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Abstract. Associated with a completely positive contractive map ϕ of a C∗-
algebra A is a universal C∗-algebra generated by the C∗-algebra A along with
a contraction implementing ϕ. We prove a dilation theorem: the map ϕ may
be extended to a completely positive contractive map of an augmentation of A.
The associated C∗-algebra of the augmented system contains the original uni-
versal C∗-algebra as a corner, and the extended completely positive contractive
map is implemented by a partial isometry.

Introduction

The Cuntz–Pimsner C∗-algebras naturally associated with a completely posi-
tive contractive (cpc) map of a C∗-algebra are considered. A C∗-algebra and cpc
map may be viewed as a dynamical system, and the Cuntz–Pimsner C∗-algebra
may be viewed as a crossed product C∗-algebra of this system; it is a universal
C∗-algebra that is generated by the given C∗-algebra along with a contraction
implementing the action of the completely positive map. Such a crossed product
for this general setting is introduced and explored in [11]. We show below that
up to a Morita equivalent crossed product C∗-algebra the implementing contrac-
tion may be replaced by a partial isometry. The strategy may be summarized as
follows. The given cpc map of a C∗-algebra may be extended to a cpc map of
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an ‘augmentation’ of the given C∗-algebra. This (extended) cpc map is imple-
mented by a partial isometry in the Cuntz–Pimsner C∗-algebra associated with
the augmented dynamical system. The Cuntz–Pimsner C∗-algebra of the origi-
nal dynamical system is a corner in the C∗-algebra of the augmented dynamical
system, and the two Cuntz–Pimsner C∗-algebras are Morita equivalent. The ap-
proach involving the augmented C∗-algebra extends to a general setting a process
found in [3]. Various examples involving these results will be collected in a sepa-
rate paper, however we note now that the Morita equivalence result of [4] follows
from the considerations below. Also note ([11] Subsections 3.4, 3.5, Section 4)
that Cuntz–Pimsner algebras arising from systems defined by completely positive
maps include crossed products by endomorphisms ([12]), Exel’s crossed products
([6]), and when A is commutative, correspond to C∗-algebras of topological rela-
tions ([2]). It is established in [11] that C∗-algebras of many discrete graphs are
included in this context.

The paper is organized as follows. The first section includes preliminaries on
the C∗-correspondence and the resultant universal Cuntz–Pimsner C∗-algebras
associated with a completely positive contraction ϕ on a C∗-algebra A, namely a
dynamical system (A,ϕ).

The second section introduces an augmented C∗-algebra Aq, obtained by ad-
joining a projection to A, and a completely positive contraction ϕ̃ defined on
Aq extending a given cpc map ϕ on A. From here on, for technical simplicity,
the C∗-algebra A is assumed to be unital, although the augmented C∗-algebra is
non-unital. Any representation of the correspondence for this augmented system
implements ϕ̃ through a partial isometry with initial projection given by the unit
of A.

The following sections, Section 3 and Section 4, first involve a restriction, and
then an inducing process, that are used to establish an isomorphism result. A
natural restriction process is described in the Section 3; namely representations of
the correspondence for the augmented dynamical system (Aq, ϕ̃) restrict to rep-
resentations of the correspondence for the original system (A,ϕ). Relationships
between the ideals of compact adjointable operators for the two correspondences
and the various coisometry ideals of A and Aq defining the relative Cuntz–Pimsner
C∗-algebras are explored. This is accomplished by introducing a technically useful
intermediate correspondence. Section 4 proceeds by forming an induced repre-
sentation of the C∗-correspondence associated with the augmented dynamical
system from a representation of the original system. The section concludes with
the isomorphism of a Cuntz–Pimsner C∗-algebra of the given system (A,ϕ) with
a corner of the Cuntz–Pimsner C∗-algebra of the augmented system.

Section 5 briefly considers some special cases of a cpc map ϕ on a C∗-algebra
A, namely those that map the unit of A to a projection, those that are unital,
and specializing further, those that are ∗-endomorphisms of A.

In Section 6, given an ideal of coisometry in A, a quotient system (A1, ϕ1) of the
augmented system is formed. The main result here is that the universal Cuntz–
Pimsner C∗-algebra of this quotient system is isomorphic to the Cuntz–Pimsner
C∗-algebra of the augmented dynamical system.
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1. Preliminaries

1.1. Cuntz–Pimsner C∗-algebras. The construction of Cuntz–Pimsner C∗-
algebras is based on C∗-correspondences. We include some notation and back-
ground for Cuntz–Pimsner C∗-algebras associated with a correspondence over a
C∗-algebra, and refer to [17], [15], [7], [9] and the references therein for further
details. A C∗-correspondence from A to B, denoted AEB, is a Hilbert B-module
EB along with a specified ∗-homomorphism φ : A→ L(EB). A B − B correspon-
dence BEB is referred to as a ‘C∗-correspondence over B’. A C∗-algebra C may be
viewed as a correspondence over itself; the Hilbert C-module structure is given by
〈a, b〉 = a∗b for a, b ∈ C. If BEB is a C∗-correspondence over a C∗-algebra B then
a representation (T, π) : E → C of BEB in a C∗-algebra C is a ∗-homomorphism
π : B → C along with a linear map T : E → C which is a bimodule map
and (when viewing C as correspondence over itself) intertwines the inner prod-
ucts: so the pair (T, π) satisfies the covariance conditions T (φ(b)x) = π(b)T (x),
T (xb) = T (x)π(b), and T ∗(x)T (y) (which equals 〈T (x), T (y)〉C) = π(〈x, y〉B) for
b ∈ B, x, y ∈ E . The C∗-subalgebra of C generated by T (E) ∪ π(B) is denoted
C∗(T, π). The representation (T, π) is called injective if π is injective.

Given a C∗-correspondence E over B, L(E) denotes the C∗-algebra of ad-
jointable linear operators and K(E) denotes its closed two-sided ideal of ‘com-
pact’ operators generated by {θx,y|x, y ∈ E}, where θEx,y(z) = x 〈y, z〉 , (z ∈ E).
A representation (T, π) : E → C in a C∗-algebra C yields a ∗-homomorphism
ΨT : K(E) → C determined by θx,y → T (x)T ∗(y). Denote the ideal φ−1(K(E))
of B by J(E). Given an ideal K contained in J(E) we say that a representation
(T, π) : E → C is coisometric on K if ΨT (φ(b)) = π(b) for all b ∈ K. Given
a C∗-correspondence E over B there is a representation (TE , πE) of E in a C∗-
algebra which is coisometric on K and universal among all such representations
of E ; namely if (T, π) is a representation of E in a C∗-algebra C coisometric on K
then there is a ∗-homomorphism ρ : C∗(TE , πE) → C with (T, π) = ρ ◦ (TE , πE),
where ρ ◦ (TE , πE) denotes the representation (ρ ◦TE , ρ ◦πE) of E . We remark that
if K is an ideal contained in J(E) and (T, π) a representation of E coisometric
on K then ideal K ∩ (kerφ) ⊆ kerπ. The universal C∗-algebra C∗(TE , πE), called
the relative Cuntz–Pimsner algebra of E (determined by K), is denoted O(K, E)
([15], and [7] Proposition 1.3).

For the ideal K = 0 the universal Cuntz–Pimsner algebra of E is often re-
ferred to as the Toeplitz algebra of the correspondence, and is denoted TE . For
the ideal JE = φ−1(K(E)) ∩ (kerφ)⊥ of B (where for an ideal J of a C∗-algebra
A, J⊥ denotes the ideal {a ∈ A | ab = 0, (b ∈ J)}) the universal Cuntz–Pimsner
C∗-algebra O(JE , E) determined by this ideal is denoted OE . The universal rep-
resentation (TE , πE) : E → O(K, E) coisometric on the ideal K is injective if and
only if K ⊆ JE ([15] Proposition 2.21 and [9] Proposition 3.3).

1.2. Crossed products by completely positive maps. A linear map of C∗-
algebras ϕ : A→ B is positive if it maps the positive cone A+ of A to the positive
cone B+ of B, so ϕ(a∗a) ∈ B+ for all a ∈ A. Such a map is necessarily Hermitian
(∗-preserving) and bounded. The map is completely positive, abbreviated cp, if
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its amplification to n by n matrices, ϕn : Mn(A) → Mn(B) defined by ϕn([ai,j]) =
[ϕ(ai,j)], is a positive map for all n ∈ N, in which case it is bounded. If the
map has bound 1, in other words a contraction, then ϕ is a completely positive
contraction, abbreviated cpc (see for example, [1], [13], [16]).

Associated with a completely positive map ϕ : A→ B, a specialization of the
KSGNS construction ([13]) yields a C∗-correspondence AEB from A to B. For
example, set EB to be the Hilbert B-module A⊗ϕ B obtained by completing the
quotient inner-product right B-module (A ⊗alg B)/N where the B-valued inner
product is given on simple tensors in the algebraic tensor product A⊗alg B by

〈r ⊗ u, s⊗ v〉 = 〈u, ϕ(〈r, s〉)v〉B for r, s ∈ A and u, v ∈ B,
and where N is the subspace of elements z ∈ A⊗alg B with 〈z, z〉 = 0. There is a
unital C∗-homomorphism ϕ∗ from the multiplier algebra M(A) to the adjointable
operators L(A⊗ϕ B) determined by ϕ∗(a)(r ⊗ u) = ar ⊗ u ([13]). Denoting the
restriction of ϕ∗ to A by φϕ, or φ if the context is clear, describes a left action
of A on the Hilbert module EB, yielding a C∗-correspondence AEB from A to B.
Note that this correspondence does not require assumptions on A being unital,
or additional continuity properties for ϕ.

Definition 1.1. A cp system is a pair (A,ϕ) where ϕ : A → A is a cp map
of a C∗-algebra A. For ϕ : A → A a cp map the C∗-correspondence A ⊗ϕ A
over A is denoted Eϕ. To make clear the underlying system denote the universal
C∗-algebras TEϕ by T(A,ϕ) and OEϕ by O(A,ϕ).

