is *finitely saturated* if the following closure conditions hold:

- (1) If $A \in \mathcal{C}$ and $B \cong A$, then $B \in \mathcal{C}$.
- (2) If $A_1, A_2, \ldots, A_n \in \mathcal{C}$, then $\bigoplus_{k=1}^n A_k \in \mathcal{C}$.
- (3) If $A \in \mathcal{C}$ and $n \in \mathbb{N}$, then $M_n(A) \in \mathcal{C}$.
- (4) If $A \in \mathcal{C}$ and $p \in A$ is a nonzero projection, then $pAp \in \mathcal{C}$.

Moreover, the *finite saturation* of a class C is the smallest finitely saturated class that contains C.

We recall the definition of the local C-property in [15].

Definition 2.2. Let \mathcal{C} be a class of separable unital C^* -algebras. A unital local \mathcal{C} -algebra is a separable unital C^* -algebra A such that for every finite set $S \subset A$ and every $\varepsilon > 0$ there is a C^* -algebra B in the finite saturation of \mathcal{C} and a unital \ast -homomorphism $\varphi \colon B \to A$ (not necessarily injective) such that $\operatorname{dist}(a, \varphi(B)) < \varepsilon$ for all $a \in S$. If one can always choose $B \in \mathcal{C}$, rather than merely in its finite saturation, we call A a unital strong local \mathcal{C} -algebra.

If C is the set of unital C^* -algebras A with $dr A < \infty$ (respectively, $\dim_{nuc} A < \infty$) in the sense of Winter, then any local C-algebra belongs to C. (See Proposition 2.4.)

First, we recall the definition of the covering dimension for nuclear C^* -algebras:

Definition 2.3. [29, 31] Let A be a separable C^* -algebra.

- (1) A completely positive map $\varphi \colon \bigoplus_{i=1}^{s} M_{r_i} \to A$ has order zero if it preserves orthogonality, that is, $\varphi(e)\varphi(f) = \varphi(f)\varphi(e) = 0$ for $e, f \in \bigoplus_{i=1}^{s} M_{r_i}$ with ef = fe = 0.
- (2) A completely positive map $\varphi \colon \bigoplus_{i=1}^{s} M_{r_i} \to A$ is *n*-decomposable if there is a decomposition $\{1, \ldots, s\} = \coprod_{j=0}^{n} I_j$ such that the restriction $\varphi^{(j)}$ of φ to $\bigoplus_{i \in I_j} M_{r_i}$ has order zero for each $j \in \{0, \ldots, n\}$.

- (3) A has decomposition rank n, drA = n, if n is the least integer such that the following holds: Given $\{a_1, \ldots, a_m\} \subset A$ and $\varepsilon > 0$, there is a completely positive approximation (F, ψ, φ) for a_1, \ldots, a_m within ε , i.e., F is a finite-dimensional C^* -algebra, and $\psi: A \to F$ and $\varphi: F \to A$ are completely positive contractions such that
 - (a) $\|\varphi\psi(a_i) a_i\| < \varepsilon$ and
 - (b) φ is *n*-decomposable.
 - If no such *n* exists, we write $dr A = \infty$.
- (4) A has nuclear dimension n, $\dim_{nuc} A = n$, if n is the least integer such that the following holds: Given $\{a_1, \ldots, a_m\} \subset A$ and $\varepsilon > 0$, there is a completely positive approximation (F, ψ, φ) for a_1, \ldots, a_m within ε , i.e., F is a finite-dimensional C^* -algebra, and $\psi \colon A \to F$ and $\varphi \colon F \to A$ are completely positive such that
 - (a) $\|\varphi\psi(a_i) a_i\| < \varepsilon$,
 - (b) $\|\psi\| \le 1$, and
 - (c) φ is *n*-decomposable, and each restriction $\varphi|_{\bigoplus_{i \in I_j} M_{r_i}}$ is completely positive contractive.
 - If no such *n* exists, we write $\dim_{\text{nuc}} A = \infty$.

Proposition 2.4. For each $n \in \mathbb{N} \cup \{0\}$, let \mathcal{C}_n be the set of unital C^* -algebras A with $\operatorname{dr} A \leq n$ and $\mathcal{C}_{\operatorname{nuc}_n}$ be the set of unital C^* -algebras A with $\operatorname{dim}_{\operatorname{nuc}} A \leq n$. Then both \mathcal{C}_n and $\mathcal{C}_{\operatorname{nuc}_n}$ are finitely saturated.

Proof. By [11, Remark 3.2 (iii): (3.1)–(3.3), Proposition 3.8, and Corollary 3.9], we know that C_n is finitely saturated.

Similarly, it follows from [31, Propostion 2.3 and Corollary 2.8] that C_{nuc_n} is finitely saturated.

