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PERMANENCE OF NUCLEAR DIMENSION FOR INCLUSIONS
OF UNITAL C∗-ALGEBRAS WITH THE ROKHLIN PROPERTY
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Abstract. Let P ⊂ A be an inclusion of unital C∗-algebras and E : A → P
be a faithful conditional expectation of index finite type. Suppose that E
has the Rokhlin property. Then dr(P ) ≤ dr(A) and dimnuc(P ) ≤ dimnuc(A).
This can be applied to Rokhlin actions of finite groups. We also show that
under the same above assumption if A is exact and pure, that is, the Cuntz
semigroups W (A) has strict comparison and is almost divisible, then P and
the basic contruction C∗〈A, eP 〉 are also pure.

1. Introduction

The nuclear dimension of a C∗-algebra was introduced by Winter and Zacharias
[31] as a noncommutative version of topological dimension, which is weaker than
the decomposition rank introduced by Kirchberg and Winter [11]. The class
of separable, simple, nuclear C∗-algebras with finite nuclear dimension accounts
for, however, a large part of separable, simple, nuclear C∗-algebras covered by
classification programs, in both stable finite and purely infinite cases [30]. Note
that if a C∗-algebra A has finite decomposition rank, then A should be stably
finite.

A C∗-algebra A is said to be pure if it has strict comparison of positive elements
and an almost divisible Cuntz semigroup W (A). Here, the Cuntz semigroup
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W (A) is said to be almost divisible if, for any positive contraction a ∈ M∞(A)
and 0 6= k ∈ N, there is x ∈ W (A) such that k · x ≤ 〈a〉 ≤ (k + 1) · x. Winter
[30] showed that a separable, simple, unital nonelementary C∗-algebra with finite
nuclear dimension is Z-stable, that is, absorbs the Jiang-Su algebra Z tensorially.
Note that the Jiang-Su algebra Z plays a crucial role in the Elliott conjecture of
the classification of separable, simple, unital, nuclear C∗-algebras. Indeed, very
recently the calssification theory of separabe, simple , unital, nuclear, Z-absorbing
C∗-algebras has been completed by Gong-Lin-Nu [5], Elliott-Gong-Lin-Niu [4],
and Tikuisis-White-Winter [26].

In this paper, we first consider the local C-property for separable unital C∗-
algebras in the sense of Osaka and Phillips [15] and show that, when A is a local
Cn (respectively, Cnucn), separable unital C∗-algebra and α is an action of a finite
group G on A, if α has the Rokhlin property in the sense of Izumi [7], then the
crossed product algebra A oα G belongs to Cn (respectively, Cnucn). This is a
partial answer to Problem 9.4 in [31]. We note that the Rokhlin property for an
action is essential in the estimate of the nuclear dimension of the crossed product
algebra by that of a given C∗-algebra, because there is the symmetry α on the
CAR algebra U without the Rokhlin property such that dimnuc(U ×α Z/2Z) 6= 0
(see Remark 3.3).

In Section 3, we extend the above observation for crossed product algebras to
inclusions of unital C∗-algebra of index finite type. Let P ⊂ A be an inclusion of
separable unital C∗-algebras of index finite type in the sense of Watatani [28] and
let a faithful conditional expectation E : A → P have the Rokhlin property in
the sense of Kodaka, Osaka, and Teruya [12]; then P belongs to Cn (respectively,
Cnucn) when A is a local Cn (respectively, Cnucn), unital C∗-algebra.

In Section 4, we investigate the permanence property of inclusions with the
Rokhlin property with respect to the strict comparison property. We show that
under the assumption that an inclusion P ⊂ A is of index finite type and E : A→
P has the Rokhlin property, if A is a unital exact C∗-algebra that has strict
comparison, then P and the basic construction C∗〈A, eP 〉 have strict comparison.
We need the exactness because in this case strict comparison is equivalent to,
for x and y in W (A), x ≤ y if dτ (x) ≤ dτ (y) for all tracial states τ in A, where
the function dτ is the dimension function on A induced by a trace τ , that is,
dτ (a) = limn→∞ τ(a

1
n ) for a ∈M∞(A)+.