We note that Theorem 3.13 of [11] provides an alternative description of O(A,ϕ)

without the use of correspondences.
We show in Proposition 1.4 below, that for a given ideal K ⊆ J(Eϕ) the univer-

sal relative C∗-algebra O(K, Eϕ) of the A-A correspondence Eϕ is an isomorphism
invariant for a basic equivalence relation on cp systems described by intertwining
∗-isomorphisms.

Definition 1.2. Two cp systems (A,ϕ) and (B,ψ) are equivalent if there is a
∗-isomorphism γ : A→ B with γ ◦ ϕ = ψ ◦ γ.

Lemma 1.3. Assume cp systems (A,ϕ) and (B,ψ) are equivalent via γ : A→ B.
Then J(Eϕ) = γ−1(J(Eψ)) and JEϕ = γ−1(JEψ).

Proof. Assume γ ◦ ϕ = ψ ◦ γ. We have

γ(〈r ⊗ϕ u, s⊗ϕ v〉) = 〈γ(r)⊗ψ γ(u), γ(s)⊗ψ γ(v)〉 ,
so since a ∗-isomorphism is norm preserving, there is a C-linear isometric isomor-
phism ξ : Eϕ → Eψ determined by mapping r ⊗ϕ u in Eϕ to γ(r) ⊗ψ γ(u) in Eψ.
We have ξ(ar ⊗ϕ u) = φψ(γ(a))ξ(r ⊗ϕ u), so

ξ ◦ φϕ(a) = φψ(γ(a)) ◦ ξ for a ∈ A,
and therefore ker(φϕ) = γ−1(ker(φψ)).

Computations show that ξ(x ·a) = ξ(x)γ(a) and ξ ◦θx,y = θξx,ξy ◦ξ for x, y ∈ Eϕ
and a ∈ A, yielding ξ ◦K(Eϕ)◦ξ−1 = K(Eψ). The conclusions follow by combining
this with the preceding displayed expression. �
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Proposition 1.4. Assume cp systems (A,ϕ) and (B,ψ) are equivalent via a ∗-
isomorphism γ : A → B. If K E J(Eϕ) then O(K, Eϕ) ∼= O(γ−1(K), Eψ). In
particular the universal C∗-algebras T(A,ϕ)

∼= T(B,ψ) and O(A,ϕ)
∼= O(B,ψ).

Proof. For a representation (T, π) of Eϕ in a C∗-algebra C coisometric on K define
S = T ◦ ξ−1 and σ = π ◦ γ−1, where ξ : Eϕ → Eψ is the isometric isomorphism of
the previous Lemma. Using the identities in the previous Lemma it is routine to
check that (S, σ) is a representation of Eψ in C coisometric on γ−1(K). �

If ϕ is such that the homomorphism φ implementing the left action of A on
Eϕ is injective then the ideal JEϕ = J(Eϕ). We include the following lemma for
completeness although it is generally known (cf. Remark 3.7 [11]).

Lemma 1.5. Let ϕ : A → A be a cp map and consider the associated C∗-
correspondence Eϕ over A with its left action homomorphism φ : A → L(Eϕ).
Then

kerφ = {a ∈ A | ϕ(b∗a∗ab) = 0, (b ∈ A)},
and this ideal is contained in the subspace kerϕ.

Proof. The element φ(a) ∈ L(Eϕ) is zero if and only if φ(a)(b ⊗ c) ∈ N, the
subspace of elements z ∈ A⊗alg A with 〈z, z〉 = 0, for all simple tensors b⊗ c in
A⊗alg A. Therefore φ(a) = 0 if and only if c∗ϕ(b∗a∗ab)c = 0 for all b, c ∈ A. Now
let c run through an approximate unit of A to obtain ϕ(b∗a∗ab) = 0 for all b ∈ A.
To obtain the second statement, let b run through an approximate identity of A.
It follows that kerφ is contained in the left ideal {a ∈ A | ϕ(a∗a) = 0}, which is
in turn contained in kerϕ by Kadison’s inequality ([1] p. 129). �

For our purposes we restrict attention to cp maps that are contractive, so cpc
maps ϕ on A.

Definition 1.6. A cpc system is a pair (A,ϕ) where ϕ : A→ A is a cp contractive
map of a C∗-algebra A.

If A is not unital one can consider the multiplier algebra M(A) of A and
assume, for example, that ϕ is a strict cpc map from A to M(A), which is
our standing assumption from now on. Recall that strict means that ϕ(eλ) is
strictly Cauchy in M(A) for some approximate unit {eλ | λ ∈ Λ} of A. As ϕ
is contractive, and positive, and the unit ball of M(A) is strictly complete, this
means ϕ(ei) converges strictly to a positive element in the unit ball of M(A).
If ϕ is strict then ϕ extends to a cpc map of M(A) ([13]) or, if something less
encompassing is required, of the smallest unital ϕ-invariant C∗-subalgebra of
M(A) containing A. Beginning in Section 2, the C∗-algebra A in the cpc system
(A,ϕ) is assumed unital (with unit element denoted p). Note in that section we
introduce an “augmented” cpc system (Aq, ϕ̃) associated with a cpc system (A,ϕ)
where the C∗-algebra Aq is not unital, however there the cpc map ϕ̃ is easily seen
to be strict.

A simple illustration of Proposition 1.7 below occurs if A is unital (with unit p).
Let (T, π) : Eϕ → C be a representation of the correspondence Eϕ associated with
the cpc system (A,ϕ) in a C∗-algebra C. Setting T (p ⊗ϕ p) = T ∈ C it follows,
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using T ∗(x)T (y) = π(〈x, y〉A) for x, y ∈ E , that T∗T = π(〈p⊗ϕ p, p⊗ϕ p〉A) =
π(ϕ(p)) and

T∗π(a)T = π(〈p⊗ϕ p, a⊗ϕ p〉A) = π(ϕ(a)).

Since ‖ϕ‖ ≤ 1, T is a contraction in C, and T implements the map ϕ in the image
of A in C. Note also that since π(p)T = Tπ(p) = T we have that π(p) is the
unit for the C∗-algebra C∗(T, π). Since T is an A bimodule map it is clear that
the C∗-algebra C∗(T, π) generated by T (E) ∪ π(B) is the C∗-algebra C∗(T, π)
generated by the contraction T and the C∗-algebra A.

In Proposition 1.7 we formalize this observation for general (A,ϕ) with ϕ strict.
Recall that a ∗-homomorphism π : A → C of C∗-algebras is nondegenerate if
π : A → L(C) (so viewing C as a module over itself), is nondegenerate: so
π(A)C is dense in C. The argument follows in a similar fashion to Proposition
3.10 of [11].

Proposition 1.7. Let Eϕ be the C∗-correspondence over A associated with a cp
system (A,ϕ) where ϕ is strict. There is a one-to-one correspondence between
representations (T, π) : Eϕ → C (with π nondegenerate) and pairs (T, π) (which
can viewed as representations of (A,ϕ)) where T ∈M(C),

T (a⊗ϕ b) = π(a)Tπ(b), a, b ∈ A
T = s− lim

λ∈Λ
lim
µ∈Λ

T (eλ ⊗ eµ)

where the left hand side limit is taken in the strict topology, and {eλ | λ ∈ Λ} of
A is an approximate unit of A. We have

T∗T (a⊗ϕ b) = π(ϕ(a)b) for a, b ∈ A.
If T ∈ C then C∗(T, π) = C∗(T, π), the C∗-algebra generated by the contraction

T and the C∗-algebra A.

2. The correspondence Eeϕ of an augmentation (Aq, ϕ̃)

From now on we assume that the C∗-algebra A in our initial cpc system (A,ϕ)
is unital, with unit p. With C the C∗-algebra of complex numbers consider the
free product ([1]) C∗-algebra C ∗A, denoted Aq, a non unital C∗-algebra. With q
denoting the unit of C the span of finite words q̂a1qa2q...qalq̂, where the ak ∈ A,
(throughout the symbol ̂ indicates that the designated element may or may
not be present) forms a dense subalgebra of Aq. There are ∗-homomorphisms
ι : A→ C ∗A and ε : C ∗A→ A with ε ◦ ι = IdA, where Id refers to the identity
map on the designated space A, ι is the natural inclusion and ε is described by
ε(q̂a1qa2q...qalq̂) = a1a2...al and ε(q) = p. The map ι will not always be made
explicit.

For A unital and ϕ : A → A a cpc map set ϕ̃ : Aq → Aq by ϕ̃(q) = p,
ϕ̃(q̂a1qa2q...qalq̂) = ϕ(a1)ϕ(a2)...ϕ(al) (where ak ∈ A) and extend linearly. The
map ϕ̃ when restricted to the copy of A in Aq is equal to ϕ. It follows from known
results that ϕ̃ yields a cpc map of Aq (cf. [8]). Note that ϕ̃(qa) = ϕ̃(aq) = ϕ̃(a),
ϕ̃(aqb) = ϕ̃(a)ϕ̃(b) for a, b ∈ Aq, and that the image of ϕ̃ is a subspace of A,
so pϕ̃(a) = ϕ̃ (a) p = ϕ̃(a) for a ∈ Aq. The resulting cpc system (Aq, ϕ̃) may be
viewed as an augmentation of (A,ϕ).
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Consider the C∗-correspondence Eeϕ = Aq ⊗eϕ Aq over Aq associated with the
cpc system (Aq, ϕ̃).

Notation 2.1. If (A,ϕ) is a cpc system, with augmented cpc system (Aq, ϕ̃), the
∗-homomorphism φeϕ describing the left action of Aq on the Hilbert module Eeϕ is

denoted φ̃ : Aq → L(Eeϕ).

