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Abstract. The purpose of this paper is to present some old and recent results
for the class of F -algebras which include most classes of Banach algebras that
are important in abstract harmonic analysis. We also introduce a subclass
of the class of F -algebras, called normal F -algebras, that captures better the
measure algebras and the (reduced) Fourier–Stieltjes algebras, and use this to
give new characterisations the reduced Fourier–Stieltjes algebras of discrete
groups.

1. Introduction

From each locally compact group G, several Banach algebras could be con-
structed that encode essential information about G. The most important ones
are the group algebra L1(G) and the Fourier algebra A(G). The group algebra
L1(G) is the space (of equivalence classes) of integrable functions on G with con-
volution product; note that L1(G) is naturally identified with the predual of the
commutative von Neumman algebra L∞(G). While the Fourier algebra A(G),
introduced by Eymard in [8], is a subalgebra of C0(G) the algebra of continuous
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functions on G vanishing at the infinity, that consists of all continuous functions
on G of the form k ∗ ȟ, where k, h ∈ L2(G), k(s) = k(s) and ȟ(s) = h(s−1).
The norm on A(G) comes from its natural identification with the predual of the
group von Neumann algebra VN (G), the weak∗-closed subalgebra of B(L2(G))
generated by the left regular representation λG : G → U(G): each ϕ ∈ A(G) is
considered as a normal functional on VN (G) by

ϕ(T ) = (Th|k) (T ∈ VN (G)),

where k, h are any pair of elements of L2(G) such that ϕ = k ∗ ȟ.
The two Banach algebras L1(G) and A(G) are important topological algebraic

objects in the study of harmonic analysis on locally compact groups. They have
been shown to have deep relation with the structure of the underlying group G
(see Wendel [41] and Walter [39]). They also share a crucial common property:
each of them is the predual of a W ∗-algebra and the identity of the W ∗-algebra
is in the spectrum of the Banach algebra.

In [20], a class of Banach algebras called F -algebras (also known as Lau alge-
bras, see [31]) was introduced which not only includes the group algebra L1(G)
and the Foureir algebra A(G) of a locally compact group G but also many other
classes of algebras that are studied in abstract harmonic analysis. It is the pur-
pose of this paper to give an updated account on some recent work on this class
of Banach algebras.

Definition 1.1. By an F -algebra, we shall mean a pair (A,M) such that A is a
complex Banach algebra andM is aW ∗-algebra such thatA = M∗ (isometrically),
where M∗ is the predual of M , and the identity of M is a character of A (i.e.
a nonzero multiplicative linear functional on A). If there is no confusion, we
shall simply say that A is an F -algebra and we shall identify A′ with M . The
identity of A′ will be denoted by e. Also, P (A) := {ϕ ∈ A : ϕ ≥ 0} and P1(A) :=
{ϕ ∈ P (A) : ϕ(e) = 1}, the set of normal states of A′.

Note that the W ∗-algebraic structure on the dual A′ of an F -algebra A needs
not be unique. In fact, let M be a W ∗-algebra such that the reversed or opposite
algebra M o (see [5]), where the only modification is the product a ·o b := ba, is not
W ∗-isomorphic to M . Define on A := M∗ the following product: ϕ · ψ := ϕ(e)ψ
for any ϕ, ψ ∈ A. Then both (A,M) and (A,M o) are F -algebras. However, we
have the following [20] as a consequence of Kadison’s theorem on isometries of
W ∗-algebras:

Proposition 1.2. If (A,M1) and (A,M2) are F -algebras such that M1 and M2

have the same set of positive functionals. Then there exists central projections
zi ∈ Mi, i = 1, 2, such that M1z1 is W ∗-isomorphic to M2z2 and M1(e1 − z1)
is W ∗-isomorphic to the reversed algebra of M2(e2 − z2). In particular, if M1 is
commutative, then M1 and M2 are W ∗-isomorphic.

Besides the group algebras L1(G) and the Fourier algebras A(G) of locally
compact groups G, the class of F -algebras also includes the Fourier–Stieltjes
algebras B(G) of locally compact groups G, the measure algebra M (S) of a
locally compact semigroup S or locally compact hypergroups. It also includes
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the class of convolution measure algebras studied by Taylor [36, 37, 38], the class
of L-algebras (for which the identity of the dual algebra is in the spectrum of the
L-algebra) considered by McKilligan and White [29], and the class of semi-convos
[17].

Many of the examples mentioned above are subclasses of the class of predual
algebras of Hopf von Neumann algebras [35]; in fact, its subclass of quantum
group algebras [19] already includes the group algebras L1(G) and the Fourier
algebras A(G) of locally compact groups G. We shall not define the quantum
group algebras here, but let us recall that a Hopf von Neumann algebra is a pair
(M,Γ) where M is a W ∗-algebra and Γ : M → M⊗M is a co-multiplication, that
is, a normal unital ∗-homomorphism that satisfies the co-associativity:

(id⊗ Γ) ◦ Γ = (Γ⊗ id) ◦ Γ .