2.2. C^* -index theory. We recall an index in terms of a quasi-basis following Watatani [28].

Definition 2.5. Let $A \supset P$ be an inclusion of unital C^* -algebras with a conditional expectation E from A onto P.

(1) A quasi-basis for E is a finite set $\{(u_i, v_i)\}_{i=1}^n \subset A \times A$ such that, for every $a \in A$,

$$a = \sum_{i=1}^{n} u_i E(v_i a) = \sum_{i=1}^{n} E(au_i) v_i.$$

(2) When $\{(u_i, v_i)\}_{i=1}^n$ is a quasi-basis for E, we define Index E by

$$\mathrm{Index}E = \sum_{i=1}^{n} u_i v_i.$$

When there is no quasi-basis, we write $\text{Index}E = \infty$. IndexE is called the Watatani index of E.

Remark 2.6. We give several remarks about the above definitions.

- (1) Index *E* does not depend on the choice of the quasi-basis in the above formula, and it is a central element of A [28, Proposition 1.2.8].
- (2) Once we know that there exists a quasi-basis, we can choose one of the form $\{(w_i, w_i^*)\}_{i=1}^m$, which shows that Index*E* is a positive element [28, Lemma 2.1.6].
- (3) By the above statements, if A is a simple C^* -algebra, then IndexE is a positive scalar.
- (4) If $\operatorname{Index} E < \infty$, then E is faithful, i.e., $E(x^*x) = 0$ implies x = 0 for $x \in A$.

Remark 2.7. As in the same argument in [25] we have an example of inclusion of C^* -algebras that do not arise as C^* -crossed products. That is, let α be an outer action of a finite group G on a simple C^* -algebra A and let H be a non-normal subgroup of G. Then an inclusion $A^G \subset A^H$ does not arise as a C^* -crossed product.

Remark 2.8. Let $P \subset A$ be an inclusion of unital C^* -algebras and let $E: A \to P$ be of index finite type. As shown in [16] and the following sections, we know that several local properties (stable rank one, real rank zero, AF, AI, AT, the order of projections over A determined by traces, and \mathcal{D} -absorbing) of A are inherited by P when E has the Rokhlin property. The converse, however, is not true. Indeed, there is an example of an inclusion of C^* -algebras $A^{\mathbb{Z}/2\mathbb{Z}} \subset A$ such that a conditional expectation $E: A \to A^{\mathbb{Z}/2Z}$ is of index finite type and has the Rokhlin property, and $A^{\mathbb{Z}/2Z}$ is the CAR algebra, but A is not an AF C^* -algebra.

Let α be the symmetry on the CAR algebra \mathcal{U} constructed by Blackadar [1] such that $\mathcal{U}^{\mathbb{Z}/2\mathbb{Z}}$ is not an AF C^* -algebra. Then α does not have the Rokhlin property. Indeed, this actually has the tracial Rokhlin property. (See the definition in [18].) However, its dual action $\hat{\alpha}$ has the Rokhlin property by [19, Proposition 3.5]. Set $P = \mathcal{U}$ and $A = \mathcal{U} \rtimes_{\alpha} \mathbb{Z}/2\mathbb{Z}$. Then A is not an AF C^* -algebra, because A and $\mathcal{U}^{\mathbb{Z}/2\mathbb{Z}}$ are stably isomorphic. Since $P = A^{\hat{\alpha}}$ and $\hat{\alpha}$ has the Rokhlin property, the canonical conditional expectation $E: A \to P$ is of index finite type and has the Rokhlin property by [12].

Let \mathcal{C} be the set of all finite-dimensional C^* -algebras. Then since P is an AF C^* -algebra, we know that P is a local \mathcal{C} -algebra. However, obviously A is not a local \mathcal{C} - algebra.

2.3. Rokhlin property for an inclusion of unital C^* -algebras. For a C^* -algebra A, we set

$$c_0(A) = \{(a_n) \in l^{\infty}(\mathbb{N}, A) : \lim_{n \to \infty} ||a_n|| = 0\},\$$

$$A^{\infty} = l^{\infty}(\mathbb{N}, A)/c_0(A).$$

We identify A with the C^{*}-subalgebra of A^{∞} consisting of the equivalence classes of constant sequences and set

$$A_{\infty} = A^{\infty} \cap A'.$$

For an automorphism $\alpha \in \operatorname{Aut}(A)$, we denote by α^{∞} and α_{∞} the automorphisms of A^{∞} and A_{∞} induced by α , respectively.