Note that although we assumed that A is unital the augmented C∗-algebra
Aq is not unital. Although not required for the existence of the correspondence
based on the system (Aq, ϕ̃) it follows that the cpc map ϕ̃ : Aq → L(Aq) is in fact
strict. For example, if {eλ | λ ∈ Λ} is an approximate unit for Aq, qeλ converges
(in norm) to q. Then, since ϕ̃ is (norm) continuous, and ϕ̃(eλ) = ϕ̃(qeλ), ϕ̃(eλ)
must converge in Aq to ϕ̃(q) = p, so ϕ̃(eλ) converges strictly.

First note some relations for simple tensors in Eeϕ.

Proposition 2.2. Let (A,ϕ) be a cpc system and (Aq, ϕ̃) its augmented cpc sys-
tem. Then, for k,m, n ∈ Aq,
a. m⊗eϕ n = mq ⊗eϕ pn = mq ⊗eϕ n = m⊗eϕ pn
b. kqm⊗eϕ n = k ⊗eϕ ϕ̃(m)n.

Proof. Let a⊗eϕ b be a simple tensor in Eeϕ. We have

〈mq ⊗eϕ pn, a⊗eϕ b〉 = 〈pn, ϕ̃(qm∗a)b〉Aq = n∗pϕ̃(m∗a)b

= n∗ϕ̃(m∗a)b = 〈n, ϕ̃(m∗a)b〉Aq
which equals 〈m⊗eϕ n, a⊗eϕ b〉 . Similarly 〈mq ⊗eϕ n, a⊗eϕ b〉 and 〈m⊗eϕ pn, a⊗eϕ b〉

also equal 〈m⊗eϕ n, a⊗eϕ b〉 .
For part b

〈kqm⊗eϕ n, a⊗eϕ b〉 = 〈n, ϕ̃((kqm)∗a)b〉Aq = 〈n, ϕ̃(m∗)ϕ̃(k∗a)b〉Aq
= n∗ϕ̃(m)∗ϕ̃(k∗a)b = 〈ϕ̃(m)n, ϕ̃(k∗a)b〉Aq
= 〈k ⊗eϕ ϕ̃(m)n, a⊗eϕ b〉 .

Both parts follow after noting that the span of the elements a⊗eϕ b is dense in
Eeϕ. �

Given a representation (T̃ , π̃) : Eeϕ → C of the correspondence Eeϕ in a C∗-

algebra C there is a partial isometry T̃ in C implementing the augmented cp
system.

Proposition 2.3. Let (T̃ , π̃) : Eeϕ → C be a representation of the correspondence

Eeϕ. Then there is a partial isometry T̃ in C with initial projection π̃(p), final
projection a subprojection of π̃(q) and

T̃∗π̃(a)T̃ = π̃(ϕ̃(a)) for a ∈ Aq.

Proof. Setting T̃ = T̃ (q ⊗eϕ p) the covariance conditions yield

T̃∗T̃ = π̃(〈q ⊗eϕ p, q ⊗eϕ p〉Aq) = π̃(ϕ̃(q)) = π̃(p)
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and (using Proposition 2.2 a) T̃∗π̃(a)T̃ = π̃(〈q ⊗eϕ p, aq ⊗eϕ p〉Aq) = π̃(ϕ̃(a)). Since

π̃(p) is a projection T̃ is a partial isometry in C with initial projection π̃(p)

implementing the map ϕ̃ on the image of Aq in C. Also π̃(q)T̃(q ⊗eϕ p) = T̃,

implying T̃ has final projection T̃T̃∗ ≤ π̃(q). �

Remark 2.4. The element T̃ is the same element identified in Proposition 1.7

for a given representation (T̃ , π̃) : Eeϕ → C, when π̃ is nondegenerate. Namely
given {eλ | λ ∈ Λ} an approximate unit for Aq we have 〈eλ ⊗eϕ eµ, a⊗eϕ b〉 =
〈eµ, ϕ̃(e∗λa)b〉Aq for a⊗eϕ b a simple tensor in Eeϕ. Since the Aq-valued inner prod-

uct and ϕ̃ are norm continuous, we see the latter has limit ϕ̃(a)b. However,
〈q ⊗eϕ p, a⊗eϕ b〉Aq = 〈p, ϕ̃(qa)b〉Aq is also equal to ϕ̃(a)b, and it follows that

eλ ⊗eϕ eµ converges in norm to q ⊗eϕ p in Eeϕ. Norm continuity of the linear map

T̃ : Eeϕ → C implies the element T̃ identified in Proposition 1.7 is actually in C

and T̃ = T̃ (q ⊗eϕ p).

3. Restricting representations of Eeϕ
We introduce maps involving an intermediate correspondence Eϕ⊗ιAq in order

to investigate relationships between the correspondences Eϕ over A, and Eeϕ over
Aq.

Proposition 3.1. The map j : Eϕ → Eϕ⊗ιAq defined by j(m) = m⊗ιp (m ∈ Eϕ)
is an inner product preserving map of C∗-correspondences.

Proof. Viewing Aq as a correspondence over itself, so Aq is viewed via left multi-
plication as K(Aq), the map ι : A→ Aq may be interpreted as a ∗-homomorphism
ι : A→ L(Aq). The map ι is clearly injective.

Consider the (inner) tensor product Eϕ⊗ιAq, an A-Aq correspondence with an
Aq-valued inner product (and left action again given by φ) determined by

〈(r ⊗ϕ u)⊗ι a, (s⊗ϕ v)⊗ι b〉 =
〈
a, ι(〈r ⊗ϕ u, s⊗ϕ v〉A)b

〉
Aq

= a∗ι(u∗ϕ(r∗s)v)b

for r, s, u, v ∈ A and a, b ∈ Aq. With a, b the unit p we obtain the inner product
in Eϕ. �

Additionally, introduce a map of correspondences V : Eϕ⊗ιAq → Eeϕ by setting
V ((r ⊗ϕ u) ⊗ι a) = r ⊗eϕ ua (strictly speaking this is ι(r) ⊗eϕ ι(u)a) for r, u ∈ A
and a ∈ Aq, and extending linearly. For r, s, u, v ∈ A and a, b ∈ Aq,

〈V (r ⊗ϕ u)⊗ι a), V ((s⊗ϕ v)⊗ι b)〉 = 〈r ⊗eϕ ua, s⊗eϕ vb〉
= 〈ua, ϕ̃(r∗s)vb〉Aq
= a∗u∗ϕ(r∗s)vb

which is the above described Aq-valued inner product in Eϕ ⊗ι Aq. Therefore
V extends to an inner product preserving map, also denoted V, of the two Aq-
Hilbert modules Eϕ ⊗ι Aq and Eeϕ. The range of V must therefore be a closed
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Hilbert submodule of Eeϕ. The map V also intertwines the two left actions of A;
namely

V ◦ φ(a) = φ̃(ι(a)) ◦ V for a ∈ A.
Noting that φ̃(p) ∈ L(Eeϕ) is an adjointable idempotent (here in fact a projec-

tion) it follows that its range is closed and an orthogonally complemented Hilbert
submodule of Eeϕ (Corollary 3.3 [13]). We show that this submodule is the range
of V.

Proposition 3.2. The map V is adjointable, so V ∈ L(Eϕ ⊗ι Aq, Eeϕ), and is an

isometry with complemented range; V V ∗ = φ̃(p).

Proof. For r, u ∈ A and a ∈ Aq notice φ̃(p)V ((r ⊗ϕ u) ⊗ι a) = pr ⊗eϕ ua =

V ((r⊗ϕu)⊗ιa), so ran(V ) is contained in ran(φ̃(p)). To show that ran(V ) contains

ran(φ̃(p)) consider an element φ̃(p)(m ⊗eϕ n) = pm ⊗eϕ n where m,n ∈ Aq and
m = q̂m1qa2q...qmlq̂ where the mk ∈ A. If m = qm1qa2q...qmlq̂ then Proposition
2.2 implies

pm⊗eϕ n = pqm1qa2q...qmlq̂ ⊗eϕ n

= p⊗eϕ ϕ̃(m1)ϕ̃(m2)...ϕ̃(ml)n

= V ((p⊗ϕ (ϕ̃(m1)ϕ̃(m2)...ϕ̃(ml)))⊗ι n)

while if m = m1qa2q...qmlq̂ then

pm⊗eϕ n = pm1qm2q...qmlq̂ ⊗eϕ n

= m1 ⊗eϕ ϕ̃(m2)...ϕ̃(ml)n

= V ((m1 ⊗ϕ ϕ̃(m2)...ϕ̃(ml))⊗ι n).

Continuity of φ̃(p) implies the span of elements pm⊗eϕ n is dense in ran(φ̃(p)),

and since ran(V ) is closed, the desired containment holds, and ran(V ) = ran(φ̃(p)).

Since ran(φ̃(p)) is an orthogonally complemented Hilbert submodule of Eeϕ,
ran(V ) must be complemented. It follows (Proposition. 3.6, [13]) that V ∈
L(Eϕ ⊗ι Aq, Eeϕ) and V ∗V = IdEϕ⊗ιAq . �

The map V ◦ j : Eϕ → Eeϕ is the natural inner product preserving map with

V ◦ j(r ⊗ϕ u) = r ⊗eϕ u for r, u ∈ A.

Definition 3.3. For (T̃ , π̃) : Eeϕ → C a representation of Eeϕ in a C∗-algebra C
define a restricted pair of maps on the correspondence Eϕ

(T̃r, π̃r) : Eϕ → C

by π̃r = π̃ ◦ ι and T̃r = T̃ ◦ V ◦ j; so

π̃r(a) = π̃(ι(a)) and T̃r(r ⊗ϕ u) = T̃ (r ⊗eϕ u)

for a ∈ A and r ⊗ϕ u ∈ Eϕ.
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Remark 3.4. For an element pm⊗eϕ n ∈ φ̃(p)(Eeϕ), where m,n ∈ Aq, the computa-
tions in the proof of Proposition 3.2 show that (pm⊗eϕn) = V (x⊗ιn) = V (j(x))n
for some x ∈ Eϕ. Therefore

π̃(p)T̃ (m⊗eϕ n) = T̃ (pm⊗eϕ n) = T̃ (V (j(x))n) = T̃ (V (j(x)))π̃(n) = T̃r(x)π̃(n).