Here, M⊗M denotes the von Neumann algebra tensor product of M with itself.
Since Γ is normal, it has the pre-adjoint Γ∗ : M∗⊗̂M∗ → M∗, which is associative
due to the coassociativity of Γ. This makes M∗ an F -algebra.

If G is a locally compact group, then we have seen that L1(G) is an F -algebra.
But in fact, it is even the predual algebra of the Hopf von Neumann algebra
(L∞(G),ΓG), where ΓG : L∞(G) → L∞(G)⊗L∞(G) = L∞(G×G) is defined by

ΓG(f)(s, t) = f(st) (f ∈ L∞(G), s, t ∈ G) .

On the other hand, the Fourier algebra A(G) is the predual algebra of a Hopf
von Neumann algebra, if the group von Neumann algebra VN (G) is given the
comulitiplication that maps λ(s) 7→ λ(s)⊗ λ(s) for every s ∈ G.

The classes of group algebras and of measure algebras of locally compact groups
are also subclasses of the following constructions for hypergroups. A locally
compact space H is a hypergroup if there is a convolution product, denoted by ∗,
defined on M (H), the space of bounded Radon measures on H, for which several
general conditions are satisfied. We refer to [1] for the precise definition of a locally
compact hypergroup. With the convolution product, M (H) becomes a Banach
algebra, it is in fact an F -algebra. When a locally compact hypergroup H has a
left invariant Haar measure λ, the convolution product on L1(H) := L1(H, λ) is
then naturally defined to make it a Banach algebra, called the hypergroup algebra
of H. Again, L1(H) is an F -algebra, although, in general, L1(H) cannot be a
predual algebra of a Hopf von Neumann algebra unless H is already a locally
compact group [42, Theorem 5.2.2] (see also [43, Remark 5.3]).

In the following, we shall first review three topics in the theory of F -algebras:

(i) left-amenability and fixed point properties,
(ii) finite-dimensional invariant subspace properties, and
(iii) characterisations of the Fourier algebras of locally compact groups.

A new notion of normal F -algebras is then introduced in section 5. This is a
specialisation to those F -algebras whose W ∗-algebraic dual is actually the bidual
of a C∗-algebra. We use this to give new characterisations of the reduced Fourier–
Stieltjes algebras of discrete groups. The final section 6 ends the paper with some
open problems relating to the above topics.
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2. Left-amenable F -algebras

Let A be a Banach algebra, and let X be a Banach A-bimodule. A derivation
D : A→ X is a linear map such that

D(ϕψ) = ϕD(ψ) +D(ϕ)ψ (ϕ, ψ ∈ A) .

It is easy to see that Dx0 : A → X , ϕ 7→ ϕx0 − x0ϕ , is a bounded derivation
for every x0 ∈ X. Such a derivation is called an inner derivation. It is often
desirable to know whether or not every bounded derivation D : A→ X is inner.
However, we are often more interested in this question when the bimodule X is
the dual of another bimodule.

Given a Banach A-bimodule X. Its Banach space dual X ′ has a natural struc-
ture of a Banach A-bimodule, where the left and right module products are
defined as

〈ϕ · f, x〉 = 〈f, x · ϕ〉 and 〈f · ϕ, x〉 = 〈f, ϕ · x〉

for all f ∈ X ′, ϕ ∈ A, and x ∈ X. A Banach algebra A is amenable if, for any
Banach A-bimodule X, every bounded derivation A → X ′ is inner. B. Johnson
proved in [18, Theorem 2.5] that a locally compact group G is amenable if and
only if L1(G) is amenable. The class of amenable Banach algebras has been
studied extensively, see the books [6], [31], and [34] for examples.

However, Johnson’s theorem is no longer valid for semigroups. In fact, the
semigroup N of positive integers with addition is amenable but the Banach algebra
`1(N) is not [2, p. 244]. Is there a similar theorem that works for semigroups?
For that we have to restrict to the class of F -algebras. But let us recall some
terminologies first.

Recall that a semitopological semigroup is a semigroup S with a Hausdorff
topology such that the product on S is separately continuous; it is called a topo-
logical semigroup if the product is jointly continuous. Let S be a semitopological
semigroup. Denote by Cb(S) the commutative C∗-algebra of all bounded continu-
ous complex-valued functions on S, and by LUC (S) its C∗-subalgebra consisting
of all left uniformly continuous functions, i.e. those f ∈ Cb(S) such that the map-
ping s 7→ ls(f), S → Cb(S), is continuous, where ls(f)(t) = f(st) for all s, t ∈ S.
Evidently, LUC (S) is translation-invariant and contains the constant functions.