Izumi defined the Rokhlin property for a finite group action in [7, Definition 3.1] as follows:

Definition 2.9. Let α be an action of a finite group G on a unital C^* -algebra A. α is said to have the *Rokhlin property* if there exists a partition of unity $\{e_g\}_{g\in G} \subset A_{\infty}$ consisting of projections satisfying

$$(\alpha_q)_{\infty}(e_h) = e_{qh} \text{ for } g, h \in G.$$

We call $\{e_q\}_{q\in G}$ Rokhlin projections.

Let $A \supset P$ be an inclusion of unital C^* -algebras. For a conditional expectation E from A onto P, we denote by E^{∞} the natural conditional expectation from A^{∞} onto P^{∞} induced by E. If E has a finite index with a quasi-basis $\{(u_i, v_i)\}_{i=1}^n$, then E^{∞} also has a finite index with a quasi-basis $\{(u_i, v_i)\}_{i=1}^n$ and $\operatorname{Index}(E^{\infty}) = \operatorname{Index} E$.

Motivated by Definition 2.9, Kodaka, Osaka, and Teruya introduced the Rokhlin property for an inclusion of unital C^* -algebras with a finite index [12].

Definition 2.10. A conditional expectation E of a unital C^* -algebra A with a finite index is said to have the *Rokhlin property* if there exists a projection $e \in A_{\infty}$ satisfying

$$E^{\infty}(e) = (\mathrm{Index}E)^{-1} \cdot 1$$

and a map $A \ni x \mapsto xe$ is injective. We call e a Rokhlin projection.

The following result states that the Rokhlin property of an action in the sense of Izumi implies that the canonical conditional expectation from a given simple C^* -algebra to its fixed-point algebra has the Rokhlin property in the sense of Definition 2.10.

Proposition 2.11. [12] Let α be an action of a finite group G on a simple unital C^* -algebra A and E be the canonical conditional expectation from A onto the fixed-point algebra $P = A^{\alpha}$ defined by

$$E(x) = \frac{1}{\#G} \sum_{g \in G} \alpha_g(x) \quad \text{for } x \in A,$$

where #G is the order of G. Then α has the Rokhlin property if and only if there is a projection $e \in A_{\infty}$ such that $E^{\infty}(e) = \frac{1}{\#G} \cdot 1$, where E^{∞} is the conditional expectation from A^{∞} onto P^{∞} induced by E.

Remark 2.12. In Proposition 2.11 we need the simplicity of a given C^* -algebra A so that the canonical condition expectation $E: A \to A^{\alpha}$ has the Rokhlin property, because we do not know whether a map $A \ni a \mapsto ae \in A^{\infty}$ is injective. When A is simple, there is no difference between the Rokhlin property of an action α and that of a conditional expectation E.

128

PERMANENCE OF NUCLEAR DIMENSION

3. Permanence properties for decomposition rank and nuclear dimension

In this section, we give a partial answer to Problem 9.4 in [31]. More generally, we give formulas for decomposable rank and nuclear dimension for an inclusion of unital C^* -algebras of finite index under the assumption of the Rokhlin property for the inclusion.

The following should be well known.

Theorem 3.1. Let $n \in \mathbb{N} \cup \{0\}$ and C_n be the set of separable unital C^* -algebras D with $\operatorname{dr} D \leq n$ and let C_{nuc_n} be the set of separable unital C^* -algebras D with $\operatorname{dim}_{\operatorname{nuc}} D \leq n$.

- (1) If A is a separable, unital, local C_n , C^{*}-algebra, then A belongs to C_n , i.e., $drA \leq n$.
- (2) If A is a separable, unital, local C_{nuc_n} , C^{*}-algebra, then A belongs to C_{nuc_n} , *i.e.*, dim_{nuc} $A \leq n$.

Corollary 3.2(2) is a partial answer to Problem 9.4 in [31].

Corollary 3.2. For $n \in \mathbb{N} \cup \{0\}$, let C_n (respectively, C_{nuc_n} or $C_{\text{lnuc}} = \bigcup_{n \in \mathbb{N}} C_{\text{nuc}_n}$) be the set of separable unital C^* -algebras D with $dr D \leq n$ (respectively, $\dim_{\text{nuc}} D \leq n$, or locally finite nuclear dimension). Let A be a separable unital C^* -algebra and α be an action of a finite group G on A. Suppose that α has the Rokhlin property. Then we have the following:

- (1) If A is a local \mathcal{C}_n , then $\operatorname{dr}(A^{\alpha}) \leq n$ and $\operatorname{dr}(A \rtimes_{\alpha} G) \leq n$.
- (2) If A is a local $\mathcal{C}_{\operatorname{nuc}_n}$, then $\dim_{\operatorname{nuc}}(A^{\alpha}) \leq n$ and $\dim_{\operatorname{nuc}}(A \rtimes_{\alpha} G) \leq n$.
- (3) If A has locally finite nuclear dimension, then A^{α} and $A \rtimes_{\alpha} G$ have locally finite nuclear dimension.

