

Adv. Oper. Theory 2 (2017), no. 3, 293–317

http://doi.org/10.22034/aot.1612-1085

ISSN: 2538-225X (electronic)

http://aot-math.org

APPLICATIONS OF TERNARY RINGS TO C*-ALGEBRAS

FERNANDO ABADIE¹ and DAMIÁN FERRARO^{2*}

Communicated by C.-K. Ng

ABSTRACT. We show that there is a functor from the category of positive admissible ternary rings to the category of *-algebras, which induces an isomorphism of partially ordered sets between the families of C^* -norms on the ternary ring and its corresponding *-algebra. We apply this functor to obtain Morita–Rieffel equivalence results between cross-sectional C^* -algebras of Fell bundles, and to extend the theory of tensor products of C^* -algebras to the larger category of full Hilbert C^* -modules. We prove that, like in the case of C^* -algebras, there exist maximal and minimal tensor products. As applications we give simple proofs of the invariance of nuclearity and exactness under Morita–Rieffel equivalence of C^* -algebras.

1. Introduction

An important tool in the study of C^* -algebras is Morita–Rieffel equivalence. When two C^* -algebras are Morita–Rieffel equivalent, they are related by a certain type of bimodule, from which one can see that these algebras share many properties. A Morita–Rieffel equivalence between two C^* -algebras implies that these algebras have many characteristics in common: they have the same K-theory, their spectra and primitive ideal spaces are homeomorphic, etc. In [12], Zettl introduced and studied C^* -ternary rings, and showed that these objects are essentially Morita–Rieffel equivalence bimodules. In fact, given a C^* -ternary ring

Copyright 2016 by the Tusi Mathematical Research Group.

Date: Received: Dec. 27, 2016; Accepted: May 4, 2017.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 46L06.

Key words and phrases. ternary rings, Morita-Rieffel equivalence, nuclear, exact.

E, there exists essentially a unique structure of Morita–Rieffel equivalence bimodule on E compatible with its structure of ternary ring (perhaps after a minor change on the ternary product).

On the other hand, when dealing with constructions such as tensor products or any sort of crossed products of C^* -algebras, in general one has to follow two steps: first one defines some *-algebra, and then one takes the completion of that algebra with respect to a C^* -norm. A situation that appears frequently is that there is more than one reasonable C^* -norm to perform this second step. In many cases, for instance in several imprimitivity theorems, one is interested in finding a Morita-Rieffel equivalence between different C^* -completions of a given pair of *-algebras which are related by a certain bimodule. This is the situation we study in the present paper, adopting a viewpoint similar to that in Zettl's work, but starting from a more algebraic level.

More precisely, suppose E is an A-B bimodule, where A and B are *-algebras, $\langle , \rangle_A : E \times E \to A$ and $\langle , \rangle_B : E \times E \to B$ satisfy all the algebraic properties of Hilbert bimodule inner products. In particular $\langle x,y\rangle_A z = x\langle y,z\rangle_B$, $\forall x,y,z\in E$. Then we can endow E with a *-ternary ring structure by defining a ternary product $(,,): E \times E \times E \to E$ such that $(x,y,z) = x\langle y,z\rangle_B$. We show that, under certain conditions, the partially ordered sets of C^* -norms on E and on the *-algebras A and B are isomorphic to each other, in such a way that the completions with respect to corresponding C^* -norms under these isomorphisms yields a Morita-Rieffel equivalence bimodule.

We think that the best way to do it is by using the above mentioned abstract characterization of equivalence bimodules given by Zettl in [12], under the name of C^* -ternary rings. Such an object is a Banach space with a ternary product on it, which implicitly carries all the structure of an equivalence bimodule. Natural morphisms between C^* -ternary rings are linear maps that preserve ternary products. With such morphisms, one obtains a C^* -category, which is very convenient for the study of properties invariant under Morita–Rieffel equivalence.

The structure of the paper is as follows. In the next section, working in a pure algebraic level, we define the category of admissible *-ternary rings, and we show there is a functor from this category to the category of *-algebras or, more precisely, to the category of right basic triples (see Definition 2.6). In Section 3, given an admissible ternary ring E with associated basic triple $(E, A, \langle , \rangle_A)$, we consider the lattice of C^* -seminorms on A that satisfy the Cauchy-Schwarz inequality $\|\langle x,y\rangle_A\|^2 \leq \|\langle x,x\rangle\| \|\langle y,y\rangle\|, \forall x,y\in E$. Then we prove that this lattice is isomorphic to the lattice of C^* -seminorms on E. In passing we obtain some of the results of [12] and [1] regarding C^* -ternary rings. Besides, since there is also a functor to the category of left basic triples, we obtain a fortiori an isomorphism between the lattices of C^* -seminorms (satisfying the Cauchy-Schwarz property) on the *-algebras associated to the left and to the right sides. The Hausdorff completions of corresponding C^* -seminorms under this isomorphism turn out to be Morita-Rieffel equivalent. In the last part of Section 3 we consider positive ternary rings, for which the C^* -seminorms on the associated *-algebras automatically satisfy the Cauchy-Schwarz inequality. In Section 4 we briefly study the case of C^* -ternary rings, in which basic triples are replaced by C^* -basic triples, that is,

Hilbert modules, and the functors from C^* -ternary rings to C^* -basic triples are shown to be exact. Finally, Section 5 is devoted to applications. We first refine a result from [2] concerning cross-sectional algebras of Fell bundles over groups. Then we consider tensor products of C^* -ternary rings, which is essentially the same as tensor products of Hilbert modules. We show that the theory of tensor products of C^* -algebras extends to this larger category, in the sense that there exist a maximal and a minimal tensor products. By using this theory we obtain easy and natural proofs of the known results of the Morita–Rieffel invariance of nuclearity and exactness of C^* -algebras.