A semitopological semigroup S is left-amenable if LUC (S) has a left-invariant
mean, i.e. an element m ∈ LUC (S)′ such that

‖m‖ = m(1) = 1, m(ls(f)) = m(f) (f ∈ LUC (S), s ∈ S) .

S is extremely left-amenable if if there is a left-invariant mean m which is multi-
plicative, i.e. such that furthermore

m(fg) = m(f)m(g) (f, g ∈ LUC (S)) .

Let A be an F -algebra. A topological left invariant mean (abbreviated as
TLIM) on A′ is an element m ∈ P1(A

′′) such that

m(x · ϕ) = m(x) for each ϕ ∈ P1(A), x ∈ A′ .
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The set of TLIM on A′ will be denoted by TLIM(A′). The notion of TLIM has
been considered for various special cases of A by many authors; see for examples
[7], [16], [32], and [44].

An F -algebra A is said to be left-amenable if every bounded derivation A→ X ′

is inner whenever X is a Banach A-bimodule whose left multiplication is given
by ϕ · x = ϕ(e)x for all ϕ ∈ A and x ∈ X. This notion was introduced in [20]
where the following theorem was proved.

Theorem 2.1. Let A be an F -algebra. Then A′ has a TLIM if and only if A is
left-amenable.

The following is an analogue of Johnson’s theorem [18, Theorem 2.5]:

Corollary 2.2. A semigroup S is left-amenable if and only if the F -algebra `1(S)
is left-amenable.

Corollary 2.3. Let G be a locally compact group. The following are equivalent:

(i) G is amenable.
(ii) The group algebra L1(G) is left-amenable.
(iii) The measure algebra M (G) is left-amenable.

Proof. This follows from Theorem 2.1 and [14, Theorem 2.2.1] and [44, Theorem
3.3]. �

Remark 2.4.

(i) Any commutative F -algebras are left- (and right-) amenable.
(ii) Let M be a W ∗-algebra, and A = M∗. Then:

(a) A is left-amenable if the product on A is defined by ϕ · ψ := ϕ(e)ψ;
(b) A is right-amenable if the product on A is defined by ϕ ·ψ := ψ(e)ϕ;
(c) A is both left- and right-amenable (but not amenable) if the product

on A is defined by ϕ · ψ := ϕ(e)ψ(e)θ, where θ ∈ P1(A) is fixed.
(iii) Let A1, A2 be F -algebras. Then A1⊕A2 is left-amenable if and only if A1

is left-amenable. In particular, C⊕A is left-amenable for any F -algebra
A.

(iv) An F -algebra A is left-amenable if and only if A′′, with the first Arens
product, is left-amenable.

Theorem 2.5. Let A be an F -algebra. Then the left-amenability of A is equiva-
lent to each of the following:

(i) There exists a net ϕα ∈ P1(A) such that ‖ϕ · ϕα − ϕα‖ → 0 for each
ϕ ∈ P1(A).

(ii) There exists a net ϕα ∈ P1(A) such that ‖ψ · ϕα‖ = |ψ(e)| for each ψ ∈ A.

(iii) For each x ∈ A′, the set K(x)
σ

contains λe for some λ ∈ C, where
K(x) = {ϕ · x : ϕ ∈ P1(A)} and the closure is in the weak∗-topology of
A′.

In this case, λe ∈ K(x)
σ

if and only if there exists a TLIM on A′ with
m(x) = λ.

(iv) For each ψ ∈ A with ψ(e) = 0 and each ε > 0, there exists a ϕ ∈ P1(A)
such that ‖ψ · ϕ‖ < ε.
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(v) The Mazur distance d(I1, I2) = 0 for any two right-ideals I1, I2 of the
semigroup P1(A).

(vi) N(A) is closed under addition, where N(A) denotes the set of all x ∈ A′
such that inf {‖ϕ · x‖ : ϕ ∈ P1(A)} = 0.

We refer the reader to [20, p. 172] for more details.
A semigroup S is left-reversible if any two right ideals in S has nonempty inter-

section. Commutative semigroups (or more generally left amenable semigroups)
and groups are left-reversible.

Corollary 2.6. An F -algebra A is left-amenable if P1(A) is left-reversible.

Let S be a semigroup and let Ω be a Hausdorff topological space. We say that
S = {Ts : s ∈ S} is a representation of S on Ω if each Ts is a continuous mapping
Ω → Ω and Tst = Ts◦Tt (s, t ∈ T ). Sometimes, we simply write sx instead of Ts(x)
if there is no ambiguity. When S is a semitopological semigroup, we say that the
representation is seperately continuous if the mapping (s, x) 7→ Ts(x), S × Ω →
Ω is separately continuous. The representation is (jointly) continuous if the
mapping (s, x) 7→ Ts(x), S × Ω → Ω is (jointly) continuous.

Mitchell [30] showed that a semitopological semigroup S is extremely left-
amenable if and only if it has the following fixed point property:

(FE): Every jointly continuous representation of S on a compact Hausdorff
space Ω has a common fixed point in Ω.