Proof. We will show that, if A is a local \mathcal{C}_n , C^{*}-algebra, $A \rtimes_{\alpha} G$ is a local \mathcal{C}_n -algebra.

Since α has the Rokhlin property, for any finite set $S \subset A \rtimes_{\alpha} G$ and $\varepsilon > 0$, there are n, projection $f \in A$, and a unital *-homomorphism $\varphi \colon M_n \otimes fAf \to A \rtimes_{\alpha} G$ such that dist $(a, \varphi(M_n \otimes fAf)) < \varepsilon$ by [18, Theorem 2.2]. Since $A \in C_n$ by Theorem 3.1, $M_n \otimes fAf \in C_n$. Hence, $A \rtimes_{\alpha} G$ is a local C_n -algebra. Again from Theorem 3.1, dr $(A \rtimes_{\alpha} G) \leq n$. Since A^{α} is isomorphic to a corner C^* subalgebra $q(A \rtimes_{\alpha} G)q$ for some projection $q \in A \rtimes_{\alpha} G$, we have dr $(A^{\alpha}) \leq n$ by Proposition 2.4.

Similarly, if A is a local $\mathcal{C}_{\operatorname{nuc}_n}$ (respectively, a local $\mathcal{C}_{\operatorname{lnuc}}$), we have $\dim_{\operatorname{nuc}}(P^{\alpha}) \leq n$ and $\dim_{\operatorname{nuc}}(A \rtimes_{\alpha} G) \leq n$ (respectively, A^{α} and $A \rtimes_{\alpha} G$ are local $\mathcal{C}_{\operatorname{lnuc}}$, that is, A^{α} and $A \rtimes_{\alpha} G$ have locally finite nuclear dimension).

Remark 3.3. When α does not have the Rokhlin property, generally the estimate in Corollary 3.2 is not correct. Indeed, let α be the symmetry action on the CAR algebra \mathcal{U} constructed by Blackadar in [1] such that $\mathcal{U}^{\mathbb{Z}/2\mathbb{Z}}$ is not an AF C^* -algebra. Then α does not have the Rokhlin property by [19, Proposition 3.5], and dim_{nuc}($\mathcal{U}^{\mathbb{Z}/2\mathbb{Z}}$) $\neq 0$, but dim_{nuc}(\mathcal{U}) = 0. In Corollary 3.2, since α is outer by [18, Lemm 1.5], $A \subset A \rtimes_{\alpha} G$ is of finite index in the sense of Watatani by [28, Proposition 2.8.6]. Therefore, we shall extend Corollary 3.2 for a pair of unital C^* -algebras $P \subset A$ of index finite type.

Theorem 3.4. For $n \in \mathbb{N} \cup \{0\}$, let \mathcal{C}_n be the set of separable unital C^* -algebras D with $\operatorname{dr} D \leq n$ and let $\mathcal{C}_{\operatorname{nuc}_n}$ be the set of separable unital C^* -algebras D with $\operatorname{dim}_{\operatorname{nuc}} D \leq n$. Further, let $P \subset A$ be an inclusion of unital C^* -algebras and $E: A \to P$ be a faithful conditional expectation of index finite type. Suppose that E has the Rokhlin property.

(1) If A is a unital, local \mathcal{C}_n , C^{*}-algebra, then

$$\mathrm{dr}P \leq n.$$

(2) If A is a unital, local $\mathcal{C}_{\operatorname{nuc}_n}$, C^{*}-algebra, then

$$\dim_{\mathrm{nuc}} P \le n.$$

Proof. (1) For any finite set $\mathcal{F} = \{a_1, a_2, \ldots, a_l\} \subset P$ and $\varepsilon > 0$, since dr $A \leq n$, there are $B \in \mathcal{C}_n$, a *-homomorphism $\rho: B \to A$, a finite set $\{b_1, b_2, \ldots, b_l\}$ in $\rho(B)$, and a completely positive approximation (F, ψ, φ) such that

- (1) ψ and φ are completely positive contractive,
- (2) there are *n*-central projections $q^{(m)}$ of F such that $F = \bigoplus q^{(m)} F q^{(m)}$ and $\varphi_{|q^{(m)}Fq^{(m)}}$ is order zero,
- (3) $\mathcal{F} \subset_{\varepsilon} \rho(B)$, i.e., $||a_i b_i|| < \varepsilon$ for $1 \le i \le l$, and
- (4) $\|\varphi \circ \psi(b_i) b_i\| < \varepsilon \text{ for } 1 \le i \le l.$

For $x \in \rho(B)$, we have

$$\varphi \circ \psi(x) = \varphi(\sum_{m} q^{(m)} \psi(x) q^{(m)})$$
$$= \sum_{m} (\varphi_{|q^{(m)}Fq^{(m)}} \circ q^{(m)} \psi q^{(m)})(x)$$

Then each $\varphi_{|q^{(m)}Fq^{(m)}}$ is an order-zero map.