2. Ternary rings

2.1. Ternary rings.

Definition 2.1. A *-ternary ring is a complex linear space E with a map μ : $E \times E \times E \to E$, called *-ternary product on E, which is linear in the odd variables and conjugate linear in the second one, and such that:

$$\mu(\mu(x,y,z),u,v) = \mu(x,\mu(u,z,y),v) = \mu(x,y,\mu(z,u,v)), \ \forall x,y,z,u,v \in E$$

A homomorphism of *-ternary rings is a linear map $\phi: (E, \mu) \to (F, \nu)$ such that $\nu(\phi(x), \phi(y), \phi(z)) = \phi(\mu(x, y, z))$, $\forall x, y, z \in E$. Sometimes we will write (x, y, z) or $(x, y, z)_E$ instead of $\mu(x, y, z)$, and we will use the expression *-tring instead of *-ternary ring.

There is an inclusion of the category of *-algebras into the category of *-trings: if A is a *-algebra, then $(x, y, z) \mapsto xy^*z$ is a ternary product on A, and if $\pi: A \to A'$ is a homomorphism of *-algebras, then so is of *-trings.

Definition 2.2. If a subspace F of a *-tring E is invariant under the ternary product, we say that it is a sub-*-tring of E, or just a subring of E. A subring F is said to be hermetic in E if for $x \in E$ we have $(x, x, x) \in F \iff x \in F$.

Definition 2.3. A *-tring E will be called admissible if $\{0\}$ is hermetic in E. A *-algebra A will be called admissible if it is admissible as a *-tring.

Note that a *-algebra A is admissible if and only if the condition $a^*a = 0$ implies a = 0.

Definition 2.4. Let E be a *-tring and $F \subseteq E$ a subspace. We say that F is an ideal of E if $(E, E, F) + (E, F, E) + (F, E, E) \subseteq F$.

If $\pi: E \to F$ is a homomorphism into an admissible *-tring F, then $\ker \pi$ is an hermetic ideal of E:

$$\pi((x,x,x)) = 0 \iff (\pi(x),\pi(x),\pi(x)) = 0 \iff \pi(x) = 0$$

In case F is an ideal of E, then E/F has an obvious structure of *-tring for which the canonical map $q: E \to E/F$ is a homomorphism of *-trings. Note that E/F is admissible whenever F is hermetic. In particular if $\pi: E \to F$ is a homomorphism into an admissible *-tring F, then $E/\ker \pi$ is admissible

Suppose E is a complex vector space, and let E^* denote its complex conjugate linear space. If (E, μ) is a *-tring, then $\mu^* : E^* \times E^* \times E^* \to E^*$ given

by $\mu^*(x,y,z) = \mu(z,y,x)$, $\forall x,y,z \in E^*$, is a *-ternary product on E^* . We call (E^*,μ^*) the adjoint or reverse *-tring of (E,μ) . If $\pi:E\to F$ is a homomorphism, then π remains a homomorphism $E^*\to F^*$, so it is clear that reversion is an autofunctor of order two of the category of *-trings, which moreover sends admissible *-trings into admissible *-trings. If A is a *-algebra considered as a *-tring as above, then its reverse *-tring A^* is the conjugate linear space of A^{op} considered as a *-tring.

Example 2.5 (Basic triples). Suppose $(E, A, \langle , \rangle)$ is a triple consisting of a \mathbb{C} -vector space E, a *-algebra A over which E is a right module, and a sesquilinear map $\langle , \rangle : E \times E \to A$ (conjugate linear in the first variable), such that $\langle x, y \rangle a = \langle x, ya \rangle$ and $\langle x, y \rangle^* = \langle y, x \rangle$, $\forall x, y \in E$, $a \in A$. Then $(,,) : E \times E \times E \to E$ given by $(x, y, z) \mapsto x \langle y, z \rangle$ is a ternary product. We will say that (E, (,,)) is the ternary ring associated with $(E, A, \langle , \rangle)$.

Definition 2.6. Triples as in Example 2.5 will be referred to as (right) basic triples. A basic triple $(E, A, \langle , \rangle_A)$ will be called admissible whenever A is admissible, and full if span $\{\langle x, y \rangle_A : x, y \in E\} = A$. By a homomorphism from the basic triple $(E, A, \langle , \rangle_A)$ into the basic triple $(F, B, \langle , \rangle_B)$ we mean a pair (φ, ψ) of maps such that $\varphi : E \to F$ is linear, $\psi : A \to B$ is a homomorphism of *-algebras, and $\varphi(xa) = \varphi(x)\psi(a), \forall x \in E, a \in A$.

Similarly we can define left basic triples, using left instead of right A-modules.

We will see soon that any admissible *-tring can be described in terms of basic triples as in 2.5.

Proposition 2.7. Let $(E, A, \langle , \rangle)$ be a basic triple.

- (1) If A is admissible, and $\langle x, x \rangle = 0$ implies x = 0, then the *-tring E is admissible as well.
- (2) If $(E, A, \langle , \rangle)$ is admissible and full, then E is faithful as an A-module.

Proof. If $x \in E$ is such that $x\langle x, x \rangle = 0$, then

$$\langle x, x \rangle^* \langle x, x \rangle = \langle x, x \rangle \langle x, x \rangle = \langle x, x \langle x, x \rangle \rangle = 0.$$

Now, if A is admissible, the latter equality implies $\langle x, x \rangle = 0$, so x = 0. As for the second statement suppose $(E, A, \langle , \rangle_A)$ is admissible and full, and $a \in A$ is such that $a = \sum_{j=1}^{n} \langle y_j, z_j \rangle$ and ya = 0, $\forall y \in F$. Then we have $a^*a = \sum_{j=1}^{n} \langle y_j, z_j a \rangle = 0$, so a = 0. Then E is a faithful A-module.