For an F -algebra, it is pleasing that the left-amenability of A is equivalent to the
extreme left-amenability of P1(A) as shown by the following theorem, proved in
[28].

Theorem 2.7. Let A be an F -algebra. Then A is left-amenable if and only if
P1(A) has the fixed point property (FE).

Corollary 2.8. A locally compact group G is amenable if and only if the semi-
group P1(G) := P1(L

1(G)) has the fixed point property (FE).

Corollary 2.9. A semigroup S is left-amenable if and only if the semigroup
P1(S) := P1(`

1(S)) has the fixed point property (FE).

3. Finite-dimensional invariant subspace properties

Let E be a locally convex vector space, and X a subset of E. Given an n ∈ N,
we denote by Ln(X) the collection of all n-dimensional subspaces of E that are
included in X. Let S be a semigroup and S = {Ts : s ∈ S} a linear representation
of S on E. We say that X is n-consistent with respect to S if Ln(X) 6= ∅ and
Ln(X) is S-invariant, that is, Ts(L) ∈ Ln(X) for all s ∈ S whenever L ∈ Ln(X).

In [10], see also [9, 21, 25, 27], Ky Fan proved the following remarkable “In-
variant Subspace Theorem” for left-amenable semigroups:

Our standing assumption will be that the topology of a locally convex space is always Haus-
dorff, a property sometimes called separated in the literature.
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Theorem 3.1. Let S be a left-amenable semigroup, and let S = {Ts : s ∈ S} be
a representation of S as continuous linear operators on a locally convex space E.
Then the following holds:

(KF): If X is a subset of E that is n-consistent with respect to S, and if there
exists a closed S-invariant subspace H in E of codimension n with the
property that (x+H) ∩X is compact convex for each x ∈ E, then there
exists an L0 ∈ Ln(X) such that Ts(L0) = L0 for all s ∈ S.

A similar result for F -algebras is established by Lau and Zhang in [28]. For
convenient, let us say that a linear representation S of a semigroup S on a locally
convex vector spaceE is jointly continuous on compact sets if the following is
true: For each compact set K ⊂ E, if the nets sα → s in S , xα → x in K,
and Tsα(xα) ∈ K for all α, then Tsα(xα) → Ts(x). Obviously, if the mapping
(s, x) 7→ Ts(x) : S × E → E is continuous, then S is jointly continuous on
compact sets.

The main theorem of [28] says:

Theorem 3.2. Let A be an F -algebra, and consider the semigroup S := P1(A).
Then the left-amenability of A is equivalent to each of the following n-dimensional
invariant subspace properties where n ∈ N:

(Fn): Let S = {Ts : s ∈ S} be a linear representation of S on a locally convex
space E such that the mapping s 7→ Ts(x) is continuous for each fixed
x ∈ E and S is jointly continuous on compact subsets of E. If X is a
subset of E that is n-consistent with respect to S, and if there exists a
closed S-invariant subspace H in E of codimension n with the property
that (x + H) ∩ X is compact for each x ∈ E, then there exists an L0 ∈
Ln(X) such that Ts(L0) = L0 for all s ∈ S.

Since the left-amenability of a semigroup S is equivalent to the left-amenability
of the F -algebra `1(S), the theorem implies that a semigroup S is left-amenable if
and only if `1(S) satisfies each (and hence all) of the invariant subpace properties
(Fn).

For another application of the above theorem, let us consider a locally compact
group G. Then, combining Corollary 2.3 and Theorem 3.2, we obtain that for
each n ∈ N, G is amenable if and only if the group algebra L1(G) satisfies (Fn) if
and only if the measure algebra M (G) satisfies (Fn).

4. Characterisation of Fourier algebras

In this section, the notion of F -algebras is used to give axiomatic character-
isations of Fourier algebras on locally compact groups. As Fourier algebras are
commutative, let us first recall some concepts from the theory of commutative
Banach algebras.

Let Ω be a topological space that is not necessarily Hausdorff nor locally com-
pact. We denote by C(Ω) the algebra of complex-valued continuous functions on
Ω, and by Cc(Ω) its subalgebra consisting of those functions with compact sup-
ports in Ω, while by C0(Ω) the subalgebra of C(Ω) consisting of those functions
that vanish at the infinity. The latter is actually a commutative C∗-algebra whose
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natural norm is the uniform norm (and whose spectrum is Ω in the case where Ω
is a locally compact Hausdorff space).

Let A be a commutative Banach algebra. Recall that the spectrum of A,
denoted by σ(A), is a locally compact Hausdorff space with respect to the relative

weak∗-topology of A′, and the Gelfand transform f 7→ f̂ is a homomorphism
from A into C0(σ(A)). Thus, the image of A via the Gelfand transform, which is

denoted as Â, is a subalgebra of C0(σ(A)) and a Banach algebra under the norm

induced from A. This allows us to call A conjugation-closed if Â is, and call an
element f of A a real element if f̂ is a real function.