When A has stable rank one, the condition that A has an almost divisible Cuntz
semigroup is equivalent to there being a unital ∗-homomorphism from a dimension
drop C∗-algebra Zn,n+1 = {f ∈ C([0, 1],Mn ⊗Mn+1) | f(0) ∈Mn ⊗ C andf(1) ∈
C ⊗Mn+1} by [23, Proposition 2.4]. Note that the Jiang-Su algebra Z can be
constructed as the inductive limit of the sequence of such dimension C∗-algebras
[8]. Then we show that, when A is a unital C∗-algebra of stable rank one, if A
has an almost divisible Cuntz semigroup, then P and C∗〈A, eP 〉 have an almost
divisible Cuntz semigroup. Therefore, if A is a separable, unital, exact, pure C∗-
algebra of stable rank one, then P and C∗〈A, eP 〉 are pure in the sense of Winter
[30]. We stress that we do not need the simplicity of A and P .
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The first draft of this paper was posted on the arXiv in 2011 (arXiv.1111.1808
v.1). Very recently, Nawata [14] and Santiago [24] studied the general Rokhlin
property for actions on projectionless C∗-algebras and Barlak and Szabo [3] de-
fined the sequential split ∗-homomorphism, and they pointed out that the inclu-
sion ∗-homomorphism from P into A is sequentially split using the inclusion map
A→ P∞ in [12, 5.1]. However, the results presented here are of significance.

2. Preliminaries

In this section, we recall the finitely saturated property and local C-property.
If we consider the class of unital C∗-algebras with finite decomposable rank (re-
spectively, finite nuclear dimension), we can show that they are finitely saturated.
We also recall C∗-index theory and present the relevant basic facts.

2.1. Local C-property and nuclear dimension. First we recall the definition
of the finitely saturated property in [15].

Definition 2.1. Let C be a class of separable unital C∗-algebras. Then C is
finitely saturated if the following closure conditions hold:

(1) If A ∈ C and B ∼= A, then B ∈ C.
(2) If A1, A2, . . . , An ∈ C, then

⊕n
k=1Ak ∈ C.

(3) If A ∈ C and n ∈ N, then Mn(A) ∈ C.
(4) If A ∈ C and p ∈ A is a nonzero projection, then pAp ∈ C.

Moreover, the finite saturation of a class C is the smallest finitely saturated class
that contains C.

We recall the definition of the local C-property in [15].

Definition 2.2. Let C be a class of separable unital C∗-algebras. A unital local
C-algebra is a separable unital C∗-algebra A such that for every finite set S ⊂ A
and every ε > 0 there is a C∗-algebra B in the finite saturation of C and a unital ∗-
homomorphism ϕ : B → A (not necessarily injective) such that dist(a, ϕ(B)) < ε
for all a ∈ S. If one can always choose B ∈ C, rather than merely in its finite
saturation, we call A a unital strong local C-algebra.

If C is the set of unital C∗-algebras A with drA <∞ (respectively, dimnucA <
∞ ) in the sense of Winter, then any local C-algebra belongs to C. (See Proposi-
tion 2.4.)

First, we recall the definition of the covering dimension for nuclear C∗-algebras:

Definition 2.3. [29, 31] Let A be a separable C∗-algebra.

(1) A completely positive map ϕ : ⊕s
i=1Mri

→ A has order zero if it preserves
orthogonality, that is, ϕ(e)ϕ(f) = ϕ(f)ϕ(e) = 0 for e, f ∈ ⊕s

i=1Mri
with

ef = fe = 0.
(2) A completely positive map ϕ : ⊕s

i=1 Mri
→ A is n-decomposable if there

is a decomposition {1, . . . , s} =
∐n

j=0 Ij such that the restriction ϕ(j) of ϕ

to ⊕i∈Ij
Mri

has order zero for each j ∈ {0, . . . , n}.
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(3) A has decomposition rank n, drA = n, if n is the least integer such
that the following holds: Given {a1, . . . , am} ⊂ A and ε > 0, there is a
completely positive approximation (F, ψ, ϕ) for a1, . . . , am within ε, i.e.,
F is a finite-dimensional C∗-algebra, and ψ : A → F and ϕ : F → A are
completely positive contractions such that
(a) ‖ϕψ(ai)− ai‖ < ε and
(b) ϕ is n-decomposable.