Lemma 2.8. Suppose that $(E, A, \langle , \rangle_A)$ and $(F, B, \langle , \rangle_B)$ are basic triples, with the former full, and F admissible as *-tring and faithful as a B-module. Then, if $\varphi : (E, (, ,)) \to (F, (, ,))$ is a homomorphism between their associated *-trings, there exists a unique homomorphism of *-algebras $\psi : A \to B$ such that $\psi(\langle x, y \rangle_A) = \langle \varphi(x), \varphi(y) \rangle_B$, $\forall x, y \in E$. Besides we have $\varphi(xa) = \varphi(x)\psi(a)$, $\forall x \in E, a \in A, and$

$$\ker \psi \subseteq \{a \in A : Ea \subseteq \ker \varphi\} \subseteq \{a \in A : \psi(a)^*\psi(a) = 0\},\tag{2.1}$$

both inclusions being equalities if B is admissible. If E is also a faithful A-module and φ is injective, then so is ψ .

Proof. We will suppose that $(F, B, \langle , \rangle_B)$ is full: otherwise we just replace B by $\operatorname{span}\langle F, F\rangle_B$. We concentrate in showing the existence of the map ψ , because its uniqueness is obvious. To this end suppose that x_1, \ldots, x_n and y_1, \ldots, y_n are elements in E such that $\sum_{j=1}^n \langle x_j, y_j \rangle_A = 0$, and therefore also $\sum_{j=1}^n \langle y_j, x_j \rangle_A = 0$. Consider the element $c := \sum_{j=1}^n \langle \varphi(x_j), \varphi(y_j) \rangle_B$ of B. All we have to do is to show that c = 0. Now, if $x \in E$ and $u \in F$ we have

$$(\varphi(x), uc, uc) = \sum_{k} (\varphi(x), (u, \varphi(x_k), \varphi(y_k)), uc)$$
$$= \sum_{k} ((\varphi(x), \varphi(y_k), \varphi(x_k)), u, uc) = (\varphi(x) \sum_{k} \langle y_k, x_k \rangle_A), u, uc) = 0.$$

Hence, if $u \in F$:

$$(uc, uc, uc) = \sum_{j} ((u, \varphi(x_j), \varphi(y_j)), uc, uc) = \sum_{j} (u, \varphi(x_j), (\varphi(y_j), uc, uc)) = 0$$

Since F is admissible, it follows that $uc = 0, \forall u \in F$, so c = 0 because F is a faithful B-module.

Suppose now that $a \in \ker \psi$. Then $\varphi(xa) = \varphi(x)\psi(a) = 0$, so $Ea \subseteq \ker \varphi$. On the other hand, if the element $a = \sum_{j} \langle x_j, y_j \rangle_A$ is such that $Ea \subseteq \ker \varphi$, then $\psi(a^*a) = \psi(\sum_{i,j} \langle y_i, x_i \langle x_j, y_j \rangle_A)_A = \sum_{i,j} \langle \varphi(y_i), \varphi(x_i)\psi(\langle x_j, y_j \rangle_A)_A$, so

$$\psi(a)^*\psi(a) = \sum_i \langle \varphi(y_i), \varphi(x_i)\psi(\sum_j \langle x_j, y_j \rangle_A) \rangle_A = \sum_i \langle \varphi(y_i), \varphi(x_i a) \rangle_A = 0,$$

because $\varphi(x_i a) = 0 \ \forall i$. In case B is admissible we have $\psi(a)^* \psi(a) = 0$ if and only if $a \in \ker \psi$, so in this case the three considered sets agree. Finally, when E is faithful and $\ker \varphi = 0$, we have $\{a \in A : Ea \subseteq \ker \varphi\} = 0$, so $\ker \psi = 0$.

Given two modules E and F over a ring R, we denote by $\operatorname{Hom}_R(E,F)$ the abelian group of R-linear maps from E into F, and just by $\operatorname{End}_R(E)$ in case E = F. Let E be an admissible *-tring, and suppose $T \in \operatorname{End}_{\mathbb{C}}(E)$ is such that there exists $S \in \operatorname{End}_{\mathbb{C}}(E)$ that satisfies $(x, Ty, z) = (Sx, y, z), \forall x, y, z \in E$. Since $\{0\}$ is hermetic in E, given $T \in \operatorname{End}_{\mathbb{C}}(E)$, there exists at most one such endomorphism S; in this case we say that S is the adjoint of T to the left, and we denote it by T^* . The set $\mathscr{L}_l(E)$ of \mathbb{C} -linear endomorphisms of E that have an adjoint to the left is clearly a unital subalgebra of $\operatorname{End}_{\mathbb{C}}(E)$. Every pair of elements $y, z \in E$ gives rise to an endomorphism $\theta_{y,z} : E \to E$ given by $\theta_{y,z}(x) := (x,y,z)$. It is readily checked that $\theta_{y,z}$ is adjointable with adjoint $\theta_{z,y}$.

Proposition 2.9. Let E be an admissible *-tring. Then the map $*: \mathcal{L}_l(E) \to \mathcal{L}_l(E)$, given by taking the adjoint, is an involution in $\mathcal{L}_l(E)$. Moreover, the *-algebra $\mathcal{L}_l(E)$ is an admissible *-tring, and $span\{\theta_{y,z}: y, z \in E\}$ is a twosided ideal of $\mathcal{L}_l(E)$, which is essential in the sense that $T\theta_{y,z} = 0 \ \forall y, z \in E$ or $\theta_{y,z}T = 0 \ \forall y, z \in E$ implies T = 0.