In particular, A contains a nontrivial real element if Â contains a nontrivial real
function, i.e. not the zero function. In [26, Definition 2.2], a more general notion
of approximate containment of a nontrivial real element/function is introduced
that would also include the following situations as special cases: A subalgebra
A ⊆ C(Ω) approximately contains a nontrivial real function if one of the following
conditions hold:

(i) if A ⊆ C0(Ω) and the closure of A in the uniform topology on Ω contains
a nonzero real function φ; or

(ii) more generally, if there is a real continuous bounded function φ with a
compact level set that, on each compact subset of Ω, is the pointwise
limit of a bounded sequence in A; or

(iii) if Ω is locally compact, A separates points of Ω, and there is a compact
subset K of Ω with a nonempty interior and with the property that for
any neighbourhood W of K there exists a function f ∈ A such that f = 1
on K, f = 0 on Ω \W , and |f | ≤ 1 on W \K.

In the statement of the following results, we shall stick with the more special
notion of containment of a nontrivial real element/function, but the reader could
generalise it to the approximate version without changing the result. For more
details, we refer the reader to [26].

A Tauberian subalgebra of C(Ω) is a subalgebra of C(Ω) that is also a Banach
algebra under some norm such that A∩Cc(Ω) is dense in A. In this case, we also
say that A is Tauberian on Ω. For a general commutative Banach algebra A, we

say that A is Tauberian if Â is Tauberian on the spectrum σ(A) of A.
The following characterisation of the Fourier algebra was recently proved in

[26]:

Theorem 4.1. Let A be an F -algebra that is also a Tauberian subalgebra of C(Ω)
that contains a nontrivial real function, for some topological space Ω. Suppose
that:

(i) every character of A is implemented by some element of Ω;
(ii) Ω is a group and A is left translation-invariant;
(iii) ‖

∑m
i=1 αilsi

: A→ A‖ ≤ 1 whenever αi ∈ C and si ∈ Ω with∣∣∣∣∣
m∑

i=1

αif(si)

∣∣∣∣∣ ≤ ‖f‖ (f ∈ A) .
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Then A ∼= A(G), i.e. A is isometrically isomorphic to A(G), for some locally
compact group G.

Remark 4.2. We remark that Ω is not required a priori to be a topological group
and the topology on Ω is not required to be locally compact nor Hausdorff.

Remark 4.3. We also remark that condition (i) implies that

(i.a) there is an u ∈ Ω such that 〈e, f〉 = f(u) for every f ∈ A, and

(i.b) for each s ∈ Ω there is a t ∈ Ω such that f ∗(s) = f(t) for all f ∈ A;

where e is the identity ofA′. However, if in the hypothesis of the previous theorem,
instead of condition (i), we assume only (i.a) and (i.b), then it is no longer true
that A = A(G); the closure of polynomials in A(T) provides an example. In this
case, in order to still conclude that A = A(G), we could replace the assumption
that A (approximately) contains a nonzero real function by the stronger condition
that A is conjugation-closed.

The following generalises [4, Theorem 3.2.12].

Corollary 4.4. Let A be a commutative semisimple Banach algebra that is also
Tauberian and contains a nontrivial real element. Suppose that A′ is a W ∗-algebra
and that σ(A), under the multiplication of A′, is a group. Then A ∼= A(G) for
some locally compact group G.

We have the following characterisation of when the predual of a Hopf–von
Neumann algebra is the Fourier algebra of a locally compact group.

Corollary 4.5. Let A be the predual of a Hopf–von Neumann algebra such that
A is commutative, semisimple, Tauberian, and contains a nontrivial real element,
and that σ(A) has at most one positive element. Then A ∼= A(G) for some locally
compact group G.

Note that we cannot omit from the above corollary the assumption that σ(A)
has at most one positive element, see [26][Example 4.7].

The identity element of a unital semisimple commutative Banach algebra A is
always a (nonzero) real element, and moreover, in this case, A is automatically
Tauberian. Thus we have the following characterisations of A(G) for compact G.

Corollary 4.6. Let A be a unital F -algebra that is also a subalgebra of C(Ω), for
some topological space Ω. Suppose also that:

(i) every character of A is implemented by some element of Ω;
(ii) Ω is a group and A is left translation-invariant;
(iii) ‖

∑m
i=1 αilsi

: A→ A‖ ≤ 1 whenever αi ∈ C and si ∈ Ω with∣∣∣∣∣
m∑

i=1

αif(si)

∣∣∣∣∣ ≤ ‖f‖ (f ∈ A) .

Then A ∼= A(G) for some compact group G.