If no such n exists, we write drA = ∞.
(4) A has nuclear dimension n, dimnucA = n, if n is the least integer such

that the following holds: Given {a1, . . . , am} ⊂ A and ε > 0, there is a
completely positive approximation (F, ψ, ϕ) for a1, . . . , am within ε, i.e.,
F is a finite-dimensional C∗-algebra, and ψ : A → F and ϕ : F → A are
completely positive such that
(a) ‖ϕψ(ai)− ai‖ < ε,
(b) ‖ψ‖ ≤ 1, and
(c) ϕ is n-decomposable, and each restriction ϕ|⊕i∈Ij

Mri
is completely

positive contractive.
If no such n exists, we write dimnucA = ∞.

Proposition 2.4. For each n ∈ N ∪ {0}, let Cn be the set of unital C∗-algebras
A with drA ≤ n and Cnucn be the set of unital C∗-algebras A with dimnucA ≤ n.
Then both Cn and Cnucn are finitely saturated.

Proof. By [11, Remark 3.2 (iii): (3.1)–(3.3), Proposition 3.8, and Corollary 3.9],
we know that Cn is finitely saturated.

Similarly, it follows from [31, Propostion 2.3 and Corollary 2.8] that Cnucn is
finitely saturated. �

2.2. C∗-index theory. We recall an index in terms of a quasi-basis following
Watatani [28].

Definition 2.5. Let A ⊃ P be an inclusion of unital C∗-algebras with a condi-
tional expectation E from A onto P .

(1) A quasi-basis for E is a finite set {(ui, vi)}n
i=1 ⊂ A×A such that, for every

a ∈ A,

a =
n∑

i=1

uiE (via) =
n∑

i=1

E (aui) vi.

(2) When {(ui, vi)}n
i=1 is a quasi-basis for E, we define IndexE by

IndexE =
n∑

i=1

uivi.

When there is no quasi-basis, we write IndexE = ∞. IndexE is called the
Watatani index of E.

Remark 2.6. We give several remarks about the above definitions.
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(1) IndexE does not depend on the choice of the quasi-basis in the above
formula, and it is a central element of A [28, Proposition 1.2.8].

(2) Once we know that there exists a quasi-basis, we can choose one of the
form {(wi, w

∗
i )}m

i=1, which shows that IndexE is a positive element [28,
Lemma 2.1.6].

(3) By the above statements, if A is a simple C∗-algebra, then IndexE is a
positive scalar.

(4) If IndexE < ∞, then E is faithful, i.e., E(x∗x) = 0 implies x = 0 for
x ∈ A.

Remark 2.7. As in the same argument in [25] we have an example of inclusion of
C∗-algebras that do not arise as C∗-crossed products. That is, let α be an outer
action of a finite group G on a simple C∗-algebra A and let H be a non-normal
subgroup of G. Then an inclusion AG ⊂ AH does not arise as a C∗-crossed
product.

Remark 2.8. Let P ⊂ A be an inclusion of unital C∗-algebras and let E : A→ P
be of index finite type. As shown in [16] and the following sections, we know that
several local properties (stable rank one, real rank zero, AF, AI, AT, the order
of projections over A determined by traces, and D-absorbing) of A are inherited
by P when E has the Rokhlin property. The converse, however, is not true.
Indeed, there is an example of an inclusion of C∗-algebras AZ/2Z ⊂ A such that a
conditional expectation E : A→ AZ/2Z is of index finite type and has the Rokhlin
property, and AZ/2Z is the CAR algebra, but A is not an AF C∗-algebra.