From applying the same argument to each $q^{(m)}\psi q^{(m)}: \rho(B) \to q^{(m)}Fq^{(m)}$ and $\varphi_{|q^{(m)}Fq^{(m)}}: q^{(m)}Fq^{(m)} \to C^*(\varphi_{|q^{(m)}Fq^{(m)}}(q^{(m)}Fq^{(m)}))$, we have completely positive contractions $\psi_m: A \to q^{(m)}Fq^{(m)}$ and $\varphi_m: C^*(\varphi_{|q^{(m)}Fq^{(m)}}(q^{(m)}Fq^{(m)})) \to P$ such that

- (1) $(\psi_m)|_{\rho(B)} = q^{(m)}\psi q^{(m)}$ and
- (2) $\|\sum_{m} (\varphi_m \circ \overline{\psi}_m)(b_i) a_i\| < 2n\varepsilon$ for $1 \le i \le l$.

Set $\hat{\varphi} = \sum_{m} \varphi_{m}$ and $\hat{\psi} = \sum_{m} \psi_{m}$. Then $\hat{\varphi}$ is *n*-decomposable. We can show that $(F, \hat{\varphi}, \hat{\psi})$ is the completely positive approximation for $a_{1}, a_{2}, \ldots, a_{l}$ within

 $(2n+1)\varepsilon$. Indeed,

$$\begin{aligned} \|(\hat{\varphi} \circ \hat{\psi})(a_i) - a_i\| &\leq \|(\hat{\varphi} \circ \hat{\psi})(a_i - b_i)\| + \|(\hat{\varphi} \circ \hat{\psi})(b_i) - a_i\| \\ &\leq \|a_i - b_i\| + \|\sum_m (\varphi_m \circ \psi_m)(b_i) - a_i\| \\ &\leq \varepsilon + 2n\varepsilon \\ &= (2n+1)\varepsilon \end{aligned}$$

for $1 \leq i \leq l$. Therefore, we conclude that $dr P \leq n$.

(2) By a similar argument to that for (1), we can conclude that $\dim_{\text{nuc}} P \leq n$.

4. Pureness for C^* -algebras

In this section, we consider the pureness for a pair $P \subset A$ of unital C^* -algebras, which is defined in [30], and show that, if the inclusion $P \subset A$ has the Rokhlin property and A is pure, then P is pure.

Definition 4.1. [10, 20] Let $M_{\infty}(A)$ denote the algebraic limit of the direct system $(M_n(A), \phi_n)$, where $\phi_n \colon M_n(A) \to M_{n+1}(A)$ is given by

$$a \mapsto \left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array} \right).$$

Let $M_{\infty}(A)_+$ (respectively, $M_n(A)_+$) denote the positive elements in $M_{\infty}(A)$ (respectively, $M_n(A)_+$). Given $a, b \in M_{\infty}(A)_+$, we say that a is *Cuntz subequivalent* to b (written $a \leq b$) if there is a sequence $(v_n)_{n=1}^{\infty}$ of elements in some $M_k(A)$ such that

$$||v_n b v_n^* - a|| \to 0 \ (n \to \infty).$$

We say that a and b are *Cuntz equivalent* if $a \leq b$ and $b \leq a$. This relation is an equivalence relation, and we write $\langle a \rangle$ for the equivalence class of a. The set $W(A) := M_{\infty}(A)_{+} / \sim$ becomes a positive ordered Abelian semigroup when equipped with the operation

$$\langle a \rangle + \langle b \rangle = \langle a \oplus b \rangle$$

and the partial order

$$\langle a \rangle \le \langle b \rangle \Longleftrightarrow a \preceq b.$$

Let T(A) and QT(A) denote the tracial state space and the space of the normalized 2-quasitraces on A [2, Definition II. 1. 1], respectively. Note that $T(A) \subset QT(A)$ and equality holds when A is exact [6]. Let S(W(A)) denote the set of additive and order-preserving maps d from W(A) to \mathbb{R}^+ having the property $d(\langle 1_A \rangle) = 1$. Such maps are called states. When $d: M_{\infty}(A)_+ \to \mathbb{R}_+$ is a dimension function, that is, $d(a \oplus b) = d(a) + d(b)$, and $d(a) \leq d(b)$ if $a \leq b$ for all $a, b \in M_{\infty}(A)_+$, this gives an additive order-preserving map $\tilde{d}: W(A) \to \mathbb{R}^+$ given by $\tilde{d}(\langle a \rangle) = d(a)$ for all $a \in M_{\infty}(A)_+$. Given τ in QT(A), one may define a map $d_{\tau} \colon M_{\infty}(A)_{+} \to \mathbb{R}^{+}$ by

