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OPERATORS WITH COMPATIBLE RANGES IN AN ALGEBRA
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Communicated by D. S. Djordjević

Abstract. The criterion is obtained for operators A from the algebra gen-
erated by two orthogonal projections P,Q to have a compatible range, i.e.,
coincide with A∗ on the orthogonal complement to the sum of the kernels of
A and A∗. In the particular case of A being a polynomial in P,Q, some easily
verifiable conditions are derived.

1. Introduction and preliminaries

For a Hilbert space H, denote by [H] the C∗-algebra of all bounded linear
operators acting on H. Given A ∈ [H], letN (A) andR(A) stand for its kernel and
range, respectively. As in [2], we say that A ∈ [H] is a compatible range operator

(CoR for short) if A and its hermitian adjoint A∗ coincide on R(A) ∩R(A∗).

This requirement is satisfied vacuously if A is a DR operator, i.e., R(A) ∩
R(A∗) = {0}, or equivalently N (A) +N (A∗) is dense in H. On the other hand,

EP operators (A ∈ [H] for which N (A) = N (A∗) and therefore R(A) = R(A∗))
are CoR if and only if A = A∗. In particular, normal operators with compatible
ranges are hermitian.

It was also observed in [2], among other things, that for any orthogonal pro-
jections P,Q ∈ [H] the products P, PQ, PQP, PQPQ, . . . are all CoR. This is
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not surprising: when the number of factors is odd, the respective product is her-
mitian, while for an even number n = 2k of factors it is A = (PQ)k. Then
R(A) ⊂ R(P ), R(A∗) ⊂ R(Q), and so the restrictions of both A and A∗ onto

R(A) ∩R(A∗) are nothing but the identity operator.
It seems natural to ask a more general question: which operators from the

algebra generated by P and Q have compatible range. The aim of this short note
is to address this question.

The author would like to thank the anonymous referee for the suggestions
which helped to improve the exposition, and in particular prompted the addition
of Section 4.

The main tool in our considerations is the classical canonical representation
of the pair of orthogonal projections P,Q going back to Halmos [4], and the
resulting description of the von Neumann algebra A(P,Q) generated by such a
pair [3]. Namely, up to a unitary similarity operators A ∈ A(P,Q) are as follows:

A =
(
⊕(i,j)∈ΛaijIMij

)
⊕

[
φ00(H) φ01(H)
φ10(H) φ11(H)

]
. (1.1)

Here
M00 = R(P ) ∩R(Q), M01 = R(P ) ∩N (Q),

M10 = N (P ) ∩N (Q), M11 = N (P ) ∩R(Q),
(1.2)

Λ is the set of pairs (i, j) for which dim Mij > 0, H is the compression of Q onto
the subspace

M = R(P )	 (M00 ⊕M01),

aij ∈ C, and φij are Borel-measurable and essentially bounded functions on [0, 1].
In particular,

P = IM00 ⊕ IM01 ⊕ 0M10 ⊕ 0M11 ⊕
[
IM 0
0 0

]
,

while

Q = IM00 ⊕ 0M01 ⊕ 0M10 ⊕ IM11 ⊕
[

H
√
H(I −H)√

H(I −H) I −H

]
.

Note that H is a positive semidefinite contraction, with 0 and 1 not lying in its
point spectrum.

We refer the interested reader to [1] for a detailed survey of these and other
results on “two projections theory”.

2. CoR criterion

Theorem 2.1. Let A ∈ A(P,Q). Then for A to have compatible range it is
necessary and sufficient that in its representation (1.1):

(i) aij ∈ R for (i, j) ∈ Λ, and

(ii) for almost all t ∈ σ(H), the matrix Φ(t) :=

[
φ00(t) φ01(t)
φ01(t) φ11(t)

]
is either

(a) hermitian, or (b) singular but not normal.
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The null sets here and in what follows are understood in the sense of the
spectral measure E of H.

Proof. The CoR property is preserved under unitary similarities, and so without
loss of generality we may suppose that A is in the form (1.1). Let us rewrite
it as A = ⊕3

j=0Aj, where A0 = ⊕(i,j)∈ΛaijIMij
and Aj = Φ(Hj) with Hj equal

the restriction of H onto its invariant subspace Mj corresponding to the spectral
subset ∆j, j = 1, 2, 3. Here

∆1 = {t ∈ σ(H) : ω(t) 6= 0},
∆2 = {t ∈ σ(H) : ω(t) = 0 and Φ(t) is not normal},
∆3 = {t ∈ σ(H) : ω(t) = 0 and Φ(t) is normal},

with ω := det Φ = φ00φ11−φ01φ10. Condition (ii) in these terms amounts to Φ(t)
being hermitian on ∆1 ∪∆3.