Let α be the symmetry on the CAR algebra U constructed by Blackadar [1] such
that UZ/2Z is not an AF C∗-algebra. Then α does not have the Rokhlin property.
Indeed, this actually has the tracial Rokhlin property. (See the definition in [18].)
However, its dual action α̂ has the Rokhlin property by [19, Proposition 3.5]. Set
P = U and A = U oα Z/2Z. Then A is not an AF C∗-algebra, because A and
UZ/2Z are stably isomorphic. Since P = Aα̂ and α̂ has the Rokhlin property, the
canonical conditional expectation E : A → P is of index finite type and has the
Rokhlin property by [12].

Let C be the set of all finite-dimensional C∗-algebras. Then since P is an AF
C∗-algebra, we know that P is a local C-algebra. However, obviously A is not a
local C- algebra.

2.3. Rokhlin property for an inclusion of unital C∗-algebras. For a C∗-
algebra A, we set

c0(A) = {(an) ∈ l∞(N, A) : lim
n→∞

‖an‖ = 0},

A∞ = l∞(N, A)/c0(A).

We identify A with the C∗-subalgebra of A∞ consisting of the equivalence classes
of constant sequences and set

A∞ = A∞ ∩ A′.



128 H. OSAKA, T. TERUYA

For an automorphism α ∈ Aut(A), we denote by α∞ and α∞ the automorphisms
of A∞ and A∞ induced by α, respectively.

Izumi defined the Rokhlin property for a finite group action in [7, Definition
3.1] as follows:

Definition 2.9. Let α be an action of a finite group G on a unital C∗-algebra
A. α is said to have the Rokhlin property if there exists a partition of unity
{eg}g∈G ⊂ A∞ consisting of projections satisfying

(αg)∞(eh) = egh for g, h ∈ G.
We call {eg}g∈G Rokhlin projections.

Let A ⊃ P be an inclusion of unital C∗-algebras. For a conditional expectation
E from A onto P , we denote by E∞ the natural conditional expectation from A∞

onto P∞ induced by E. If E has a finite index with a quasi-basis {(ui, vi)}n
i=1,

then E∞ also has a finite index with a quasi-basis {(ui, vi)}n
i=1 and Index(E∞) =

IndexE.

Motivated by Definition 2.9, Kodaka, Osaka, and Teruya introduced the Rokhlin
property for an inclusion of unital C∗-algebras with a finite index [12].

Definition 2.10. A conditional expectation E of a unital C∗-algebra A with a
finite index is said to have the Rokhlin property if there exists a projection e ∈ A∞
satisfying

E∞(e) = (IndexE)−1 · 1
and a map A 3 x 7→ xe is injective. We call e a Rokhlin projection.

The following result states that the Rokhlin property of an action in the sense
of Izumi implies that the canonical conditional expectation from a given simple
C∗-algebra to its fixed-point algebra has the Rokhlin property in the sense of
Definition 2.10.

Proposition 2.11. [12] Let α be an action of a finite group G on a simple unital
C∗-algebra A and E be the canonical conditional expectation from A onto the
fixed-point algebra P = Aα defined by

E(x) =
1

#G

∑
g∈G

αg(x) for x ∈ A,

where #G is the order of G. Then α has the Rokhlin property if and only if there
is a projection e ∈ A∞ such that E∞(e) = 1

#G
· 1, where E∞ is the conditional

expectation from A∞ onto P∞ induced by E.

Remark 2.12. In Proposition 2.11 we need the simplicity of a given C∗-algebra A
so that the canonical condition expectation E : A→ Aα has the Rokhlin property,
because we do not know whether a map A 3 a 7→ ae ∈ A∞ is injective. When A
is simple, there is no difference between the Rokhlin property of an action α and
that of a conditional expectation E.
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3. Permanence properties for decomposition rank and nuclear
dimension

In this section, we give a partial answer to Problem 9.4 in [31]. More generally,
we give formulas for decomposable rank and nuclear dimension for an inclusion of
unital C∗-algebras of finite index under the assumption of the Rokhlin property
for the inclusion.

The following should be well known.

Theorem 3.1. Let n ∈ N∪ {0} and Cn be the set of separable unital C∗-algebras
D with drD ≤ n and let Cnucn be the set of separable unital C∗-algebras D with
dimnucD ≤ n.