Corollary 4.7. Let A be the predual of a Hopf–von Neumann algebra such that
A is unital, commutative, and semisimple, and that σ(A) has at most one positive
element. Then A ∼= A(G) for some compact group G.
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To state our the next characterisations of Fourier algebras from [26], the fol-
lowing concepts will play an important role.

Definition 4.8. Let A be a Banach algebra. An automorphism T of A is a dual
automorphism if it is isometric and satisfies∥∥f − eı̇θTf

∥∥2
+

∥∥f + eı̇θTf
∥∥2 ≤ 4 ‖f‖2 (f ∈ A, θ ∈ R) .

This concept is suggested by Walter’s notion of a dual group of a Banach
algebra in [40, Definition 5], which we shall recall and extend below.

Theorem 4.9. Let A be a Banach algebra that is also a conjugation-closed Taube-
rian algebra on some topological space Ω. Suppose that

(i) A′ is a W ∗-algebra whose identity is implemented by some element of Ω;
(ii) Ω is a group, A is left translation-invariant, and, for each s ∈ Ω, the

automorphism ls is dual for A.

Then A ∼= A(G) for some locally compact group G.

Note that condition (i) implies immediately that A is an F -algebra.
It is possible to replace condition (ii) above by [40, axiom (ii) on page 155] as in

the following. For this, we need to recall and extend the concept of a dual group of
a Banach algebra introduced in [40, Definition 5]: we shall relax Walter’s notion
slightly by not requiring such groups to be maximal, and more importantly, we
shall even relax the requirement of being a group to just a semigroup.

Definition 4.10. Let A be a Banach algebra. A dual [semi]group of A is a
[semi]group of dual automorphisms of A. Note that no topology is imposed on
any dual semigroup.

Remark 4.11. Let A be a Banach algebra.

(i) The trivial group {idA} is always a dual group of A, and the union of any
chain of dual [semi]groups is again a dual [semi]group. It then follows
from Zorn’s lemma that maximal dual [semi]groups of A always exist;
although even maximal dual [semi]group may not be unique.

(ii) Any dual semigroup of A acts naturally on σ(A), as any semigroup of
automorphisms of A would act on σ(A) by transposition.

Theorem 4.12. Let A be a commutative semisimple F -algebra that is Taube-
rian, contains a nontrivial real element, and possesses a dual semigroup that acts
transitively on σ(A). Then A ∼= A(G) for a locally compact group G.

We note below the particularly (even more) simple formulation of the above
result for the classes of locally compact abelian groups and of compact groups.

Corollary 4.13. Let A be a commutative semisimple F -algebra that possesses
an abelian dual semigroup that acts transitively on σ(A). Then A ∼= L1(Γ) for a
locally compact abelian group Γ.

Corollary 4.14. Let A be a unital commutative semisimple F -algebra that pos-
sesses a dual semigroup that acts transitively on σ(A). Then A ∼= A(G) for some
compact group G. �
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These results and their proofs can be found in [26], where another characterisa-
tion of Fourier algebras is presented, generalising the well-known characterisation
of group algebras of locally compact abelian groups by Rieffel [33]. In this char-
acterisation, no group or semigroup structure is involved, but at the cost of re-
quiring that the given commutative semisimple Banach algebra A has sufficiently
many F -algebraic structures to make each of its character the identity of the
W ∗-algebra associated with one such structure. There are also similar characteri-
sations of Fourier–Stieltjes algebras, albeit at a slightly less satisfactory level. For
more details, we refer the reader to [26]. However, in the next section, we shall
introduce a subclass of the class of F -algebras, that captures the Fourier–Stieltjes
algebras (and measure algebras) better, and use it to give a new characterisation
of the reduced Fourier–Stieltjes algebras of discrete groups.

5. Normal F -algebras

Recall that the measure algebra M (G) of a locally compact group G is not only
an F -algebra, but it is actually the dual of C0(G) – a (commutative) C∗-algebra.
This motivates us to give the following definition.

Definition 5.1. A Banach algebra B is called a normal F -algebra if there is a
C∗-algebra B∗ such that B = B′

∗ isometrically and the identity element e ∈ B′ =
(B∗)

′′ is a character on B.

Since the second dual of a C∗-algebra has a natural structure of a W ∗-algebra,
a normal F -algebra is necessarily an F -algebra. Besides measure algebras, im-
portant examples of normal F -algebras are the Fourier–Stieltjes algebra B(G),
whose natural predual is the group C∗-algebra C∗(G). In fact, this is a special
case of the following more general construction.

For each continuous unitary representation π of G, the group C∗-algebra associ-
ated with π, denote by C∗π(G), is defined to be the norm closure of {π(f) : f ∈ L1(G)}
in B(Hπ), where Hπ is the Hilbert space associated with π. Then C∗π(G) is natu-
rally a quotient of the full group C∗-algebra C∗(G) of G, constructed as the group
C∗-algebra associated with the universal representation of G.