Proof. It is clear that the map $T \mapsto T^*$ is conjugate linear and antimultiplicative. On the other hand, if $T \in \mathcal{L}_l(E)$:

$$(u, (Tx, y, z), u) = (u, z, (y, T(x), u)) = (u, z, (T^*(y), x, u)) = (u, (x, T^*(y), z), u)$$

 $\forall x, y, z, u \in E \text{ and } T \in \mathcal{L}_l(E), \text{ which shows that } T^{**} = T. \text{ Now, if } x \in E,$ and $T \in \mathcal{L}_l(E)$ is such that $T^*T = 0$: $(Tx, Tx, Tx) = (x, T^*Tx, Tx) = 0,$ so T(x) = 0, and therefore T = 0. Finally, if $T \in \mathcal{L}_l(E)$ and $x, y, z \in E$: $\theta_{y,z}T(x) = (Tx, y, z) = (x, T^*y, z) = \theta_{T^*y,z}(x)$. Thus $T\theta_{y,z} = (\theta_{z,y}T^*)^* = \theta_{y,Tz}$. This shows that span $\{\theta_{y,z} : y, z \in E\}$ is an ideal of $\mathcal{L}_l(E)$. If $\theta_{y,z}T = 0 \ \forall y, z \in E,$ then $0 = \theta_{Tx,Tx}T(x) = (Tx, Tx, Tx), \ \forall x \in E.$ Then $Tx = 0 \ \forall x \in E$ because E is admissible, so T = 0.

The next result shows that any admissible *-tring E gives rise to an admissible and full right basic triple $(E, E_0^r, \langle , \rangle_r)$. In the same way one could show that E also defines a left basic triple $(E, E_0^l, \langle , \rangle_l)$.

Theorem 2.10. Let E and F be admissible *-trings. Then:

- (1) There exists a pair $(E_0^r, \langle , \rangle_r)$ such that $(E, E_0^r, \langle , \rangle_r)$ is an admissible and full basic triple, whose associated *-tring is E.
- (2) If $\pi: E \to F$ is a homomorphism of *-trings, and $(E_0^r, \langle \cdot, \cdot \rangle_r)$ and $(F_0^r, \langle \cdot, \cdot \rangle_r)$ are pairs like above for E and F respectively, there exists a unique homomorphism of *-algebras $\pi_0^r: E_0^r \to F_0^r$ such that

$$\pi_0^r(\langle x, y \rangle_r) = \langle \pi(x), \pi(y) \rangle_r, \ \forall x, y \in E.$$

Moreover, $\pi(xb) = \pi(x)\pi_0^r(b)$, $\forall x \in E$, $b \in E_0^r$, that is, the pair (π, π_0^r) is a homomorphism of basic triples.

(3) The pair $(E_0^r, \langle \cdot, \cdot \rangle_r)$ is the unique (up to canonical isomorphisms) such that the triple $(E, E_0^r, \langle \cdot, \cdot \rangle_r)$ is a full and admissible with E as associated *-tring.

Proof. Note that E is a faithful right $\mathcal{L}_l(E)^{\text{op}}$ -module with xT := T(x). Consider the ideal $E_0^r := \text{span}\{\theta_{y,z} : y, z \in E\}$ of $\mathcal{L}_l(E)^{\text{op}}$ and let $\langle \ , \ \rangle_r : E \times E \to E_0^r$ be given by $\langle x, y \rangle_r := \theta_{x,y}$. It is routine to verify that $(E, E_0^r, \langle \ , \ \rangle_r)$ is a full and admissible basic triple whose associated *-tring is E. The second statement follows at once from 2.8 and 2.7, while the last assertion of the theorem follows immediately from the second one.

Corollary 2.11. The assignment

$$(E \xrightarrow{\pi} F) \longmapsto (E, E_0^r, \langle \,, \, \rangle_r) \stackrel{(\pi, \pi_0^r)}{\longmapsto} (F, F_0^r, \langle \,, \, \rangle_r)$$

defines a functor from the category of admissible *-trings into the category of admissible and full basic triples.

Corollary 2.12. Let $(E, A, \langle , \rangle_A)$ be a basic triple such that E is faithful as an A-module and E is admissible as a *-tring. Then there exists a unique homomorphism $\psi : E_0^r \to A$ such that $\langle x, y \rangle_r = \langle x, y \rangle_A$, $\forall x, y \in E$. The homomorphism ψ is injective, and it is an isomorphism if $(E, A, \langle , \rangle_A)$ is full.

Proof. Let $(E, E_0^r, \langle , \rangle_r)$ be the full and admissible basic triple provided by Theorem 2.10. The identity map on E is an injective homomorphism of *-trings, so by 2.8 there exists a unique homomorphism $\psi : E_0^r \to A$ such that $\langle x, y \rangle_r = \langle x, y \rangle_A$, $\forall x, y \in E$, which is injective because E is faithful as E_0^r -module. It is clear that ψ is also surjective when the given basic triple is full.

Corollary 2.13. Let $(E, A, \langle , \rangle_A)$ be a full basic triple such that E is faithful as a A-module. Then A is admissible if E is admissible.

Proof. Just note that if E is admissible, then $E_0^r \cong A$ by 2.12, and E_0^r is admissible according to 2.10.

Corollary 2.14. Let F be an ideal of the admissible *-tring E, $(E, E_0^r, \langle , \rangle_E)$ and $(F, F_0^r, \langle , \rangle_F)$ the full and admissible basic triples associated, respectively, with E and F (given by Theorem 2.10). If $A := span\{\langle x, y \rangle_E : x, y \in F\}$, then A is a *-ideal of E_0^r , and the basic triples $(F, F_0^r, \langle , \rangle_F)$ and $(F, A, \langle , \rangle_E)$ are isomorphic.

Proof. The triple $(F, A, \langle , \rangle_r)$ is admissible and full, with F as induced *-tring. Then F is a faithful A-module by 2.7. According to 2.12, there exists a unique map $\psi : F_0^r \to A$ such that (id, ψ) is a homomorphism from $(F, F_0^r, \langle , \rangle_F)$ to $(F, A, \langle , \rangle_E)$, and ψ is an isomorphism o *-algebras. It follows that (id, ψ^{-1}) is the inverse homomorphism of (id, ψ) .