It follows that π̃(p)T̃ (Eϕ) ⊆ T̃r(Eϕ)π̃(Aq).

The following result shows that the covariance conditions for (T̃ , π̃) yield covari-

ance conditions for (T̃r, π̃r), justifying use of the term restricted representation.

Proposition 3.5. If (T̃ , π̃) : Eeϕ → C is a representation of Eeϕ in a C∗-algebra C

the restricted pair (T̃r, π̃r) : Eϕ → C is a representation of Eϕ with image in the
corner C∗-algebra π̃(p)Cπ̃(p).

Proof. For a, b ∈ A and r ⊗ϕ u, s⊗ϕ v ∈ Eϕ we have

π̃r(a)T̃r(r ⊗ϕ u)π̃r(b) = π̃(a)T̃ (r ⊗eϕ u)π̃(b) = T̃ (ar ⊗eϕ ub) = T̃r(ar ⊗ϕ ub).

Also

T̃ ∗r (r ⊗ϕ u)T̃r(s⊗ϕ v) = T̃ ∗(r ⊗eϕ u)T̃ (s⊗eϕ v) = π̃(〈r ⊗eϕ u, s⊗eϕ v〉)
= π̃(〈r ⊗ϕ u, s⊗ϕ v〉) = π̃r(〈r ⊗ϕ u, s⊗ϕ v〉),

where the third equality follows from V ◦ j preserving the inner product.

Since T̃r(r⊗ϕ u) = T̃r(pr⊗ϕ up) = π̃(p)T̃ (r⊗eϕ u)π̃(p) (and similarly for π̃r) the
last assertion follows. �

Investigating the ideal of compact operators in the C∗-algebra of adjointable
operators of a correspondence is crucial for understanding the structure of the
Cuntz–Pimsner algebras associated with a correspondence. We next describe
relationships between the ideals K(Eϕ) and K(Eeϕ) and the ∗-homomorphisms ΨeTr

and ΨeT arising from representations (T̃ , π̃) of the correspondence Eeϕ over Aq.
Consider the induced map ι∗ : L(Eϕ) → L(Eϕ ⊗ι Aq) (described on simple

tensors of Eϕ by ι∗(t)(m ⊗ι a) = tm ⊗ι a for t ∈ L(Eϕ)), which is injective since
ι : A → L(Aq) is injective. It is known by general properties of the (inner)
tensor product that ι∗(K(Eϕ)) ⊆ K(Eϕ ⊗ι Aq) (Proposition 4.7, [13]), although
here, using the assumption that A is unital, it is straightforward to check this;
ι∗(θm,n) = θj(m),j(n) = θm⊗p,n⊗p for m,n ∈ Eϕ.

The isometry V defines the canonical ∗-homomorphism Φ : L(Eϕ ⊗ι Aq) →
L(Eeϕ) mapping t→ V tV ∗, so necessarily the ideal of compacts K(Eϕ⊗ιAq) must
be mapped to the compacts K(Eeϕ) of L(Eeϕ);

Φ(K(Eϕ ⊗ι Aq)) ⊆ K(Eeϕ).
In fact Φ(θm,n) = θV m,V n. Since ι∗ : L(Eϕ) → L(Eϕ ⊗ι Aq) also maps the ideal
K(Eϕ) of L(Eϕ) to K(Eϕ ⊗ι Aq), the ∗-homomorphism Φ ◦ ι∗ : L(Eϕ) → L(Eeϕ)
maps K(Eϕ) to K(Eeϕ), and the composition ΨeT ◦ Φ ◦ ι∗ is defined. It follows
from V ∗V = IdEϕ⊗ιAq that Φ is injective, and so the ∗-homomorphism Φ ◦ ι∗, a
composition of injections, must be injective.
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Recall that the ∗-homomorphism ΨT : K(E) → C arising from any represen-
tation (T, π) of a correspondence E in a C∗-algebra C is determined by mapping
θx,y → T (x)T ∗(y).

Proposition 3.6. If (T̃ , π̃) : Eeϕ → C is a representation in a C∗-algebra C then
Φ◦ι∗(K(Eϕ)) ⊆ K(Eeϕ), and the ∗-homomorphisms ΨeT ◦Φ◦ι∗ and ΨeTr

: K(Eϕ) → C
are equal.

Proof. The preceding paragraphs show that Φ ◦ ι∗(θm,n) = θV j(m),V j(n) for m,n ∈
Eϕ, so

ΨeT ◦ Φ ◦ ι∗((θm,n)) = T̃ (V j(m))T̃ ∗(V j(n)) = T̃r(m)T̃ ∗r (n) = ΨeTr
(θm,n).

�

Proposition 3.7. Let (A,ϕ) be a cpc system and (Aq, ϕ̃) the associated aug-

mented cpc system. The ∗-homomorphisms Φ ◦ ι∗ ◦ φ and φ̃ ◦ ι which map A to

L(Eeϕ) are equal, and kerφ = ker φ̃ ∩ A.

Proof. For a ∈ A we show that Φ ◦ ι∗(φ(a)) = φ̃(a). Since V : Eϕ ⊗ι Aq → Eeϕ
satisfies V V ∗ = φ̃(p) (Proposition 3.2) and φ̃(a)φ̃(p) = φ̃(a) it is enough to show

that V ι∗(φ(a)) = φ̃(a)V. However, for a simple tensor (r ⊗ϕ u)⊗ι n ∈ Eϕ ⊗ι Aq,

V (ι∗(φ(a)))((r ⊗ϕ u)⊗ι n) = V ((ar ⊗ϕ u)⊗ι n) = ar ⊗eϕ un

= φ̃(a)(r ⊗eϕ un) = φ̃(a)V ((r ⊗ϕ u)⊗ι n).

The last statement follows from the injectivity of Φ ◦ ι∗. �

Corollary 3.8. Let (A,ϕ) be a cpc system and (Aq, ϕ̃) the associated augmented

cpc system. The ideal φ−1(K(Eϕ)) = J(Eϕ) of A is contained in φ̃−1(K(Eeϕ)) ∩ A,
so ι(J(Eϕ)) ⊆ J(Eeϕ).
Proof. If a ∈ J(Eϕ) then φ(a) ∈ K(Eϕ) is mapped by Φ ◦ ι∗ to K(Eeϕ) (Proposition

3.6). Since J(Eeϕ) = φ̃−1(K(Eeϕ)) Proposition 3.7 implies ι(a) ∈ J(Eeϕ). �

Let I be an ideal contained in the ideal J(Eeϕ) = φ̃−1(K(Eeϕ)) of Aq and (T̃ , π̃) :

Eeϕ → C∗(T̃ , π̃) a representation of Eeϕ coisometric on I. The above results imply

coisometric conditions for its associated restricted representation (T̃r, π̃r) : Eϕ →
π̃(p)C∗(T̃ , π̃)π̃(p).

Corollary 3.9. Let (A,ϕ) be a cpc system and (Aq, ϕ̃) the associated augmented

cpc system. Let I be an ideal in J(Eeϕ) = φ̃−1(K(Eeϕ)) and (T̃ , π̃) : Eeϕ → C∗(T̃ , π̃)
a representation of Eeϕ coisometric on I. The restricted representation

(T̃r, π̃r) : Eϕ → π̃(p)C∗(T̃ , π̃)π̃(p)

is a representation of Eϕ which is coisometric on ι−1(I) ∩ J(Eϕ).
Proof. For a ∈ ι−1(I)∩J(Eϕ), Proposition 3.6 implies ΨeTr

(φ(a)) = ΨeT ◦Φ◦ι∗(φ(a))

while Proposition 3.7 shows that this = ΨeT (φ̃(ι(a))). Since ι(a) ∈ I, this in turn
is equal to π̃(ι(a)) = π̃r(a). �



282 B. BRENKEN

Lemma 3.10. If a, b ∈ Aq then φ̃(aqb∗) = θa⊗eϕp,b⊗eϕp ∈ K(Eeϕ). In particular

φ̃(q) = θq⊗eϕp,q⊗eϕp, and q ∈ J(Eeϕ).

Proof. For m⊗eϕ n ∈ Eeϕ,

θa⊗eϕp,b⊗eϕp(m⊗eϕ n) = a⊗eϕ p 〈b⊗eϕ p,m⊗eϕ n〉 = a⊗eϕ p 〈p, ϕ̃(b∗m)n〉Aq
= a⊗eϕ ϕ̃(b∗m)n = aqb∗m⊗eϕ n

= φ̃(aqb∗)(m⊗eϕ n)

where the last equality follows by Proposition 2.2. �

Proposition 3.11. Let I be an ideal in J(Eeϕ) containing the idempotent q and

(T̃ , π̃) : Eeϕ → C a representation in a C∗-algebra C which is coisometric on I.

Then the partial isometry T̃ = T̃ (q ⊗eϕ p) with initial projection π̃(p) has final

projection π̃(q), and both these projections are full in the C∗-subalgebra C∗(T̃ , π̃)
of C.

Proof. By definition ([1]) we need to show that the ideals

Jp = C∗(T̃ , π̃)π̃(p)C∗(T̃ , π̃) and Jq = C∗(T̃ , π̃)π̃(q)C∗(T̃ , π̃)

generated by the projections π̃(p) and π̃(q) are all of C∗(T̃ , π̃). It is enough to show

that the generators T̃ (Eeϕ) ∪ π̃(Aq) of C∗(T̃ , π̃) are in these ideals. Proposition

2.3 showed that T̃ has initial projection π̃(p), so T̃π̃(p) = T̃, while the final

projection T̃T̃∗ ≤ π̃(q) and so π̃(q)T̃ = T̃. Therefore T̃ is contained in both
ideals, and therefore its initial projection π̃(p), and its final projection lie in both
ideals. Since π̃(p) is the unit of π̃(A), π̃(A) must be contained in both ideals.