(1) If A is a separable, unital, local Cn, C
∗-algebra, then A belongs to Cn, i.e.,

drA ≤ n.
(2) If A is a separable, unital, local Cnucn, C

∗-algebra, then A belongs to Cnucn,
i.e., dimnucA ≤ n.

Corollary 3.2(2) is a partial answer to Problem 9.4 in [31].

Corollary 3.2. For n ∈ N∪{0}, let Cn (respectively, Cnucn or Clnuc = ∪n∈NCnucn)
be the set of separable unital C∗-algebras D with drD ≤ n (respectively, dimnucD ≤
n, or locally finite nuclear dimension). Let A be a separable unital C∗-algebra and
α be an action of a finite group G on A. Suppose that α has the Rokhlin property.
Then we have the following:

(1) If A is a local Cn, then dr(Aα) ≤ n and dr(Aoα G) ≤ n.
(2) If A is a local Cnucn, then dimnuc(A

α) ≤ n and dimnuc(Aoα G) ≤ n.
(3) If A has locally finite nuclear dimension, then Aα and AoαG have locally

finite nuclear dimension.

Proof. We will show that, if A is a local Cn, C∗-algebra, A oα G is a local Cn-
algebra.

Since α has the Rokhlin property, for any finite set S ⊂ AoαG and ε > 0, there
are n, projection f ∈ A, and a unital ∗-homomorphism ϕ : Mn ⊗ fAf → Aoα G
such that dist(a, ϕ(Mn ⊗ fAf)) < ε by [18, Theorem 2.2]. Since A ∈ Cn by
Theorem 3.1, Mn ⊗ fAf ∈ Cn. Hence, A oα G is a local Cn-algebra. Again
from Theorem 3.1, dr(A oα G) ≤ n. Since Aα is isomorphic to a corner C∗-
subalgebra q(Aoα G)q for some projection q ∈ Aoα G, we have dr(Aα) ≤ n by
Proposition 2.4.

Similarly, if A is a local Cnucn (respectively, a local Clnuc), we have dimnuc(P
α) ≤

n and dimnuc(Aoα G) ≤ n (respectively, Aα and Aoα G are local Clnuc, that is,
Aα and Aoα G have locally finite nuclear dimension). �

Remark 3.3. When α does not have the Rokhlin property, generally the estimate
in Corollary 3.2 is not correct. Indeed, let α be the symmetry action on the
CAR algebra U constructed by Blackadar in [1] such that UZ/2Z is not an AF
C∗-algebra. Then α does not have the Rokhlin property by [19, Proposition 3.5],
and dimnuc(UZ/2Z) 6= 0, but dimnuc(U) = 0.
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In Corollary 3.2, since α is outer by [18, Lemm 1.5], A ⊂ A oα G is of finite
index in the sense of Watatani by [28, Proposition 2.8.6]. Therefore, we shall
extend Corollary 3.2 for a pair of unital C∗-algebras P ⊂ A of index finite type.

Theorem 3.4. For n ∈ N∪ {0}, let Cn be the set of separable unital C∗-algebras
D with drD ≤ n and let Cnucn be the set of separable unital C∗-algebras D with
dimnucD ≤ n. Further, let P ⊂ A be an inclusion of unital C∗-algebras and
E : A→ P be a faithful conditional expectation of index finite type. Suppose that
E has the Rokhlin property.

(1) If A is a unital, local Cn, C
∗-algebra, then

drP ≤ n.

(2) If A is a unital, local Cnucn, C
∗-algebra, then

dimnuc P ≤ n.

Proof. (1) For any finite set F = {a1, a2, . . . , al} ⊂ P and ε > 0, since drA ≤ n,
there are B ∈ Cn, a ∗-homomorphism ρ : B → A, a finite set {b1, b2, . . . , bl} in
ρ(B), and a completely positive approximation (F, ψ, ϕ) such that

(1) ψ and ϕ are completely positive contractive,
(2) there are n-central projections q(m) of F such that F = ⊕q(m)Fq(m) and

ϕ|q(m)Fq(m) is order zero,
(3) F ⊂ε ρ(B), i.e., ‖ai − bi‖ < ε for 1 ≤ i ≤ l, and
(4) ‖ϕ ◦ ψ(bi)− bi‖ < ε for 1 ≤ i ≤ l.