From now on if F is an ideal in the admissible *-tring E, we will think of F_0^r as a *-ideal of E_0^r via the identification provided by 2.14:

$$F_0^r \cong \operatorname{span}\{\langle x, y \rangle_E : x, y \in F\}. \tag{2.2}$$

For the next result recall that an ideal F of the *-tring E is hermetic if and only if E/F is admissible.

Proposition 2.15. Let $\pi: E \to F$ be a homomorphism between the admissible *-trings E and F, such that $\ker \pi$ is hermetic. If $I_{\ker \pi} := \{a \in E_0^r : Ea \subseteq \ker \pi\}$, then:

$$(\ker \pi)_0^r \subseteq \ker \pi_0^r \subseteq I_{\ker \pi}$$

Proof. Taking into account (2.2) above and the second part of 2.10, the first inclusion is clear. The second inclusion follows from the admissibility of $E/\ker \pi$ and (2.1) in Lemma 2.8.

Remark 2.16. Suppose F is an hermetic ideal of the admissible *-tring E. Let $q: E \to E/F$ be the quotient map, $I_F := \{a \in E_0^r : Ea \subseteq F\}, p: E_0^r \to E_0^r/I_F$ the canonical projection and $\overline{q_0^r}: E_0^r/I_F \to (E/F)_0^r$ the isomorphism induced by q_0^r , so the following diagram commutes:

$$E_0^r \xrightarrow{q_0^r} (E/F)_0^r$$

$$E_0^r/I_F \xrightarrow{\overline{q_0^r}}$$

Then:

$$\overline{q_0^r}(p(\langle x, y \rangle_E)) = q_0^r(\langle x, y \rangle_E)) = \langle q(x), q(y) \rangle_{E/F}, \quad \forall x, y \in E.$$

Therefore the pair $((E/F)_0^r, \langle, \rangle_{E/F})$ associated with E/F in Theorem 2.10 may be replaced by the pair $(E_0^r/I_F, [,]_{E/F})$, where $[q(x), q(y)]_{E/F} = p(\langle x, y \rangle_E)$, $\forall x, y \in E$ and the action of E_0^r/I_F on E/F_{γ} is given by q(x)p(a) = q(xa), $\forall x \in E$, $a \in A$.

Proposition 2.17. Let $\pi: E \to F$ be a homomorphism between admissible *-trings. Then:

- (1) π is injective if and only if $\pi_0^r : E_0^r \to F_0^r$ is injective.
- (2) If π is onto, or an isomorphism, then so is $\pi_0^r: E_0^r \to F_0^r$.

Proof. Since the second statement is clear we prove only the first one. Now if π_0^r is injective and $x \in E$, the admissibility of E and F implies that:

$$\pi(x) = 0 \iff \langle \pi(x), \pi(x) \rangle_r = 0 \iff \pi_0^r(\langle x, x \rangle_r) = 0 \iff x = 0,$$

so π is injective as well. On the other hand the injectivity of π implies that of π_0^r by 2.8.

3. Correspondence between C^* -seminorms.

3.1. C^* -seminorms.

Definition 3.1. A C^* -seminorm on a *-tring (E, μ) is a seminorm such that:

- $(1) \|\mu(x,y,z)\| \le \|x\| \|y\| \|z\|, \forall x,y,z \in E.$
- (2) $\|\mu(x, x, x)\| = \|x\|^3, \forall x \in E.$

If $\|\cdot\|$ is a norm, we call it a C^* -norm, and we say that $(E, \|\cdot\|)$ is a pre- C^* -ternary ring. If $(E, \|\cdot\|)$ is also a Banach space, we say that it is a C^* -ternary ring, or just a C^* -tring.

If E is a *-tring, the set of C^* -seminorms on E will be denoted by $\mathcal{SN}(E)$, and $\mathcal{N}(E)$ will denote the set of C^* -norms on E. The set $\mathcal{SN}(E)$ is partially ordered by: $\gamma_1 \leq \gamma_2$ if $\gamma_1(x) \leq \gamma_2(x)$, $\forall x \in E$.

Definition 3.2. A *-tring E will be called C^* -closable, or just closable, in case $\mathcal{N}(E) \neq \emptyset$. Similar terminology will be used for *-algebras.

Observe that any C^* -closable *-tring is admissible.

In the next proposition, whose easy proof is left to the reader, we record some basic facts about *-trings.

Proposition 3.3. Let E be a *-tring. Then:

- (1) $N_{\gamma} := \{x \in E : \gamma(x) = 0\}$ is an hermetic ideal of E, for all $\gamma \in \mathcal{SN}(E)$.
- (2) The intersection of hermetic subrings is also hermetic.
- (3) The quotient E/N is admissible, where $N := \cap \{N_{\gamma} : \gamma \in \mathcal{SN}(E)\}$ and N_{γ} is as in 1.
- (4) If SN(E) separates points of E, then E is admissible.
- (5) If SN(E) separates points of E and is bounded, then E is C^* -closable.

If H and K are Hilbert spaces and B(H,K) denotes the corresponding space of bounded linear maps, a subspace E of B(H,K) closed under the ternary product $(R,S,T)\mapsto RS^*T\in E, \ \forall R,S,T\in E, \$ is a *-tring with that product. In case E is also closed it is called a ternary ring of operators (TRO). Note that if (E,μ) is a C^* -tring, then $(E,-\mu)$ also is a C^* -tring, called the opposite of (E,μ) and denoted by E^{op} . The opposite of a TRO is called anti-TRO.