Since T̃π̃(p) = T̃ and T̃ (m ⊗eϕ n) = π̃(m)T̃ (q ⊗eϕ p)π̃(n) it follows that the

image T̃ (Eeϕ) is contained in both ideals. To show that π̃(Aq) is in these ideals it

remains to show that π̃(q) is the final projection of T̃. However, the hypothesis

and coisometric condition imply π̃(q) = ψeT (φ̃(q)), while the latter is equal to

ψeT (θq⊗eϕp,q⊗eϕp) = T̃ (q ⊗eϕ p)T̃
∗(q ⊗eϕ p) = T̃T̃∗ by Lemma 3.10. �

Given a representation (T̃ , π̃) : Eeϕ → C∗(T̃ , π̃) of Eeϕ coisometric on I, apply

Corollary 3.9 to its restricted representation (T̃r, π̃r) : Eϕ → π̃(p)C∗(T̃ , π̃)π̃(p); it
is a representation of the correspondence Eϕ coisometric on ι−1(I) ∩ J(Eϕ). Let
(Tϕ, πϕ) denote the universal representation of Eϕ coisometric on ι−1(I) ∩ J(Eϕ)
in the relative Cuntz–Pimsner C∗-algebra O(ι−1(I) ∩ J(Eϕ), Eϕ). The universal
property (for representations of Eϕ coisometric on ι−1(I) ∩ J(Eϕ)) yields a ∗-
homomorphism γ (depending on the chosen initial representation (T̃ , π̃) of Eeϕ)

γ : O(ι−1(I) ∩ J(Eϕ), Eϕ) → π̃(p)C∗(T̃ , π̃)π̃(p)

to a corner of the C∗-algebra C∗(T̃ , π̃) with

(T̃r, π̃r) = γ ◦ (Tϕ, πϕ).
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Proposition 3.12. Let I be an ideal in J(Eeϕ) containing q and (T̃ , π̃) : Eeϕ →
C∗(T̃ , π̃) a representation of Eeϕ coisometric on I. The ∗-homomorphism

γ : O(ι−1(I) ∩ J(Eϕ), Eϕ) → π̃(p)C∗(T̃ , π̃)π̃(p)

defined by the universal property is surjective.

Proof. By definition the C∗-algebra C∗(T̃ , π̃) is generated by T̃ (Eeϕ)∪ π̃(Aq). Since

(T̃r, π̃r) = γ ◦ (Tϕ, πϕ) it is enough to show that the algebra generated by T̃r(Eϕ)∪
π̃r(A) contains π̃(p)T̃ (Eeϕ)π̃(p) ∪ π̃(p)π̃(Aq)π̃(p).

For the C∗-subalgebra A of Aq, π̃r(A) = π̃(p)π̃(A)π̃(p), so to show that the alge-

bra generated by T̃r(Eϕ)∪ π̃r(A) contains π̃(p)π̃(Aq)π̃(p) it is enough to show that
the element π̃(p)π̃(q)π̃(p) is contained in this algebra. First note that (Proposi-
tion 2.2)

T̃r(p⊗ϕ p) = T̃ (p⊗eϕ p) = T̃ (pq ⊗eϕ p) = π̃(p)T̃ (q ⊗eϕ p).

Setting T̃ = T̃ (q ⊗eϕ p), and T̃r = T̃r(p⊗ϕ p), we have

T̃rT̃
∗
r = π̃(p)T̃T̃∗π̃(p) = π̃(p)π̃(q)π̃(p)

by Proposition 3.11.

By Remark 3.4, π̃(p)T̃ (Eeϕ) ⊆ T̃r(Eϕ)π̃(Aq). However, the latter is equal to

(T̃r(Eϕ)π̃(p))π̃(Aq), and therefore

π̃(p)T̃ (Eeϕ)π̃(p) ⊆ T̃r(Eϕ)π̃(p)π̃(Aq)π̃(p)

which is contained in the algebra generated by T̃r(Eϕ) ∪ π̃r(A). �

4. An augmented representation

Given a representation (T, π) : Eϕ → C of the A-A correspondence Eϕ in a C∗-
algebra C, with π(p) = IdC , there is an augmented, or induced, representation

(Tq, πq) : Eeϕ → M2(C)

of the Aq-Aq correspondence Eeϕ.
To define this representation first consider the element Tq ∈ M2(C) formed

from the contraction T = T (p⊗ϕ p) ∈ C (as in [4]):

Tq =

[
T 0√

π(p)−T∗T 0

]
.

Since T ∗q Tq is a projection in M2(C), Tq is a partial isometry. Next define a
∗-representation πq : Aq → M2(C) by setting

πq(a) =

[
π(a) 0

0 0

]
for a ∈ A, and

πq(q̂a1qa2q...qalq̂) = T̂qT∗
qπq(a1)TqT

∗
qπq(a2)TqT

∗
q...TqT

∗
qπq(al)T̂qT∗

q

on words in Aq, so πq(q) = TqT
∗
q, and Tq is a partial isometry with initial pro-

jection πq(p) and final projection πq(q). Extend πq linearly to a dense subalgebra
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of Aq. The norm on Aq ensures this is a representation bounded by 1, and πq
extends to a representation, also denoted πq, of Aq in M2(C).

Note that

πq(q) =

[
TT∗ T

√
π(p)−T∗T

(
√
π(p)−T∗T)T∗ π(p)−T∗T

]
.

The following shows that the partial isometry Tq implements the pair (Aq, ϕ̃)
under the representation πq.

Lemma 4.1. With Tq ∈ M2(C) and πq : Aq → M2(C) defined as above,

T∗
qπq(m)Tq = πq(ϕ̃(m))

for m ∈ Aq.

Proof. A computation shows that

T∗
qπq(a)Tq =

[
T∗π(a)T 0

0 0

]
=

[
π(ϕ(a)) 0

0 0

]
= πq(ϕ(a)) for a ∈ A.

Given a word m = q̂a1qa2q...qalq̂ in Aq we have

T∗
qπq(m)Tq = T∗

qT̂qT∗
qπq(a1)TqT

∗
qπq(a2)TqT

∗
q...TqT

∗
qπq(al)T̂qT∗

q

= (T∗
qπq(a1)Tq)(T

∗
qπq(a2)Tq)...(T

∗
qπq(al)Tq)

= πq(ϕ(a1))...πq(ϕ(al)) = πq(ϕ̃(m)).

Density of the linear span of words in Aq and continuity finish the claim. �

Proposition 4.2. If (T, π) : Eϕ → C is a representation in a C∗-algebra C there
is a representation (Tq, πq) : Eeϕ → M2(C) of the augmented correspondence Eeϕ
with Tq(q ⊗eϕ p) the partial isometry Tq ∈ M2(C).

Proof. The previous paragraphs describe a ∗-representation πq : Aq → M2(C) and
an element Tq ∈ M2(C). Define a linear map S : Aq⊗algAq → M2(C) by mapping
a⊗b to πq(a)Tqπq(b). Note S(q⊗eϕ p) = πq(q)Tqπq(p) = Tq. The previous Lemma
implies

〈S(m⊗ n), S(a⊗ b)〉M2(C) = πq(n
∗)T∗

qπq(m
∗)πq(a)Tqπq(b)

= πq(n
∗)πq(ϕ̃(m∗a))πq(b)

= πq(〈m⊗eϕ n, a⊗eϕ b〉).
Therefore S determines a linear map (bounded), denoted by Tq : Eeϕ → M2(C),

and (Tq, πq) is clearly a covariant representation of Eeϕ with Tq(q⊗eϕ p) the partial
isometry Tq. �

Definition 4.3. For K an ideal of A set Kq to be the ideal of Aq generated by
ι(K) ∪ {q}.

It follows from Lemma 3.10 and Corollary 3.8 that if K ⊆ J(Eϕ) then Kq ⊆
J(Eeϕ). If K = 0 then Kq is the singly generated ideal of Aq generated by q.
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Proposition 4.4. Let (T, π) : Eϕ → C be a representation in a C∗-algebra C and
(Tq, πq) : Eeϕ → M2(C) its associated augmented representation of Eeϕ. If (T, π)
is coisometric on an ideal K ⊆ J(Eϕ) then (Tq, πq) is coisometric on the ideal
Kq ⊆ J(Eeϕ).

Proof. The comment after Definition 4.3 shows that Kq ⊆ J(Eeϕ).
Lemma 3.10 yields

ψTq(φ̃(q)) = ψTq(θq⊗eϕp,q⊗eϕp) = Tq(q ⊗eϕ p)T
∗
q (q ⊗eϕ p)

= TqT
∗
q = πq(q),

so (Tq, πq) is coisometric on the ideal of Aq generated by q.

It remains to show that (Tq, πq) is coisometric on ι(K), i.e., that ψTq(φ̃(ι(a)) =
πq(ι(a)) for a ∈ K. First consider the restricted linear map (Tq)r : Eϕ → M2(C).
For s, v ∈ A compute that

(Tq)r(s⊗ϕ v) = Tq(s⊗eϕ v) = πq(s)Tqπq(v)

=

[
π(s) 0

0 0

] [
T 0√

π(p)−T∗T 0

] [
π(v) 0

0 0

]
=

[
π(s)T (p⊗ p)π(v) 0

0 0

]
=

[
T (s⊗ϕ v) 0

0 0

]
.

It follows that

ψ(Tq)r(θr⊗ϕu,s⊗ϕv) = (Tq)r(r ⊗ϕ u)(Tq)
∗
r(s⊗ϕ v)

=

[
T (r ⊗ϕ u) 0

0 0

] [
T ∗(s⊗ϕ v) 0

0 0

]
=

[
ψT (θr⊗ϕu,s⊗ϕv) 0

0 0

]
.

Therefore ψ(Tq)r = πq ◦ψT on K(Eϕ), so ψ(Tq)r(φ(a)) = πq(ψT (φ(a))) for a ∈ K.
By assumption (T, π) is coisometric on K, so ψT (φ(a)) = π(a) for a ∈ K.