A direct sum of operators acting on mutually orthogonal subspaces has CoR
property only simultaneously with all of its direct summands. So, it suffices to
consider each of the operators Aj separately.

Operators A0 and A3 are normal, and so CoR if and only if they are hermitian.
For A0, this is equivalent to (i), while for A3 corresponds to Φ(t) being hermitian
on ∆3.

For A1 we have N (A1) = N (A∗1) = {0} by [5, Theorem 2.1], implying that
A1 is an EP operator. As such, it also has CoR property if and only if it is
hermitian, that is, if Φ(t) is hermitian on ∆1.

To complete the proof we therefore only need to show that A2 is CoR, with no
conditions imposed on Φ(t) for t ∈ ∆2. We will establish this by proving that A2

is a DR operator.
Note that Φ(t) has rank one for t ∈ ∆2. Invoking the pertinent part of [5,

Theorem 2.1], we have

N (A2) =

[
uχ1

−χ0

]
(H)M2,

where

χ0 =

√
|φ00|2 + |φ10|2

|φ00|2 + |φ01|2 + |φ10|2 + |φ11|2
, χ1 =

√
|φ01|2 + |φ11|2

|φ00|2 + |φ01|2 + |φ10|2 + |φ11|2
,

and
u = sgn(φ01φ00 + φ11φ10).

A simple change of notation yields

N (A∗2) =

[
vψ1

−ψ0

]
(H)M2,

where

ψ0 =

√
|φ00|2 + |φ01|2

|φ00|2 + |φ01|2 + |φ10|2 + |φ11|2
, ψ1 =

√
|φ10|2 + |φ11|2

|φ00|2 + |φ01|2 + |φ10|2 + |φ11|2
,

and
v = sgn(φ01φ11 + φ00φ10).
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From the equality [
uχ1

−χ0

]
ψ0 −

[
vψ1

−ψ0

]
χ0 =

[
g
0

]
, (2.1)

where g = uχ1ψ0 − vχ0ψ1, it therefore follows that the sum N (A2) + N (A∗2)
contains the linear manifold R(g(H2))⊕ {0} of M2 ⊕M2.

Observe that the function g does not vanish on ∆2. Indeed, for t ∈ ∆2 at which
|φ01| 6= |φ10| this is true because |uχ1ψ0| = |χ1ψ0| 6= |χ0ψ1| = |vχ0ψ1|. On the
other hand, the equality |φ01| = |φ10| implies that φ01, φ10 6= 0 (since otherwise
Φ would be normal). Condition ω = 0 in its turn implies that φ00, φ11 6= 0, and
also that

φ01φ00 + φ11φ10 = φ01(|φ00|2 + |φ10|2)/φ00,

φ01φ11 + φ00φ10 = φ01(|φ11|2 + |φ10|2)/φ11.

So, u = sgnφ01/φ00 and v = sgnφ01/φ11. If u = v, then arg φ00 = arg φ11, which
along with ω = 0 implies

arg φ00 = arg φ11 = (arg φ01 + arg φ10)/2 mod π,

and once again would mean the normality of Φ. Consequently, u 6= v, the argu-
ments of uχ1ψ0 and vχ0ψ1 are different, and their difference g = uχ1ψ0− vχ0ψ1is
therefore non-zero.

So, the (normal) operator g(H2) is injective, its range is dense in M2, and thus
the closure of N (A2) +N (A∗2) contains M2 ⊕ {0}.

Using [
uχ1

−χ0

]
vψ1 −

[
vψ1

−ψ0

]
uχ1 =

[
0
g

]
in place of (2.1), we by the same token arrive at the conclusion that the closure
of N (A2) +N (A∗2) contains {0} ⊕M2. Consequently, N (A2) +N (A∗2) is dense
in M2 ⊕M2. This completes the proof. �

3. Polynomials in two projections

Consider now a particular case when A ∈ A(P,Q) is just a polynomial in two
variables P,Q. In other words,

f(P,Q) =
∑

cm,iPm,i (3.1)

with m assuming natural values and i = 1, 2. Here cm,i ∈ C and Pm,i stands for
the alternating product of m multiples P,Q starting with P (Q) if i = 1 (resp.,
i = 2). Let us introduce scalar polynomials

f1(t) =
∑

k

c2k+1,1t
k, f2(t) =

∑
k

c2k,1t
k−1,

f3(t) =
∑

k

c2k+1,2t
k, f4(t) =

∑
k

c2k,2t
k−1.

(3.2)
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For A = f(P,Q), a straightforward computation conducted in [6] shows that in
(1.1)

φ00 = f1 + t(f2 + f3 + f4), φ01 = (f2 + f3)
√
t(1− t),

φ10 = (f3 + f4)
√
t(1− t), φ11 = f3(1− t),

(3.3)

while
a00 =

∑
m,i

cm,i, a01 = c11, a10 = 0, a11 = c12.