The dual of C∗π(G), denoted by Bπ(G), is identified naturally with the linear
space of functions on G spanned by the coefficient functions of all continuous
unitary representations ρ that are weakly contained in π (i.e. those unitary
representations ρ whose group C∗-algebras are naturally a quotient of C∗π(G)).
The dual of C∗(G) is simply denoted as B(G) and it is the Fourier–Stieltjes
algebra of G discussed above.

A particular important representation of G is the left regular representation λG,
which is mentioned in our introduction of the Fourier algebra A(G) and the group
von Neumann algebra VN (G) of G earlier. The group C∗-algebra associated with
λG, denoted by C∗r (G), is called the reduced group C∗-algebra of G, and its dual,
denoted by Br(G), is called the reduced Fourier–Stieltjes algebra of G. Thus
VN (G) is the weak∗-closure of C∗r (G) in B(L2(G)).

The reduced Fourier–Stieltjes algebras of locally compact groups are another
important class of normal F -algebras.
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Theorem 5.2. Let B be a subalgebra of C(Ω), for some topological space Ω, that
is also a normal F -algebra with predual B∗. Suppose also that:

(i) there is an u ∈ Ω such that 〈e, f〉 = f(u) for every f ∈ B;

(ii) for each s ∈ Ω there is a t ∈ G such that f ∗(s) = f(t) for all f ∈ B;
(iii) B ∩ Cc(Ω) is conjugation-closed, and weak∗-dense in B;
(iv) Ω is a group and B is left translation-invariant;
(v) ls : B → B is weak∗-continuous for each s ∈ Ω;
(vi) ‖

∑m
i=1 αilsi

: B → B‖ ≤ 1 whenever αi ∈ C and si ∈ Ω with∣∣∣∣∣
m∑

i=1

αif(si)

∣∣∣∣∣ ≤ ‖f‖ (f ∈ B) ;

(vii) B∗ is unital.

Then there exists a discrete group G such that B ∼= Br(G), and there is a natural
identification of the duality pairs 〈B,B∗〉 and 〈Br(G), C∗r (G)〉.

Remark 5.3. We remark that Ω is not required a priori to be a topological group
and the topology on Ω is not required to be discrete nor even locally compact.

Proof. Since the Banach algebra B is a subalgebra of C(Ω), there is a natural
continuous map η : Ω → σ(B). Then arguing as in the proof of [26, Theorem
4.1], we see that, after modifying the products of Ω and of B′ = B′′

∗ if necessary,
we obtain that η is a group homomorphism from Ω into the unitary group of
B′; in fact, a significant part of that proof is to show that it is possible to make
this additional assumption. Then the translations by elements of Ω are the same
as module multiplication of η(Ω) ⊆ B′ on the predual B of the von Neumann
algebra B′. For example, for all f ∈ B and s, t ∈ Ω

f(st) = 〈f, η(st)〉 = 〈f, η(s)η(t)〉 = 〈f · η(s), η(t)〉 = (f · η(s))(t) (5.1)

where f ·η(s) is the right module multiplication of η(s) ∈ B′ with f ∈ B. (In par-
ticular, B is also right translation-invariant in addition to being left translation-
invariant as assumed.)

Note that with this new product of B′, B∗ is no longer a subalgebra of B′ = B′′
∗

(although, under the natural identification, B∗ is still a subspace of B′). However,
B∗ and B′ still share the same identity element.

Set A := B ∩ Cc(Ω). Then A is a closed subalgebra of B that is translation-
invariant. Since the linear span of η(Ω) is weak∗-dense in B′, it follows that there
is a central projection z ∈ B′ such that A = B · z. Thus A′ is naturally identified
with zB′, a W ∗-algebra. Set G := zη(Ω). Then G is a topological group where
the topology on G is the relative weak∗-topology of zB′; i.e. G is a subspace of
σ(A). Moreover, since A ∩ Cc(Ω) is dense in A, it is easy to see that G is also
locally compact, and the last part of the proof of [26, Theorem 4.1] (see also [26,
Remark 4.3]) shows that A ∼= A(G).

Next, since ls : B → B is weak∗-continuous for each s ∈ Ω, we see from
(5.1) that η(s)B∗ ⊆ B∗. Since B∗ contains the identity element of B′, we obtain

that η(Ω) ⊆ B∗. The Hahn–Banach theorem then shows that B∗ = 〈η(Ω)〉. In
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particular, with the new product of B′, B∗ is a C∗-subalgebra of B′. So from now
on, we shall consider B∗ with this new product.

Consider the mapping x 7→ zx,B∗ → zB′ ∼= VN (G) ⊆ B(L2(G)). This map-
ping is a ∗-homomorphism, which is injective sinceA is assumed to be weak∗-dense
in B. This and the previous paragraph implies that zη(s) = zη(t) if and only
if f(s) = f(t) for all f ∈ B. Thus, passing to a quotient space if necessary, we
shall consider Ω as the set G with a finer topology (i.e has possibly more open

sets). Since B ∩ Cc(Ω) = A = A(G), we see first that A(G) ⊆ C0(Ω), then that Ω
is locally compact, and finally that Ω has the same topology as G.