Hence, for a ∈ K,

ψTq(φ̃(ι(a)) = ψTq(Φ ◦ ι∗ ◦ φ(a)) = ψ(Tq)r(φ(a)) = πq(ι(a)),

where Propositions 3.7 and 3.6 are used for the first two equalities. �

Establishing the isomorphism statement of next theorem involves the following
constructed ∗-homomorphism δ. Starting with the universal representation

(Tϕ, πϕ) : Eϕ → C∗(TE , πE) = O(K, Eϕ)
of Eϕ coisometric on K ⊆ J(Eϕ), form its associated augmented representation
(Tq, πq) : Eeϕ → M2(O(K, Eϕ)) of Eeϕ coisometric on Kq (Proposition 4.4). Let

(Teϕ, πeϕ) : Eeϕ → C∗(Teϕ, πeϕ) = O(Kq, Eeϕ)
denote the universal representation of Eeϕ coisometric on Kq. The universal prop-
erty for representations of Eeϕ coisometric on Kq yields a ∗-homomorphism

δ′ : O(Kq, Eeϕ) → M2(O(K, Eϕ))
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with

(Tq, πq) = δ′ ◦ (Teϕ, πeϕ).

Consider the cut down by the projection πeϕ(p) of δ′ on its domain O(Kq, Eeϕ) and
by πq(p) on its codomain M2(O(K, Eϕ)) to obtain a unital ∗-homomorphism

δ : πeϕ(p)O(Kq, Eeϕ)πeϕ(p) → O(K, Eϕ).
We will see that δ is a ∗-isomorphism, which leads to the following Theorem.

Theorem 4.5. Let ϕ : A→ A be a completely positive contractive map of a unital
C∗-algebra A. For K an ideal in J(Eϕ) the Cuntz–Pimsner C∗-algebra O(K, Eϕ)
is isomorphic to a full corner of O(Kq, Eeϕ) and these relative Cuntz–Pimsner
C∗-algebras are Morita equivalent.

Proof. Recall Kq is the ideal in J(Eeϕ) generated by ι(K) ∪ q (Definition 4.3).
Consider the universal representation (Teϕ, πeϕ) : Eeϕ → O(Kq, Eeϕ) of Eeϕ coiso-
metric on Kq. Proposition 3.11 states πeϕ(p)O(Kq, Eeϕ)πeϕ(p) is a full corner of
O(Kq, Eeϕ), so the Morita equivalence follows once an isomorphism O(K, Eϕ) ∼=
πeϕ(p)O(Kq, Eeϕ)πeϕ(p) is established.

Since there are representations of Aq where the C∗-subalgebra generated by
words involving q has zero intersection with ι(A), and since ι is an injective
homomorphism, the ideal ι−1(Kq)∩J(Eϕ) of A is ι−1(ι(K))∩J(Eϕ) = K∩J(Eϕ) =
K. The remarks preceding Proposition 3.12 (setting the ideal I to beKq) yield, for
the universal representation (Teϕ, πeϕ) of Eeϕ coisometric on Kq, a ∗-homomorphism

γ : O(K, Eϕ) → πeϕ(p)O(Kq, Eeϕ)πeϕ(p)

satisfying (Teϕr, πeϕr) = γ ◦ (Tϕ, πϕ), where (Tϕ, πϕ) is the universal representation
of Eϕ coisometric on K.

Consider the composition δ ◦ γ : O(K, Eϕ) → O(K, Eϕ). For a ∈ A compute
that δ ◦ γ(πϕ(a)) = δ(πeϕr(a)) = δ(πeϕ(a)) which is equal to the cut down of
πq(a) = (δ′ ◦ πeϕ)(a) by πq(p), namely πϕ(a). Also δ ◦ γ ◦ Tϕ = δ ◦ Teϕr which is the
cut down of Tq = δ′◦Teϕ by πq(p), namely Tϕ. Thus δ◦γ = IdO(K,Eϕ) and therefore
γ is injective. Since γ is surjective (Proposition 3.12) it is an isomorphism. �

Remark 4.6. If the C∗-algebra A is separable then O(Kq, Eeϕ) is separable, and by
Brown’s theorem ([5]) the full corner C∗-subalgebra πeϕ(p)O(Kq, Eeϕ)πeϕ(p) and
O(Kq, Eeϕ) are stably isomorphic. Therefore, in this situation, O(K, Eϕ) and
O(Kq, Eeϕ) are stably isomorphic.

The proof of Theorem 4.5 implies that the ∗-homomorphism

δ : πeϕ(p)O(Kq, Eeϕ)πeϕ(p) → O(K, Eϕ)

is an isomorphism, so the cut down of the universal representation of Eeϕ coiso-
metric on Kq is, under the map δ, the universal representation (Tϕ, πϕ) of Eϕ
coisometric on K.

Corollary 4.7. Assume K ⊆ JEϕ and let (Teϕ, πeϕ) be the universal representation
of Eeϕ. Then ker(πeϕ) ⊆ {a ∈ Aq | ϕ̃(a∗a) = 0}.
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Proof. Assume a ∈ ker(πeϕ), equivalently a∗a ∈ ker(πeϕ). Then 0 = T∗
eϕπeϕ(a

∗a)Teϕ =
πeϕ(p)πeϕ(ϕ̃(a∗a))πeϕ(p) where Teϕ denotes, as usual, the partial isometry Teϕ(q⊗eϕp)
with initial projection πeϕ(p). Using the notation in the above theorem, 0 =
(δ◦πeϕ)(ϕ̃(a∗a)), which is the cut down of πq(ϕ̃(a∗a)) by πq(p), namely πϕ(ϕ̃(a∗a)).
Since K ⊆ JEϕ , πϕ is injective on A and the statement follows. �

5. The partial isometry case

The following briefly considers the case where the given cpc system (A,ϕ) maps
the unit p of A to a projection ϕ(p) of A; this is the case for example if ϕ is a
∗-endomorphism of A, or if ϕ is a retraction from A to a C∗-subalgebra of A ([13]
p. 55). If ϕ(p) is a projection the implementing contraction T = T (p⊗ϕp) for any
representation (T, π) of the correspondence Eϕ is necessarily a partial isometry
with initial projection T∗T = π(ϕ(p)). It is shown that the augmented system
(Aq, ϕ̃) reflects some structure of the original system. Such systems (A,ϕ) also
provide basic examples where representations of the augmented correspondence
Eeϕ over Aq which are coisometric on Kq cannot be injective.

Lemma 5.1. Consider (A,ϕ) where ϕ(p) = e is a projection of A. Then

ϕ(r) = eϕ(r)e for all r ∈ A.

Proof. (cf. [13], Proposition 5.10) If 0 ≤ r with ‖r‖ ≤ 1 then 0 ≤ ϕ(r) ≤ ϕ(p) =
e, so 0 ≤ (p− e)ϕ(r)(p− e) ≤ (p− e)e(p− e) = 0. Decomposing ϕ(r) with respect
to e and viewing it as the square of an element in A it follows that the equality
follows for r ≥ 0. By linearity the result holds for all r ∈ A. �

Lemma 5.2. Consider (A,ϕ) where ϕ(p) = e is a projection of A. If (Aq, ϕ̃) is
the augmented cpc system then ϕ̃(pa) = ϕ(p)ϕ̃(a) = ϕ̃(a)ϕ(p) = ϕ̃(ap) for all
a ∈ Aq (so p is in the multiplicative domain of ϕ̃).

Proof. It is enough to check this when a = q and when a = q̂a1qa2q...qalq̂ ∈ Aq
where the ai ∈ A. Since ϕ̃(q) = p the unit of A, the first case when a = q follows
from the definition of ϕ̃. The previous lemma implies ϕ(r) = eϕ(r) = ϕ(r)e for
all r ∈ A, therefore in the second case,

ϕ̃(a) = ϕ(a1)ϕ(a2)...ϕ(al) = ϕ(p)ϕ̃(a) = ϕ̃(a)ϕ(p),

showing that the possible values for ϕ̃(pa) and ϕ̃(ap) are all equal. �

Lemma 5.3. Let (Aq, ϕ̃) be the augmented cpc system associated with (A,ϕ). If

a, b ∈ Aq with qa− bq ∈ ker(φ̃) then

ϕ̃(a∗)ϕ̃(a)− ϕ̃(a∗)ϕ̃(b)− ϕ̃(b∗)ϕ̃(a) + ϕ̃(b∗b) = 0.

If qa− aq ∈ ker(φ̃) then ϕ̃(a∗)ϕ̃(a) = ϕ̃(a∗a).

Proof. The proof of Lemma 1.5 shows that ker(φ̃) is contained in the left ideal
{c ∈ Aq | ϕ̃(c∗c) = 0}. With c = qa − bq the first identity is ϕ̃(c∗c) = 0. The
second one follows by setting a = b. �
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Proposition 5.4. For (A,ϕ) a cpc system, let φ̃ : Aq → L(Eeϕ) be the ∗-
homomorphism defining the left action of Aq on the correspondence Eeϕ. Then

a. ϕ(p) = e is a projection of A if and only if φ̃(pq) = φ̃(qp).

b. ϕ(p) = p if and only if φ̃(q) = φ̃(pq).

Proof. The identity φ̃(pq) = φ̃(qp) holds if and only if 〈pqr ⊗eϕ u, s⊗eϕ v〉 =
〈qpr ⊗eϕ u, s⊗eϕ v〉 for all simple tensors r ⊗eϕ u and s ⊗eϕ v in Eeϕ. If ϕ(p) = e
is a projection of A then by Lemma 5.2 the left hand side

〈pqr ⊗eϕ u, s⊗eϕ v〉 = 〈u, ϕ̃(r∗qps)v〉Aq = 〈u, ϕ̃(r)∗ϕ̃(ps)v〉
= 〈u, ϕ̃(r)∗ϕ(p)ϕ̃(s)v〉 .