New C^* -ternary rings can be obtained by direct sums: if $(E, \|\cdot\|_E, \mu_E)$ and $(F, \|\cdot\|_F, \mu_F)$ are C^* -trings, then $(E \oplus F, \max\{\|\cdot\|_E, \|\cdot\|_F\}, \mu_E \oplus \mu_F)$ is a C^* -tring. We denote it just by $E \oplus F$.

Suppose that E is a full right Hilbert A-module, and define the ternary product on E: $\mu_E(x,y,z) := x\langle y,z\rangle$. Then (E,μ_E) is a C^* -tring with the norm $||x|| = \sqrt{\langle x,x\rangle}$. Now, if F is a full right Hilbert B-module, then $E \oplus F^{\text{op}}$ is also a C^* -tring. This is the fundamental example of C^* -tring, as shown by Zettl in [12, 3.2] (see also Corollay 3.10 below).

Zettl also showed that there exist unique sub- C^* -trings E_+ and E_- of E such that $E = E_+ \bigoplus E_-$, and E_+ is isomorphic to a TRO, while E_- is isomorphic to an anti-TRO (see [12]). The decomposition above is called the *fundamental decomposition* of E.

Definition 3.4. We say that a C^* -tring E is positive (negative) if $E = E_+$ (respectively: if $E = E_-$).

If E is a C^* -tring, we define $E_p := E_+ \oplus E_-^{\text{op}}$. Then E_p is a positive C^* -tring. Let E^* be the reverse *-tring of (the *-tring) E. It is clear that a norm on E is a C^* -norm if and only if is a C^* -norm on E^* . Moreover, E is a (positive) C^* -tring if and only if so is E^* .

3.2. From pre- C^* -trings to pre- C^* -algebras. In what follows we will examine an intermediate situation between the *-algebraic context of 2.10 and the C^* -context originally considered by Zettl.

If α is a seminorm on the vector space X, then $N_{\alpha} := \{x \in X : \alpha(x) = 0\}$ is a closed subspace of X, so X/N_{α} is a normed space with the norm $\bar{\alpha}$ induced by α : $\bar{\alpha}(x+N_{\alpha}) = \alpha(x)$. The completion $(X_{\alpha},\bar{\alpha})$ of $(X/N_{\alpha},\bar{\alpha})$ will be referred to as the Hausdorff completion of the seminormed space (X,α) , and the map $x \mapsto x + N_{\alpha}$ will be called the canonical map.

In case γ is a C^* -seminorm on the ternary ring E, then E/N_{γ} is a pre- C^* -tring with the induced norm $\bar{\gamma}$. Thus the corresponding Hausdorff completion E_{γ} of E is a C^* -tring.

Proposition 3.5. Suppose E is an admissible *-tring and $\gamma \in \mathcal{SN}(E)$. Let $\gamma^r : E_0^r \to [0, \infty)$ be the operator seminorm on E_0^r , that is:

$$\gamma^r(a) := \sup\{\gamma(xa) : \gamma(x) \le 1\}. \tag{3.1}$$

Then $\gamma^r \in \mathcal{SN}(E_0^r)$, and $\gamma^r \in \mathcal{N}(E_0^r) \iff \gamma \in \mathcal{N}(E)$. Moreover the following relations hold:

$$\gamma(xa) \le \gamma(x)\gamma^r(a), \forall x \in E, a \in E_0^r$$
(3.2)

$$\gamma^r(\langle x, y \rangle_r) \le \gamma(x)\gamma(y), \forall x, y \in E$$
 (3.3)

$$\gamma(x)^2 = \gamma^r(\langle x, x \rangle_r), \forall x \in E$$
(3.4)

Proof. Given $a = \sum_{i=1}^{n} \langle x_i, y_i \rangle \in E_0^r$ the linear map $x \mapsto xa$ is bounded because $\gamma(xa) \leq \gamma(x) \sum_{i=1}^{n} \gamma(x_i) \gamma(y_i)$. Then (3.2) and (3.3) follow immediately and Definition 3.1 implies (3.4). With $a \in E_r^0$ as before and $x \in E$ we have

$$(xa, xa, xa) = \sum_{i=1}^{n} ((x, x_i, y_i), xa, xa) = \sum_{i=1}^{n} (x, (xa, y_i, x_i), xa),$$

SO

$$\gamma(xa)^3 = \gamma(x, xaa^*, xa) \le \gamma^r(aa^*) \gamma^r(a) \gamma(x)^3,$$

from where it follows that $\gamma^r(a)^2 \leq \gamma^r(aa^*) \leq \gamma^r(a)\gamma^r(a^*)$. From the computations above is clear that $\gamma^r \in \mathcal{N}(E_0^r) \iff \gamma \in \mathcal{N}(E)$. In particular E_0^r is a C^* -closable algebra whenever E is a C^* -closable tring.

Definition 3.6. Suppose $(E, A, \langle , \rangle_A)$ is a basic triple such that (E, γ) is a C^* -tring and a Banach module over the C^* -algebra (A, α) , and that $\langle , \rangle_A : E \times E \to A$ is continuous. Then the triple is said to be a C^* -basic triple. We say that it is full if the ideal span $\{\langle x, y \rangle_A : x, y \in E\}$ of A is dense in A.

The next two results will be useful for studying the relation between a C^* -basic triple $(E, A, \langle , \rangle_A)$ and the basic triple $(E, E_0^r, \langle , \rangle_r)$. What we will show first, in 3.9, is that $(E, E_0^r, \langle , \rangle_r)$ can be embedded in $(E, A, \langle , \rangle_A)$.

Proposition 3.7. Let A be a Banach *-algebra and I a *-ideal of A, not necessarily closed. Then any C^* -seminorm on I can be extended to a C^* -seminorm on A. If I is dense, such extension is unique.