Let us now consider λG but as a representation of Gd, the given group G with
the discrete topology. This gives us a unitary representation δ : Gd → U(L2(G)),
and since zB∗ = C∗δ (Gd), we see that B = Bδ(Gd). But combining with the
previous paragraph, it can then be seen that B ⊆ B(G), and so B = Bπ(G)
for some continuous unitary representation π : G → U(Hπ). Since A(G) ⊆
B, it follows that Br(G) ⊆ B, and so C∗r (G) is a natural quotient of C∗π(G) =
zB∗. Tracing how various maps are defined, we obtain the following commutative
diagram

B∗
x 7→zx

//

natural quotient &&LLLLLLLLLLL zB′ = VN (G)

C∗r (G) .

inclusion

OO

Since the horizontal arrow is a ∗-isomorphism onto zB∗ = C∗δ (Gd), we see that
C∗r (G) = C∗δ (G). Hence, B = Br(G), where G must be discrete as C∗r (G) is now
seen to be unital. �

Using the notion of dual automorphisms (Definition 4.8) in place of condition
(vi) above, we have another characterisation as follows.

Theorem 5.4. Let B be a subalgebra of C(Ω), for some topological space Ω, that
is also a normal F -algebra with predual B∗. Suppose also that:

(i) there is an u ∈ Ω such that 〈e, f〉 = f(u) for every f ∈ B;
(ii) B ∩ Cc(Ω) is conjugation-closed, and weak∗-dense in B;
(iii) Ω is a group and B is left translation-invariant;
(iv) ls is a weak∗-continuous dual automorphism of B for each s ∈ Ω;
(v) B∗ is unital.

Then there exists a discrete group G such that B ∼= Br(G), and there is a natural
identification of the duality pairs 〈B,B∗〉 and 〈Br(G), C∗r (G)〉.

Proof. This follows from the previous theorem and the results of [26, §5]. Note
that condition (ii) of Theorem 5.2 now is a consequence of Corollary 5.5 in [26].

�

6. Remarks and open problems

Problem 6.1. Is the converse of Corollary 2.6 true? That is, can an F -algebra
be left-amenable without P1(A) being left-reversible?
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Problem 6.2. Let A be an F -algebra. Let (F ′n) denote the same property as (Fn)
defined in Section 3 but with “joint continuity” replaced by “separate continuity”
on compact subsets of E. Does (F ′n) implies the left-amenability of A?

Problem 6.3. Let A be a left-amenable F -algebra. What can we say about
A if dim 〈TLIM(A)〉, the dimension of the linear span of TLIM(A), is finite?
In general, what can we say about the dimension of 〈TLIM(A)〉? In the case
A = L1(G) for a locally compact group G, it is known that dim 〈TLIM(A)〉 = 1
if and only if G is compact.

The study of the cardinality of the set of invariant means on a group was
initiated by Day [7] and Granirer [12]. In 1976, Chou [3] showed that for a discrete
infinite amenable group G, the cardinality of the set LIM(G) of all left-invariant

means on `∞(G) is 22|G|
. For the more general class of locally compact groups,

it is obvious that if G is a compact group, then TLIM(G) consists of only the
normalized Haar measure on G; in fact, it was shown by Lau [22] that conversely
if TLIM(G) is a singleton, then G must be compact. Later, Lau and Paterson [24]
proved that if G is a noncompact amenable locally compact group, then the set
MTL(G) of all topological left-invariant means on L∞(G) has cardinality 22d(G)

,
where d(G) is the smallest cardinality of a covering of G by compact sets.

When A = A(G), Hu [15] showed that if G is a non-discrete locally compact
group, then the cardinality of the set of topological invariant mean on VN (G) is

22b(G)
, where b(G) is the smallest cardinality of an open basis at the unit element

e of G.

Problem 6.4. When does a normal F -algebra have the common fixed point
property for nonexpansive mapping? In the case of the Fourier–Stieltjes algebras
on locally compact groups G, the necessary and sufficient condition for B(G)
to have the weak∗ fixed point property for non-expansive mapping is that G
is compact. The sufficient condition was proved in [23], while the necessary
condition has only been proved recently in [11].

Problem 6.5. Generalise the results of §5 to a characterisation of when a normal
F -algebra B with predual B∗ is the (reduced) Fourier–Stieltjes algebra of a locally
compact group. More specifically, is it possible to remove the condition that B∗
being unital in Theorems 5.2 and 5.4 to obtain characterisations for general locally
compact groups? If that is not possible, could this condition be replaced by some
other (simple) one?
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