This, however, is also equal to 〈qpr ⊗eϕ u, s⊗eϕ v〉 . If ϕ(p) = p the above right
hand side further simplifies to 〈u, ϕ̃(r)∗ϕ̃(s)v〉 which is equal to 〈qr ⊗eϕ u, s⊗eϕ v〉 ,
so φ̃(q) = φ̃(pq).

Conversely, if φ̃(qp− pq) = 0 then the second statement of Lemma 5.3 implies
ϕ(p)ϕ(p) = ϕ(p), and ϕ(p) is a projection. This Lemma also implies (after setting

a = q and b = p) that if φ̃(q − pq) = 0 then ϕ(p) = p. �

Theorem 5.5. Let (A,ϕ) be a cpc system and K an ideal of A contained in
JEϕ = φ−1(K(E)) ∩ (kerφ)⊥. Let (Teϕ, πeϕ) : Eeϕ → O(Kq, Eeϕ) be the universal
representation of Eeϕ coisometric on Kq.

a. ϕ(p) = e is a projection if and only if the projections πeϕ(p) = πeϕ(q) commute.

b. ϕ is unital if and only if πeϕ(Aq) is unital and πeϕ(p) is the unit in πeϕ(Aq).

Proof. Since the ideal K is also contained in J(Eϕ) then, as noted after Definition
4.3, Kq is contained in J(Eeϕ). Also, the coisometric hypothesis on Kq implies the

ideal Kq∩ (ker φ̃) ⊆ kerπeϕ. Since both pq−qp ∈ Kq and q−qp ∈ Kq, Proposition
5.4 implies that the condition ϕ(p) = e is a projection of A is equivalent to

pq − qp ∈ Kq ∩ (ker φ̃), while the condition ϕ(p) = p is equivalent to q − qp ∈
Kq ∩ (ker φ̃). Therefore the conditions imply these elements are in kerπeϕ, and
both forward implications follow.

For the converse implications note that the hypothesis on K implies, by Corol-
lary 4.7, that kerπeϕ is contained in {a ∈ Aq | ϕ̃(a∗a) = 0}. Calculating ϕ̃(a∗a) = 0
for a = qp−pq ∈ kerπeϕ yields ϕ(p)−ϕ(p)2 = 0. The hypothesis for part b implies
the hypothesis of part a, so ϕ(p) is a projection in A. Then calculating ϕ̃(a∗a) = 0
for a = q − pq ∈ kerπeϕ yields p− ϕ(p) = 0. �

This illustrates that there are ready examples where a representation of the
augmented correspondence Eeϕ which is coisometric on the ideal Kq of Aq may
not be injective, even though its restriction to Eϕ coisometric on K may be
injective. For example the universal coisometric representation of Eϕ is injective
when K ⊆ JEϕ . One may interpret ker πeϕ as reflecting a lack of ‘freeness’ in the
original system (A,ϕ).

We remark that the proof of Theorem 5.5 shows that the two forward implica-
tions hold if the ideal K ⊆ J(Eϕ).
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Corollary 5.6. Let (A,ϕ) be a cpc system and K an ideal of A contained in
J(Eϕ). If ϕ is unital then the Cuntz–Pimsner C∗-algebra O(K, Eϕ) is isomorphic
to the Cuntz–Pimsner algebra O(Kq, Eeϕ) of the augmented correspondence Eeϕ.

Proof. By Theorem 4.5 the relative Cuntz–Pimsner C∗-algebra O(K, Eϕ) is iso-
morphic to the corner πeϕ(p)O(Kq, Eeϕ)πeϕ(p). The remark following Theorem 5.5
shows πeϕ(p) is the identity of πeϕ(Aq). Since O(Kq, Eeϕ) = C∗(Teϕ, πeϕ) (where
Teϕ = Teϕ(q ⊗eϕ p)) and the final projection of Teϕ = πeϕ(q) ≤ πeϕ(p), we have that
(Teϕ is an isometry and) πeϕ(p) is the unit of O(Kq, Eeϕ). �

Consider now the further special case of ϕ equal to a ∗-endomorphism β of A.
The following observation appears standard (cf. [11] Lemma 3.25).

Lemma 5.7. Let (A,ϕ) be the cpc system where ϕ is a ∗-endomorphism β of A.
Then p⊗ β(r)u = r ⊗ u in the A-A correspondence Eβ. The ideal J(Eβ) = A.

Proof. Let r, u, s, v ∈ A. The first equality follows by noting, since β is an endo-
morphism, that

〈r ⊗β u, s⊗β v〉 = 〈u, β(r∗s)v〉A = u∗β(r∗)β(s)v

while

〈p⊗β β(r)u, s⊗β v〉 = 〈β(r)u, β(ps)v〉A = u∗β(r∗)β(s)v.

It follows that θp⊗βp,p⊗βp maps (r ⊗β u) to

p⊗β p 〈p⊗β p, r ⊗β u〉 = p⊗ β(r)u = r ⊗ u.

and therefore θp⊗βp,p⊗βp = φ(p), the identity map in L(Eβ). Thus p ∈ J(Eβ) and
J(Eβ) = A. �

For a representation (T, π) : Eβ → C∗(T, π) of Eβ Lemma 5.7 (cf. [11] Proposi-
tion 3.26) implies that

TT∗ = ψT (θp⊗βp,p⊗βp) = ψT (φ(p)),

for T = T (p ⊗β p). If in addition the representation (T, π) is coisometric on
J(Eβ) = A then TT∗ = π(p).

If β is an injective ∗-endomorphism of A then the ideal JEβ = J(Eβ) = A,
so if a representation (T, π) is coisometric on the ideal JEβ then TT∗ = π(p)
and the partial isometry T must be a coisometry in C∗(T, π). It follows from
Theorem 5.5 that if β is a unital injective ∗-endomorphism then the coisometry
T implementing β is also an isometry, so is necessarily a unitary in C∗(T, π).

Consider the augmented system (Aq, β̃) if ϕ is a ∗-endomorphism β of A. First

note that β̃ is then also a ∗-endomorphism of Aq with β̃(q) = p.

Lemma 5.8. Let (A,ϕ) be a cpc system with ϕ a ∗-endomorphism β of A. Then

φ̃(q) is the identity of L(Eeβ).

Proof. It is sufficient to show that m ⊗eβ n = qm ⊗eβ n in Eeβ for m,n ∈ Aq. For

a⊗eβ b a simple tensor in Eeβ calculate
〈
m⊗eβ n, a⊗eβ b

〉
=

〈
n, β̃(m∗a)b

〉
Aq
. Using
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that β̃ is a ∗-endomorphism this is equal to〈
n, β̃(m)∗β̃(a)b

〉
Aq

which in turn is equal to〈
β̃(m)n, β̃(a)b

〉
Aq

=
〈
q ⊗eβ β̃(m)n, a⊗eβ b

〉
.

Now apply part b of Proposition 2.2 which shows that q⊗eβ β̃(m)n = qm⊗eβ n in
Eeβ. �

Proposition 5.9. Consider (A,ϕ) where ϕ is an injective ∗-endomorphism β of

A. Let K = JEβ . Then Kq = Aq, and if (T̃ , π̃) : Eeβ → C∗(T̃ , π̃) is a representation

of Eeβ coisometric on Kq, then T̃ = T̃ (q ⊗ p) is a coisometry in C∗(T̃ , π̃).

Furthermore, if β is unital, then π̃(p) = π̃(q) and T̃ = T̃ (q ⊗ p) is a unitary in

C∗(T̃ , π̃).

Proof. By Definition 4.3 and the remark following it we have Kq ⊆ J(Eeβ) for K

any ideal of J(Eβ). Since β is an injective ∗-endomorphism of A, JEβ = J(Eβ) = A
and Kq must be all of Aq, so in particular must contain p.

Since φ̃(q) = IdL(Eeβ) by Lemma 5.8, φ̃(p) = φ̃(qp) = φ̃(pq). Therefore if (T̃ , π̃)

is coisometric on Kq, so ψeT ◦ φ̃ = π̃ on Aq, then π̃(p) = π̃(p)π̃(q) = π̃(q)π̃(p).

Thus π̃(p) ≤ π̃(q). To see that T̃ is a coisometry it is enough, using Proposition

3.11, to check that π̃(q) is the identity of C∗(T̃ , π̃). However π̃(q) is the identity

for π̃(Aq), also a left unit for T̃, and a right unit for T̃ since π̃(p) is.
If β(p) = p, then

β̃(m∗pa) = β̃(m)∗β̃(p)β̃(a) = β̃(m)∗pβ̃(a) = β̃(m)∗β̃(a)

for m, a ∈ Aq. A computation similar to that in first part of Lemma 5.8 shows

that pm ⊗eβ n = m ⊗eβ n, showing that φ̃(p) = IdL(Eeβ). Thus φ̃(q) = φ̃(p), which

implies π̃(p) = π̃(q) by the coisometric condition, and T̃ is unitary. �

6. A quotient system (A1, ϕ1)

This section considers natural quotient systems (that depend on the coisometry
ideal K of A) of the augmented cpc system (Aq, ϕ̃). These systems modify the
free aspects of the algebra Aq to reflect properties of the original system.

First recall that for BEB a C∗-correspondence over a C∗-algebra B an ideal I
of B is said to be E-invariant if φ(I)E ⊆ EI, where EI = {xb | x ∈ E , b ∈ I} is a
correspondence over I. Note that EI = {x | 〈x, y〉B ∈ I for all y ∈ E} ([7]). We
include the following proof for completeness although it is generally known (cf.
[10] Lemma 5.10(i)).