For x ∈ ρ(B), we have

ϕ ◦ ψ(x) = ϕ(
∑
m

q(m)ψ(x)q(m))

=
∑
m

(ϕ|q(m)Fq(m) ◦ q(m)ψq(m))(x).

Then each ϕ|q(m)Fq(m) is an order-zero map.

From applying the same argument to each q(m)ψq(m) : ρ(B) → q(m)Fq(m) and
ϕ|q(m)Fq(m) : q(m)Fq(m) → C∗(ϕ|q(m)Fq(m)(q(m)Fq(m))), we have completely positive

contractions ψm : A→ q(m)Fq(m) and
ϕm : C∗(ϕ|q(m)Fq(m)(q(m)Fq(m))) → P such that

(1) (ψm)|ρ(B) = q(m)ψq(m) and
(2) ‖

∑
m(ϕm ◦ ψm)(bi)− ai‖ < 2nε for 1 ≤ i ≤ l.

Set ϕ̂ =
∑

m ϕm and ψ̂ =
∑

m ψm. Then ϕ̂ is n-decomposable. We can show

that (F, ϕ̂, ψ̂) is the completely positive approximation for a1, a2, . . . , al within



PERMANENCE OF NUCLEAR DIMENSION 131

(2n+ 1)ε. Indeed,

‖(ϕ̂ ◦ ψ̂)(ai)− ai‖ ≤ ‖(ϕ̂ ◦ ψ̂)(ai − bi)‖+ ‖(ϕ̂ ◦ ψ̂)(bi)− ai‖

≤ ‖ai − bi‖+ ‖
∑
m

(ϕm ◦ ψm)(bi)− ai‖

≤ ε+ 2nε

= (2n+ 1)ε

for 1 ≤ i ≤ l. Therefore, we conclude that drP ≤ n.
(2) By a similar argument to that for (1), we can conclude that dimnuc P ≤

n. �

4. Pureness for C∗-algebras

In this section, we consider the pureness for a pair P ⊂ A of unital C∗-algebras,
which is defined in [30], and show that, if the inclusion P ⊂ A has the Rokhlin
property and A is pure, then P is pure.

Definition 4.1. [10, 20] Let M∞(A) denote the algebraic limit of the direct
system (Mn(A), φn), where φn : Mn(A) →Mn+1(A) is given by

a 7→
(
a 0
0 0

)
.

Let M∞(A)+ (respectively, Mn(A)+) denote the positive elements in M∞(A) (re-
spectively, Mn(A)+). Given a, b ∈M∞(A)+, we say that a is Cuntz subequivalent
to b (written a � b) if there is a sequence (vn)∞n=1 of elements in some Mk(A) such
that

‖vnbv
∗
n − a‖ → 0 (n→∞).

We say that a and b are Cuntz equivalent if a � b and b � a. This relation
is an equivalence relation, and we write 〈a〉 for the equivalence class of a. The
set W (A) := M∞(A)+/ ∼ becomes a positive ordered Abelian semigroup when
equipped with the operation

〈a〉+ 〈b〉 = 〈a⊕ b〉

and the partial order

〈a〉 ≤ 〈b〉 ⇐⇒ a � b.

Let T (A) and QT (A) denote the tracial state space and the space of the
normalized 2-quasitraces on A [2, Definition II. 1. 1], respectively. Note that
T (A) ⊂ QT (A) and equality holds when A is exact [6]. Let S(W (A)) denote
the set of additive and order-preserving maps d from W (A) to R+ having the
property d(〈1A〉) = 1. Such maps are called states. When d : M∞(A)+ → R+ is
a dimension function, that is, d(a⊕ b) = d(a) + d(b), and d(a) ≤ d(b) if a � b for

all a, b ∈ M∞(A)+, this gives an additive order-preserving map d̃ : W (A) → R+

given by d̃(〈a〉) = d(a) for all a ∈M∞(A)+.
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Given τ in QT (A), one may define a map dτ : M∞(A)+ → R+ by

dτ (a) = lim
n→∞

τ(a
1
n ).