$$d_{\tau}(a) = \lim_{n \to \infty} \tau(a^{\frac{1}{n}}).$$

This map is lower semicontinuous and depends only on the Cuntz equivalence class of a. Then $d_{\tau} \in S(W(A))$. Such states are called *lower semicontinuous* dimension functions and the set of all such functions is denoted by LDF(A). It was proved in [2, Theorem II. 4. 4] that QT(A) is a simplex and the map from QT(A) to LDF(A) by $\tau \mapsto d_{\tau}$ in the above is bijective and affine by [2, Theorem II. 2. 2].

Definition 4.2. A C^* -algebra A is said to have strict comparison of positive elements or simply strict comparison if, for all $a, b \in M_{\infty}(A)_+$, A has the property that $a \leq b$ whenever s(a) < s(b) for every $s \in LDF(A)$.

Remark 4.3. When A is a simple, unital, C*-algebra, A has strict comparison if and only if W(A) is almost unperforated by [22, Corollary 4.6]. Recall that W(A) is almost unperforated if, for $x, y \in W(A)$ and for all natural numbers n, $(n+1)x \leq ny$ implies that $x \leq y$.

The following should be well known, so we omit its proof.

Lemma 4.4. Let A be a unital C^* -algebra and suppose that W(A) has strict comparison. Then we have the following:

- (1) For $n \in \mathbb{N}$, $M_n(A)$ has strict comparison.
- (2) For a nonzero hereditary C^* -subalgebra B of A, B has strict comparison.

Theorem 4.5. Let A be a unital exact C^* -algebra that has strict comparison. Let $E: A \to P$ be of index finite type. Suppose that E has the Rokhlin property. Then we have the following:

- (1) P has strict comparison.
- (2) The basic construction $C^*\langle A, e_P \rangle$ has strict comparison.

Proof. Note that P is also exact [27, 9]. Hence, we know that QT(A) = T(A) and QT(P) = T(P) by [6].

Since $E \otimes id: A \otimes M_n \to P \otimes M_n$ is of index finite type and has the Rokhlin property, it suffices to verify the condition that, whenever $a, b \in P$ are positive elements such that $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in T(P)$, then $a \leq b$.

Let $a, b \in P$ be projections such that $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in T(P)$. Since the restriction of a tracial state on A is a tracial state on P, $d_{\tau}(a) < d_{\tau}(b)$ for all $\tau \in T(A)$. Since A has strict comparison, $a \leq b$ in A.

Since $E: A \to P$ has the Rokhlin property, there is an injective *-homomorphism $\beta: A \to P^{\infty}$ such that $\beta(x) = x$ for $x \in P$ by [12] [16, Lemma 2.5]. Then $\beta(a) \preceq \beta(b)$ in P^{∞} , that is, $a \preceq b$ in P^{∞} . Hence, $a \preceq b$ in P. Therefore, P has strict comparison.

132

Since $C^*\langle A, e_P \rangle$ is isomorphic to the corner C^* -algebra $qM_n(P)q$ for some $n \in \mathbb{N}$ and projection $q \in M_n(P)$, from Lemma 4.4 we conclude that $C^*\langle A, e_P \rangle$ has strict comparison.

Definition 4.6. We say that the order on projections over a unital C^* -algebra A is determined by traces if, whenever $p, q \in M_{\infty}(A)$ are projections such that $\tau(p) < \tau(q)$ for all $\tau \in T(A)$, then p is the Murray–von Neumann equivalent to a subprojection of q.

Theorem 4.7. Let A be a unital C^* -algebra such that the order on projections over A is determined by traces. Let $E: A \to P$ be of index finite type. Suppose that E has the Rokhlin property. Then the order on projections over P is determined by traces.

Proof. Note that when p and q are projections, $p \leq q$ is equivalent to p being the Murray–von Neumann equivalent to a subprojection of q

As in the proof of Theorem 4.5 it suffices to verify the condition that, whenenver $p, q \in P$ are projections such that $d_{\tau}(p) < d_{\tau}(q)$ for $\tau \in T(P)$, then $p \preceq q$ in P.

As in the proof of Theorem 4.5, there is an injective *-homomorphism $\beta : A \to P^{\infty}$ such that $\beta(x) = x$ for $x \in P$. Then $\beta(p) \preceq \beta(q)$ in P^{∞} , that is, $p \preceq q$ in P^{∞} . Hence $p \preceq q$ in P. Therefore, we get the conclusion.