Lemma 6.1. Let (T, π) be a representation of the C∗-correspondence Eϕ over A
associated with a cpc system (A,ϕ). The ideal I = kerπ of A is invariant under
ϕ, and is Eϕ-invariant.
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Proof. Let a ∈ I. Then π(ϕ(a)) = T∗π(a)T = 0, so ϕ(I) ⊆ I.
Let r⊗ϕu be a simple tensor in Eϕ. To show that I is Eϕ-invariant it is enough to

show that 〈φϕ(a)(r ⊗ϕ u), s⊗ϕ v〉 ∈ I for all s⊗ϕ v simple tensors in Eϕ. However
this inner product is u∗ϕ(r∗a∗s)v, which is contained in I since ϕ(I) ⊆ I. �

In general an E-invariant ideal I of B defines a correspondence E/EI over B/I
where the right Hilbert module structure (cf. [7]) is given by (where [ ] denotes
the appropriate quotient class)

[x][a] = [xa] for a ∈ B, x ∈ E ,

〈[e], [f ]〉B/I = [〈e, f〉B] for e, f ∈ E

and where the left action φB/I on E/EI is given by

φB/I([b])([x]) = [φ(b)x] for b ∈ B, x ∈ E .

Let K ⊆ J(Eϕ) be an ideal and (Teϕ, πeϕ) : Eeϕ → C∗(Teϕ, πeϕ) = O(Kq, Eeϕ) the
universal representation of Eeϕ coisometric on Kq. The previous section provides
some basic examples where kerπeϕ is nonzero for various choices of K. Lemma 6.1
shows that the ideal kerπeϕ is invariant under ϕ̃ and is Eeϕ-invariant. The following
cpc system (A1, ϕ1)K (denoted (A1, ϕ1) if the ideal K is understood) is therefore
well defined.

Definition 6.2. Denote the ideal kerπeϕ of Aq by Iq. Define a quotient cpc system
(A1, ϕ1)K as follows: A1 is the quotient C∗-algebra Aq/Iq with χ : Aq → A1 the
natural quotient map, and ϕ1 is given by ϕ1(χ(m)) = χ(ϕ̃(m)) for m ∈ Aq. Set
E1 to be the correspondence Eϕ1 = A1 ⊗ϕ1 A1 associated with the the cpc system
(A1, ϕ1) with the left action denoted by φ1.

It is clear that ϕ1 is a cpc map on A1. The cpc system (A1, ϕ1) depends on the
ideal K of A initially specified for the coisometric relation. By construction the
representation πeϕ drops to an injective representation π1 : A1 → O(Kq, Eeϕ).

Note that in certain natural cases A is injectively included in A1 via the natural
∗-homomorphism. For example, if K ⊆ JEϕthen the universal representation
(Tϕ, πϕ) : Eϕ → O(K, Eϕ) is injective. Now recall from the proof of Theorem 4.5
that there is an isomorphism γ : O(K, Eϕ) → πeϕ(p)O(Kq, Eeϕ)πeϕ(p) so that the
restriction of the universal representation (Teϕr, πeϕr) = γ ◦ (Tϕ, πϕ). It follows that
the restricted representation πeϕr of A is injective, and therefore A ∩ kerπeϕ = 0.

Notation 6.3. There is a well defined contractive linear map L : Eeϕ → E1,
described on simple tensors by m⊗eϕ n→ χ(m)⊗ϕ1 χ(n), which satisfies

〈L(m⊗eϕ n), L(a⊗eϕ b)〉A1
= χ(〈m⊗eϕ n, a⊗eϕ b〉Aq).

Proposition 6.4. The correspondence Eeϕ/EeϕIq over A1 formed via the Eeϕ-invariant
ideal Iq is isomorphic to the correspondence E1 over A1 associated with the cpc
system (A1, ϕ1).
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Proof. The pair (L, χ) : Eeϕ → E1 is a morphism of correspondences (cf. [10]
Definition 2.3), and therefore the relations

L(φ̃(a)(m⊗eϕ n)) = φ1(χ(a))L(m⊗eϕ n)

L(m⊗eϕ n)χ(a) = L(m⊗eϕ na).

hold for a, b,m, n ∈ Aq.
Let x ∈ Eeϕ. Since the image of L contains the dense subspace A1 ⊗ϕ1 A1 of E1,

it follows that the vector L(x) = 0 if and only if 〈L(x), L(y)〉A1
= 0 for all y ∈ Eeϕ.

Using the first relation above this is equivalent to χ(〈x, y〉Aq) = 0, or since π1 is

injective, πeϕ(〈x, y〉Aq) = π1(χ 〈x, y〉Aq) = 0 for all y ∈ Eeϕ. This is equivalent to

〈x, y〉 ∈ kerπeϕ = Iq for all y ∈ Eeϕ, or equivalently, x ∈ EeϕIq. Thus the kernel of L
is EeϕIq.

The first equality above implies that the linear map U : Eeϕ/EeϕIq → E1 defined
on the quotient Eeϕ/EeϕIq via L is an isometry of Hilbert modules. Since L and
therefore U has dense range, it (and therefore also L) is surjective. Therefore U
is a unitary of correspondences. �

Remark 6.5. We thank the referee for pointing out that this amounts to an ex-
ample of a general process which applies to a correspondence E and a given ideal
K ⊆ J(Eϕ) ([12] Section 5.1); here this process can be applied to the correspon-
dence Eeϕ over Aq. Proposition 6.4 above along with Theorem 5.4 of [12] imply
that the ideal Iq is the ‘reduction ideal’ (Kq)∞ of [12], a recursively defined ideal
equalling the smallest Eeϕ-invariant ideal in Aq satisfying an additional condition.
We point out that this additional condition (for a correspondence E and the ideal
JE) appears in [14] as the definition of a E-saturated ideal.

Define ΨL : K(Eeϕ) → K(E1) by ΨL(θx,y) = θL(x),L(y) for x, y ∈ Eeϕ. The surjec-
tivity of L implies ΨL is surjective. It follows from the morphism properties of L
(Proposition 6.4), and by verifying on the simple tensors in Eeϕ, that

ΨL(k) ◦ L = L ◦ k for k ∈ K(Eeϕ).

This identity, along with L ◦ φ̃(a) = φ1(χ(a)) ◦ L for a ∈ Aq (from Proposition
6.4) yields

ΨL ◦ φ̃ = φ1 ◦ χ on Kq,

and therefore χ(Kq) ⊆ J(E1).

Definition 6.6. For K ⊆ J(Eϕ) an ideal and (Teϕ, πeϕ) : Eeϕ → O(Kq, Eeϕ) the
universal representation of Eeϕ coisometric on Kq set K1 = χ(Kq), an ideal of A1

contained in J(E1).

The universal representation (Teϕ, πeϕ) of Eeϕ coisometric on Kq determines a rep-
resentation (T1, π1) of E1 with image in C∗(Teϕ, πeϕ). First set π1 : A1 → O(Kq, Eeϕ)
as above, so πeϕ = π1 ◦ χ, and define T1 : E1 → O(Kq, Eeϕ) by

T1 ◦ L = Teϕ.

This is a well defined linear map on Eϕ1 since

Teϕ(m⊗eϕ n) = πeϕ(m)Teϕ(q ⊗eϕ p)πeϕ(n) = π1(χ(m))Teϕ(q ⊗eϕ p)π1(χ(n)).
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It is straightforward to check that (T1, π1) : Eϕ1 → C∗(Teϕ, πeϕ) = O(Kq, Eeϕ) is
a representation of E1 coisometric on the ideal K1.

Proposition 6.7. Let (A,ϕ) be a cpc system and (A1, ϕ1) its associated cpc
system. For an ideal K ⊆ J(Eϕ) then K1 ⊆ JE1 .

Proof. Let (Teϕ, πeϕ) : Eeϕ → O(Kq, Eeϕ) denote the universal representation of Eeϕ
coisometric on Kq. It is enough to show that K1 ⊆ ker(φ1)

⊥ since, as already
noted, χ(Kq) ⊆ J(E1). For χ(a) ∈ K1 where a ∈ Kq, and χ(b) ∈ kerφ1 where
b ∈ Aq it suffices to show that χ(a)χ(b) = 0, i.e., that ab ∈ kerπeϕ. However χ(b) is
in the ideal kerφ1, so χ(ab) ∈ kerφ1 and 0 = ΨT1(φ1(χ(ab)). The above identities
show that this is equal to

ΨT1(ΨL(φ̃(ab))) = ΨT1◦L((φ̃(ab)) = ΨTeϕ((φ̃(ab)) = πeϕ(ab)

the latter equality following from ab ∈ Kq the ideal of coisometry for (Teϕ, πeϕ). �

Theorem 6.8. Let (A,ϕ) be a cpc system, (Aq, ϕ̃) its augmented cpc system, K ⊆
J(Eϕ) an ideal, and (A1, ϕ1) the associated quotient cpc system. The universal
C∗-algebra O(Kq, Eeϕ) for representations of Eeϕ coisometric on Kq is isomorphic
to the universal C∗-algebra O(K1, E1) for representations of the correspondence
E1 coisometric on K1, and O(K, Eϕ) and O(K1, E1) are Morita equivalent C∗-
algebras.

Proof. By Theorem 4.5 Morita equivalence follows once O(Kq, Eeϕ) is shown to be
isomorphic to O(K1, E1).

Let (Teϕ, πeϕ) denote the universal representation (Teϕ, πeϕ) : Eeϕ → O(Kq, Eeϕ) of
Eeϕ coisometric on Kq. Since Iq is the kernel of πeϕ, the ideal in O(Kq, Eeϕ) generated
by πeϕ(Iq) is zero, and therefore the quotient of O(Kq, Eeϕ) by this 0 ideal must be
O(Kq, Eeϕ). Applying the isomorphism part of Theorem 3.1 of [7], this quotient
algebra is isomorphic to O(K1, E1). �

The cpc system (A1, ϕ1) may be viewed as a natural extension of the initial cpc
system (A,ϕ) which minimizes the extraneous free aspects of cpc system (Aq, ϕ̃).
There are many natural questions concerning the relationships of the cpc system
(A1, ϕ1) to the cpc system (A,ϕ), including, for example, conditions determining
it uniquely up to equivalence, that will be explored elsewhere.
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