This map is lower semicontinuous and depends only on the Cuntz equivalence
class of a. Then dτ ∈ S(W (A)). Such states are called lower semicontinuous
dimension functions and the set of all such functions is denoted by LDF (A).
It was proved in [2, Theorem II. 4. 4] that QT (A) is a simplex and the map
from QT (A) to LDF (A) by τ 7→ dτ in the above is bijective and affine by [2,
Theorem II. 2. 2].

Definition 4.2. A C∗-algebra A is said to have strict comparison of positive
elements or simply strict comparison if, for all a, b ∈M∞(A)+, A has the property
that a � b whenever s(a) < s(b) for every s ∈ LDF (A).

Remark 4.3. When A is a simple, unital, C∗-algebra, A has strict comparison
if and only if W (A) is almost unperforated by [22, Corollary 4.6]. Recall that
W (A) is almost unperforated if, for x, y ∈ W (A) and for all natural numbers n,
(n+ 1)x ≤ ny implies that x ≤ y.

The following should be well known, so we omit its proof.

Lemma 4.4. Let A be a unital C∗-algebra and suppose that W (A) has strict
comparison. Then we have the following:

(1) For n ∈ N, Mn(A) has strict comparison.
(2) For a nonzero hereditary C∗-subalgebra B of A, B has strict comparison.

Theorem 4.5. Let A be a unital exact C∗-algebra that has strict comparison.
Let E : A → P be of index finite type. Suppose that E has the Rokhlin property.
Then we have the following:

(1) P has strict comparison.
(2) The basic construction C∗〈A, eP 〉 has strict comparison.

Proof. Note that P is also exact [27, 9]. Hence, we know that QT (A) = T (A)
and QT (P ) = T (P ) by [6].

Since E ⊗ id : A ⊗Mn → P ⊗Mn is of index finite type and has the Rokhlin
property, it suffices to verify the condition that, whenever a, b ∈ P are positive
elements such that dτ (a) < dτ (b) for all τ ∈ T (P ), then a � b.

Let a, b ∈ P be projections such that dτ (a) < dτ (b) for all τ ∈ T (P ). Since
the restriction of a tracial state on A is a tracial state on P , dτ (a) < dτ (b) for all
τ ∈ T (A). Since A has strict comparison, a � b in A.

Since E : A→ P has the Rokhlin property, there is an injective ∗-homomorphism
β : A → P∞ such that β(x) = x for x ∈ P by [12] [16, Lemma 2.5]. Then
β(a) � β(b) in P∞, that is, a � b in P∞. Hence, a � b in P . Therefore, P has
strict comparison.
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Since C∗〈A, eP 〉 is isomorphic to the corner C∗-algebra qMn(P )q for some n ∈ N
and projection q ∈Mn(P ), from Lemma 4.4 we conclude that C∗〈A, eP 〉 has strict
comparison. �

Definition 4.6. We say that the order on projections over a unital C∗-algebra
A is determined by traces if, whenever p, q ∈ M∞(A) are projections such that
τ(p) < τ(q) for all τ ∈ T (A), then p is the Murray–von Neumann equivalent to a
subprojection of q.

Theorem 4.7. Let A be a unital C∗-algebra such that the order on projections
over A is determined by traces. Let E : A → P be of index finite type. Sup-
pose that E has the Rokhlin property. Then the order on projections over P is
determined by traces.

Proof. Note that when p and q are projections, p � q is equivalent to p being the
Murray–von Neumann equivalent to a subprojection of q

As in the proof of Theorem 4.5 it suffices to verify the condition that, whenenver
p, q ∈ P are projections such that dτ (p) < dτ (q) for τ ∈ T (P ), then p � q in P .