Definition 4.8. Let A be a unital C^{*}-algebra. A is said to have an *almost divisible* Cuntz semigroup if, for any positive contraction $a \in M_{\infty}(A)$ and $0 \neq k \in \mathbb{N}$, there is $x \in W(A)$ such that

$$k \cdot x \le \langle a \rangle \le (k+1) \cdot x.$$

Proposition 4.9. Let A be a unital C^* -algebra of stable rank one that has an almost divisible Cuntz semigroup W(A). Let $E: A \to P$ be of index finite type. Suppose that E has the Rokhlin property. Then we have the following:

- (1) P has an almost divisible Cuntz semigroup W(P).
- (2) The basic construction $C^*\langle A, e_P \rangle$ has an almost divisible Cuntz semigroup $W(C^*\langle A, e_P \rangle).$

Proof. (1) Let $a \in M_{\infty}(P)$ be a positive contraction and $0 \neq k \in \mathbb{N}$. Since A has an almost divisible Cuntz semigroup, there is $x \in W(A)$ such that

$$k \cdot x \le \langle a \rangle \le (k+1) \cdot x.$$

It follows from [23, Proposition 5.1] that it is equivalent to there being a unital *-homomorphism from the C*-algebra $Z_{n,n+1}$ into A, where $Z_{k,k+1} = \{f \in C([0,1], M_k \otimes M_{k+1}) \mid f(0) \in M_k \otimes \mathbb{C}, f(1) \in \mathbb{C} \otimes M_{k+1}\}.$

Since the inclusion $P \subset A$ has the Rokhlin property, there is an injective *homomorphism $\beta: A \to P^{\infty}$ such that $\beta(a) = a$ for all $a \in P$. Hence, there is a unital *-homomorphism h from $Z_{k,k+1}$ into P^{∞} . Since $Z_{k,k+1}$ is weakly semiprojective by [8], there are an $m \in \mathbb{N}$ and unital *-homomorphism \tilde{h} from $Z_{k,k+1}$ into $\Pi_{n=m}^{\infty} P$ [13]. Therefore, there is a unital *-homomorphism from $Z_{k,k+1}$ into P. Again from [23, Proposition 5.1], there is $y \in W(P)$ such that

$$k \cdot y \le \langle a \rangle \le (k+1) \cdot y.$$

(2) Since W(A) is almost divisible, for any $k \in \mathbb{N}$, there exists a unital *homomorphism $h: \mathbb{Z}_{k,k+1} \to A$. Hence, there is a unital *-homomorphism $\iota \circ h: \mathbb{Z} \to \mathbb{C}^* \langle A, e_P \rangle$. Then we conclude that $W(\mathbb{C}^* \langle A, e_P \rangle)$ is almost divisible by [22, Lemma 4.2].

Definition 4.10. [30] Let A be a separable unital C^* -algebra. We say that A is pure if W(A) has strict comparison and is almost divisible.

We note that any separable simple unital Jiang-Su absorbing C^* -algebra is pure. It is not yet known whether the converse is true.

Theorem 4.11. Let A be a separable, unital, exact, pure C^* -algebra of stable rank one; that is, A has strict comparison and W(A) is an almost divisible Cuntz semigroup. Let $E: A \to P$ be of index finite type. Suppose that E has the Rokhlin property. Then we have the following:

- (1) P is pure.
- (2) The basic construction $C^*\langle A, e_p \rangle$ is pure.

Proof. These results follow from Theorem 4.5 and Proposition 4.9. \Box

Corollary 4.12. Let A be a separable, simple, unital, exact, pure C^{*}-algebra of stable rank one and let α be an action of a finite group G on A. Suppose that α has the Rokhlin property. Then A^G and $A \rtimes_{\alpha} G$ are pure.

Proof. Since α has the Rokhlin property, the canonical conditional expectation $E: A \to A^{\alpha}$ has the Rokhlin projection e by Proposition 2.11. Since A is simple, a map $A \ni x \mapsto xe$ is injective. This means that E has the Rokhlin property. Hence, the conclusion follows from Theorem 4.11.

Remark 4.13. From [30, Corollary 6.2], if A is a separable, simple, unital, pure C^* -algebra with locally finite nuclear dimension, then A is \mathcal{Z} -absorbing. Hence, it seems that the \mathcal{Z} -absorbing property is stable under the condition that a pair of unital C^* -algebras is of index finite type and has the Rokhlin property. Indeed, under this assumption, if A is \mathcal{D} -absorbing (i.e., $A \otimes \mathcal{D} \cong A$) for a strongly self-absorbing C^* -algebra \mathcal{D} , then P is also \mathcal{D} -absorbing [16].