Proof. Consider $\alpha \in \mathcal{SN}(I)$, $\alpha \neq 0$. Let I_{α} be the Hausdorff completion of (I,α) , $p:I \to I_{\alpha}$ the canonical map, and let $\pi:I_{\alpha} \to B(H)$ be a faithful representation. Now, according to [4, VI-19.11], the representation $\pi p:I \to B(H)$ can be extended to a representation ρ of A. Then $a \mapsto \|\rho(a)\|$ defines a C^* -seminorm on A that extends α . Note that the continuity of ρ implies the continuity of α , from which the uniqueness of the extension follows in case I is dense in A.

Corollary 3.8. Let I be a *-ideal of the C^* -algebra A. Then the unique C^* -norm one can define in I is the restriction to I of the norm of A.

Proposition 3.9. Let $(E, A, \langle , \rangle_A)$ be a full C^* -basic triple, and γ and α the corresponding norms of E and A. Then (A, α) is the completion of (E_0^r, γ^r) , and \langle , \rangle_A is the continuous extension of \langle , \rangle_r .

Proof. Note that E is admissible for it is a C^* -tring. On the other hand E is a faithful A-module: if $a \in A$ is such that $xa = 0 \,\forall x \in E$, then $\langle x,y \rangle_A a = 0 \,\forall x,y \in E$, so it follows that ba = 0 for every b in the dense ideal span $\{\langle x,y \rangle_A : x,y \in E\}$ of A, which implies a = 0. Thus there exists, by 2.7, a unique homomorphism $\psi: E_0^r \to A$ such that $\psi(\langle x,y \rangle_r) = \langle x,y \rangle_A, \,\forall x,y \in E$. Besides ψ is injective and $\psi(E_0^r) = \text{span}\{\langle x,y \rangle_A : x,y \in E\}$ (thus we may suppose E_0^r is a dense ideal of A). Now 3.8 implies γ_0^r is the restriction of α to $\psi(E_0^r)$ and, since the latter is dense in A, we conclude that A is the completion of E_0^r .

As a consequence we obtain the following result, due to H. Zettl:

Corollary 3.10 (cf. [12, Proposition 3.2]). Let (E, γ) be a C^* -tring and E^r the completion of E_0^r with respect to γ^r . Then $(E, E^r, \langle , \rangle_r)$ is, up to isomorphism, the unique full C^* - basic triple whose first component is E.

Proposition 3.11. Let $\pi: E_1 \to E_2$ be a homomorphism of *-trings between the C^* -trings E_1 and E_2 . Then there exists a unique homomorphism $\pi^r: E^r \to F^r$ such that $\pi^r(\langle x, y \rangle_E) = \langle \pi(x), \pi(y) \rangle_F$, $\forall x, y \in E$, and $\pi(xa) = \pi(x)\pi^r(a) \ \forall x \in E$, $a \in E^r$. Consequently π is always contractive, and is isometric if and only if it is injective.

Proof. It is clear that, if the homomorphism π^r exists, it must be an extension of $\pi_0^r: E_0^r \to F_0^r$. Let $\rho: F^r \to B(H)$ be a faithful representation. Then $\rho\pi_0^r$ is a representation of E_0^r . Now, since $(E, E^r, \langle , \rangle_r)$ is a C^* -triple, E_0^r is a *-ideal in E^r . Therefore $\rho\pi_0^r$ can be uniquely extended to a representation $\bar{\rho}: E^r \to B(H)$ ([4, VI.19.11]). Since $\rho(F^r)$ is closed and $\bar{\rho}(E^r)$ is a subset of the closure of $\rho\pi_0^r(E_0^r)$, we have $\bar{\rho}(E^r) \subseteq \rho(F^r)$. Then take $\pi^r := \rho^{-1}\bar{\rho}$. Note that $\|\pi(x)\|^2 = \|\pi^r(\langle x, x \rangle)\| \le \|\langle x, x \rangle\| = \|x\|^2$, with equality if π^r is injective. This shows that π is contractive. Finally, if π is injective, so is π_0^r and, as in the proof of 3.8, this implies that π^r also is injective, thus an isometry.

Corollary 3.12 (cf. [1][Proposition 4.1]). The assignment

$$(E \xrightarrow{\pi} F) \longmapsto (E, E^r, \langle , \rangle_r) \xrightarrow{(\pi, \pi^r)} (F, F^r, \langle , \rangle_r)$$

defines a functor from the category of C^* -trings to the category of full C^* -basic triples.

It follows from Proposition 3.5 that any C^* -seminorm on E_0^r induced by a C^* -seminorm on E by means of (3.1) must satisfy the Cauchy-Schwarz condition (3.3). So it is natural to restrict our attention to the following subsets of C^* -seminorms on E_0^r :

$$\mathcal{SN}_{cs}(E_0^r) := \{ \alpha \in \mathcal{SN}(E_0^r) : \alpha(\langle x, y \rangle_r)^2 \le \alpha(\langle x, x \rangle_r) \alpha(\langle y, y \rangle_r) \}$$
$$\mathcal{N}_{cs}(E_0^r) := \mathcal{SN}_{cs}(E_0^r) \cap \mathcal{N}(E_0^r).$$

In fact it will be convenient to place ourselves in a slightly more general setting:

Definition 3.13. Let $(E, A, \langle , \rangle)$ be a basic triple. We define

$$\mathcal{SN}_{cs}^{\langle,\rangle}(A) := \{\alpha \in \mathcal{SN}(A): \ \alpha(\langle x,y\rangle)^2 \leq \alpha(\langle x,x\rangle)\alpha(\langle y,y\rangle), \ \forall x,y \in E\}.$$