As in the proof of Theorem 4.5, there is an injective ∗-homomorphism β : A→
P∞ sych that β(x) = x for x ∈ P . Then β(p) � β(q) in P∞, that is, p � q in
P∞. Hence p � q in P . Therefore, we get the conclusion. �

Definition 4.8. LetA be a unital C∗-algebra. A is said to have an almost divisible
Cuntz semigroup if, for any positive contraction a ∈M∞(A) and 0 6= k ∈ N, there
is x ∈ W (A) such that

k · x ≤ 〈a〉 ≤ (k + 1) · x.

Proposition 4.9. Let A be a unital C∗-algebra of stable rank one that has an
almost divisible Cuntz semigroup W (A). Let E : A → P be of index finite type.
Suppose that E has the Rokhlin property. Then we have the following:

(1) P has an almost divisible Cuntz semigroup W (P ).
(2) The basic construction C∗〈A, eP 〉 has an almost divisible Cuntz semigroup

W (C∗〈A, eP 〉).

Proof. (1) Let a ∈M∞(P ) be a positive contraction and 0 6= k ∈ N. Since A has
an almost divisible Cuntz semigroup, there is x ∈ W (A) such that

k · x ≤ 〈a〉 ≤ (k + 1) · x.
It follows from [23, Proposition 5.1] that it is equivalent to there being a uni-

tal ∗-homomorphism from the C∗-algebra Zn,n+1 into A, where Zk,k+1 = {f ∈
C([0, 1],Mk ⊗Mk+1) | f(0) ∈Mk ⊗ C, f(1) ∈ C⊗Mk+1}.

Since the inclusion P ⊂ A has the Rokhlin property, there is an injective ∗-
homomorphism β : A → P∞ such that β(a) = a for all a ∈ P . Hence, there is a
unital ∗-homomorphism h from Zk,k+1 into P∞. Since Zk,k+1 is weakly semipro-

jective by [8], there are an m ∈ N and unital ∗-homomorphism h̃ from Zk,k+1 into
Π∞

n=mP [13]. Therefore, there is a unital ∗-homomorphism from Zk,k+1 into P .
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Again from [23, Proposition 5.1], there is y ∈ W (P ) such that

k · y ≤ 〈a〉 ≤ (k + 1) · y.
(2) Since W (A) is almost divisible, for any k ∈ N, there exists a unital ∗-

homomorphism h : Zk,k+1 → A. Hence, there is a unital ∗-homomorphism ι ◦
h : Z → C∗〈A, eP 〉. Then we conclude that W (C∗〈A, eP 〉) is almost divisible by
[22, Lemma 4.2]. �

Definition 4.10. [30] Let A be a separable unital C∗-algebra. We say that A is
pure if W (A) has strict comparison and is almost divisible.

We note that any separable simple unital Jiang-Su absorbing C∗-algebra is
pure. It is not yet known whether the converse is true.

Theorem 4.11. Let A be a separable, unital, exact, pure C∗-algebra of stable
rank one; that is, A has strict comparison and W (A) is an almost divisible Cuntz
semigroup. Let E : A→ P be of index finite type. Suppose that E has the Rokhlin
property. Then we have the following:

(1) P is pure.
(2) The basic construction C∗〈A, ep〉 is pure.

Proof. These results follow from Theorem 4.5 and Proposition 4.9. �

Corollary 4.12. Let A be a separable, simple, unital, exact, pure C∗-algebra of
stable rank one and let α be an action of a finite group G on A. Suppose that α
has the Rokhlin property. Then AG and Aoα G are pure.

Proof. Since α has the Rokhlin property, the canonical conditional expectation
E : A→ Aα has the Rokhlin projection e by Proposition 2.11. Since A is simple,
a map A 3 x 7→ xe is injective. This means that E has the Rokhlin property.
Hence, the conclusion follows from Theorem 4.11. �

Remark 4.13. From [30, Corollary 6.2], if A is a separable, simple, unital, pure
C∗-algebra with locally finite nuclear dimension, then A is Z-absorbing. Hence, it
seems that the Z-absorbing property is stable under the condition that a pair of
unital C∗-algebras is of index finite type and has the Rokhlin property. Indeed,
under this assumption, if A is D-absorbing (i.e., A ⊗ D ∼= A) for a strongly
self-absorbing C∗-algebra D, then P is also D-absorbing [16].
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