References

- 1. B. Blackadar, Symmetries of the CAR algebras, Ann. Math. 131(1990), 589-623.
- B. Blackadar and D. Handelman, Dimension functions and traces on C^{*}-algebras, J. Funct. Anal. 45 (1982), 297–340.
- S. Barlak and G. Szabo, Sequentially split *-homomorphoisms between C*-algebras, Internat. J. Math. 27 (2016), no. 13, 1650105, 48 pp.
- G. A. Elliott, G. Gong, H. Lin, and Z. Niu, On the classification of simple amenable C^{*}algebras with finite decomposition rank, II, arXiv:1507.03437.

- G. Gong, H. Lin, and Z. Niu, Classification of finite simple amenable Z-stable C*-algebras, arXiv:1501.00135.
- 6. U. Haagerup, Quasi-traces on exact C*-algebras are traces, preprint, 1991.
- M. Izumi, Finite group actions on C*-algebras with the Rohlin property-I, Duke Math. J. 122 (2004), 233–280.
- X. Jiang and H. Su, On a simple unital projectionless C*-algebra, Amer. J. Math. 121 (1999), 359–413.
- 9. E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), no. 1, 35–63.
- E. Kirchberg and M. Rørdam, Non-simply purely infinite C*-algebras, Amer. J. Math. 122 (2000), 637–666.
- E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, Internat. J. Math. 15 (2004), 63–85.
- K. Kodaka, H. Osaka, and T. Teruya, The Rohlin property for inclusions of C^{*}-algebras with a finite Watatani index, Contemp. Math. 503 (2009), 177–195.
- T. A. Loring, Lifting Solutions to Perturbing Problems in C^{*}-algebras, Fields Institute Monographs no. 8, American Mathematical Society, Providence RI, 1997.
- N. Nawata, Finite group actions on certain stably projectionless C* -algebras with the Rohlin property, Trans. Amer. Math. Soc. 368 (2016), no. 1, 471–493.
- 15. H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin property, Math. Z. **270** (2012), 19–42.
- H. Osaka and T. Teruya, Strongly self-absorbing property for inclusions of C^{*}-algebras with a finite Watatani index, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1685–1702.
- V. I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, 146. Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986.
- N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C^{*}-algebras, Amer. J. Math. 133 (2011), no. 3, 581–636 (arXiv:math.OA/0609782).
- N. C. Phillips, *Finite cyclic actions with the tracial Rokhlin property*, Trans. Amer. Math. Soc. 367 (2015), no. 8, 5271–5300. (arXiv:mathOA/0609785).
- M. Rørdam, On the structure of simple C*-algebras tensored with a UHF algebra II, J. Funct. Anal. 107 (1992), 255–269.
- M. Rørdam, Classification of nuclear, simple C*-algebras, Encycl. Math. Sci. 126, Springer, Berlin, 2002.
- M. Rørdam, The stable and the real rank of Z-absorbing C*-algebras, Int. J. Math. 10 (2004), 1065–1084.
- M. Rørdam and W. Winter, The Jiang-Su algebra revised, J. Reine Angew. Math. 642 (2010), 129–155.
- L. Santiago, Crossed products by actions of finite groups with the Rokhlin property, Int. J. Math. 26 (2015), no. 7, 1550042, 31 pp.
- T. Teruya, A characterization of normal extensions for subfactors, Proc. Amer. Math. Soc. 120 (1994), 781–783.
- 26. A. Tikusis, S. White, and W. Winter, *Quasidiagonality of nuclear C*-algebras*, arXiv:1509.08318.
- S. Wassermann, Slice map problem for C^{*}-algebras, Proc. London Math. Soc. (3), **32** (1976), no. 3, 537–559.
- Y. Watatani, Index for C^{*}-subalgebras, Mem. Amer. Math. Soc. 83 (1990), no. 424, vi+117 pp.
- 29. W. Winter, Covering dimension for nuclear C^{*}-algebras I, J. Funct. Anal. **199** (2003), 535–556.
- W. Winter, Nuclear dimension and Z-stability of pure C*-algebras, Invent. Math. 187 (2012), 259–342 (arXiv:mathOA/1006.2731v2.).
- W. Winter and J. Zacharias, The nuclear dimension of C^{*}-algebras, Adv. Math. 224 (2010), 461–498.

H. OSAKA, T. TERUYA

 $^{1}\mathrm{Department}$ of Mathematical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.

E-mail address: osaka@se.ritsumei.ac.jp

²FACULTY OF EDUCATION, GUNMA UNIVERSITY, MAEBASHI, GUNMA 371-8510, JAPAN. *E-mail address*: teruya@gunma-u.ac.jp