According to (3.3),
det Φ(t) = (1− t)(f1f3 − tf2f4)

is a polynomial in t. So, it is either identically equal to zero or is non-zero except
for finitely many points. Respectively, we can state two results stemming from
Theorem 2.1 in the polynomial setting.

Theorem 3.1. Let the polynomial f be such that f1f3 − tf2f4 is not identically
equal to zero. Then f(P,Q) is CoR for any choice of orthogonal projections P,Q
if and only if f is “formally” hermitian, i.e., for all admissible k:

c2k+1,j ∈ R (j = 1, 2), while c2k,1 = c2k,2. (3.4)

Proof. Sufficiency. Conditions (3.4) mean that f(P,Q) is a linear combination
(with real coefficients) of hermitian operators P (QP )k, Q(PQ)k, and hermitian
parts of (PQ)k. Thus, it is hermitian.

Necessity. Due to part (ii) of Theorem 2.1, the matrix Φ(t) must be hermitian
for all, except for possibly finitely many, points of [0, 1]. Due to the continuity of
the functions involved, the hermitian property thus extends to the whole interval
[0, 1]. In other words, φ00 and φ11 must be real valued on [0, 1], while φ01 and φ10

are complex conjugates of each other.
From the formula for φ11 in (3.3) we conclude that the polynomial f3 is real

valued on [0, 1], and so its coefficients are real. From here and the expressions
for φ01, φ10 we conclude that the values of f2 and f4 must be complex conjugate
when the argument is in [0, 1], thus proving that their respective coefficients are
complex conjugates of each other. In other words, the second part of (3.4) holds.
Finally, since f3 and f2 + f4 are real valued on [0, 1], due to the expression for
φ00 from (3.3) the same is true for f1, implying that its coefficients are also all
real. �

Recall that the pair P,Q of orthogonal projections is in generic position if all
fours subspaces (1.2) are trivial: dim Mij = 0, i, j = 1, 2.

Theorem 3.2. Let f1f3 = tf2f4, while |f2 + f3| 6= |f3 + f4| on (0, 1). Then
f(P,Q) is CoR for any pair of orthogonal projections P,Q in generic position.

Proof. Condition (i) of Theorem 2.1 holds vacuously, since Λ = ∅. Also, the
matrix Φ(t) is singular due to the equality f1f3 = tf2f4 and not normal because
of |f2 + f3| 6= |f3 + f4|. So, condition (ii) holds as well. �

Example 3.3. Let f(P,Q) be given by (3.1), (3.2) with f3 = f4 = g, f2 = cg, and
f1 = ctg, where g is an arbitrary polynomial not vanishing on (0, 1), a constant
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c is such that |c+ 1| 6= 2, and the projections P,Q are in generic position. Then
f(P,Q) has compatible range.

4. A side remark

According to the proof of Theorem 2.1, a CoR operator A from the algebra
A(P,Q) is the direct sum of a hermitian summand A0 ⊕ A1 ⊕ A3 and a DR
operator A2. This is not a coincidence: in fact, the following result holds.

Proposition 4.1. An operator A ∈ [H] is CoR if and only if H0 = R(A)∩R(A∗)
is its reducing subspace, and the restriction A0 of A onto H0 is hermitian. If these
conditions hold, then the restriction A1 of A onto H1 = H⊥

0 is a DR operator.

Proof. Necessity. Let us write A as

A =

[
A0 B
C A1

]
with respect to the decomposition H = H0 ⊕ H1. If A is a CoR operator, then
directly from the definition it follows that A0 is hermitian and C = B∗. Moreover,
N (B) ⊃ N (A) since N (A) ⊂ H1. Similary, N (C∗) ⊃ N (A∗). But C∗ = B, so in
fact N (B) ⊃ N (A)+N (A∗). Since N (A)+N (A∗) is dense in H1, it follows that
B = 0. Consequently, A is in fact of the form A0 ⊕ A1, and H0 is its reducing
subspace.

Sufficiency. If A = A0⊕A1, then in particularN (A) = N (A0)⊕N (A1). But by
construction N (A) ⊂ H1, implying that N (A0) = {0} and thus N (A) = N (A1).
Similarly, N (A∗) = N (A∗1). So, N (A1) + N (A∗1) is dense in the domain H1 of
A1, thus proving that A1 is a DR operator. Being a direct sum of a hermitian
operator A0 and a DR operator A1, acting on orthogonal subspaces, the operator
A is therfore CoR. �

Proposition 4.1 is a generalization of [2, Lemma 2.3] from the case of closed
range operators.
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