Proposition 3.14. Let $(E, A, \langle , \rangle)$ be a basic triple, and consider E with the *-tring structure induced by \langle , \rangle . Given $\alpha \in \mathcal{SN}^{\langle , \rangle}_{cs}(A)$, let $\tilde{\alpha} : E \to [0, \infty)$ be defined by:

$$\tilde{\alpha}(x) := \alpha(\langle x, x \rangle)^{1/2} \tag{3.5}$$

Then

- (1) $\tilde{\alpha}(xa) \leq \tilde{\alpha}(x)\alpha(a)$.
- (2) $\tilde{\alpha} \in \mathcal{SN}(E)$
- (3) If E is a faithful A-module and $\tilde{\alpha} \in \mathcal{N}(E)$, then $\alpha \in \mathcal{N}_{cs}^{\langle , \rangle}(A)$.
- (4) If $\alpha \in \mathcal{N}_{cs}^{\langle \cdot \rangle}(A)$ and $\langle x, x \rangle = 0$ implies x = 0, then $\tilde{\alpha} \in \mathcal{N}(E)$

Proof. Since the Cauchy-Schwarz inequality (3.3) holds for α , it follows as usual that $\tilde{\alpha}$ satisfies the triangular inequality and, since homogeneity is obvious, $\tilde{\alpha}$ is a seminorm on E. On the other hand, since α is a C^* -seminorm and satisfies (3.3) we have, for all $x, y, z \in E$, $a \in A$:

$$\tilde{\alpha}(xa) = \alpha(a^*\langle x, x \rangle a)^{1/2} \le \alpha(a)\tilde{\alpha}(x)$$

$$\tilde{\alpha}((x, y, z)) = \tilde{\alpha}(x\langle y, z \rangle) \le \tilde{\alpha}(x)\alpha(\langle y, z \rangle) \le \tilde{\alpha}(x)\tilde{\alpha}(y)\tilde{\alpha}(z)$$

$$\tilde{\alpha}((x, x, x)) = \alpha(\langle x, x \rangle^3)^{1/2} = \alpha(\langle x, x \rangle)^{3/2} = \tilde{\alpha}(x)^3,$$

so $\tilde{\alpha}$ is a C^* -seminorm on E. The first of the above inequalities implies that α is a norm whenever $\tilde{\alpha}$ so is and E is a faithful A-module. Finally, if α is a norm, it follows directly from (3.5) that $\tilde{\alpha}$ also is a norm when the condition $\langle x, x \rangle = 0$ implies x = 0.

Corollary 3.15. If E is an admissible *-tring and $\gamma \in \mathcal{SN}(E)$, $\alpha \in \mathcal{SN}_{cs}(E_0^r)$, then $\widetilde{\gamma}^r = \gamma$ and $\widetilde{\alpha}^r \leq \alpha$.

Proof. The first statement follows immediately from (3.4) and (3.5). As for the second one we have $\tilde{\alpha}^r(a) = \sup{\{\tilde{\alpha}(xa) : \tilde{\alpha}(x) \leq 1\}} \leq \alpha(a)$ by 1. of 3.14.

Corollary 3.16. Let $(E, A, \langle , \rangle)$ be a full basic triple, and $\alpha \in \mathcal{SN}_{cs}^{\langle,\rangle}(A)$. If $\tilde{\alpha} \in \mathcal{SN}(E)$ is given by (3.5), then $I_{N_{\tilde{\alpha}}} = N_{\alpha}$, where $I_{N_{\tilde{\alpha}}} := \{a \in A : Ea \subseteq N_{\tilde{\alpha}}\}$.

Proof. The inclusion $N_{\alpha} \subseteq I_{N_{\tilde{\alpha}}}$ is clear because $\tilde{\alpha}(xa) \leq \tilde{\alpha}(x)\alpha(a)$, $\forall x \in E$, $a \in A$. Conversely, suppose that $a \in A$ is such that $\tilde{\alpha}(xa) = 0$, $\forall x \in E$. Then $\alpha(a^*\langle x, y\rangle a) = \alpha(\langle xa, ya\rangle) \leq \tilde{\alpha}(xa)\tilde{\alpha}(ya) = 0$, $\forall x, y \in E$. Now, since the triple is full, we can write $aa^* = \sum_j \langle x_j, y_j \rangle$, for certain $x_j, y_j \in E$, so we have:

$$0 \le \alpha(a)^4 = \alpha(a^*a)^2 = \alpha(a^*aa^*a) = \alpha(a^*\sum_j \langle x_j, y_j \rangle a) \le \sum_j \alpha(a^*\langle x_j, y_j \rangle a) = 0,$$

hence
$$a \in N_{\alpha}$$
.

Proposition 3.17. Let $(E, A, \langle , \rangle)$ be a full basic triple, and $\alpha \in \mathcal{SN}_{cs}^{\langle,\rangle}(A)$. Let $\gamma := \tilde{\alpha} \in \mathcal{SN}(E)$, $\tilde{\alpha}$ given by (3.5). Then E_{γ} is a C^* -tring, $(E_{\gamma}^r, \bar{\gamma}^r) = (A_{\alpha}, \bar{\alpha})$ and $\tilde{\alpha}^r = \alpha$.

Proof. Denote by $q: E \to E/N_{\gamma} \subseteq E_{\gamma}$ and $p: A \to A/N_{\alpha} \subseteq A_{\alpha}$ the corresponding canonical maps. We define $E/N_{\gamma} \times A/N_{\alpha} \to E/N_{\gamma}$ and $[\,,\,]: E/N_{\gamma} \times E/N_{\gamma} \to A/N_{\alpha}$ such that q(x)p(a):=q(xa) and $[q(x),q(y)]:=p(\langle x,y\rangle)$ respectively. Let us see that these operations are continuous in the norms $\bar{\gamma}$ and $\bar{\alpha}$. The action of A/N_{α} on E/N_{γ} is continuous, for if $x,y\in E$ and $a\in A$:

$$\bar{\gamma}(q(x)p(a)) = \bar{\gamma}(q(xa)) = \gamma(xa) \leq \gamma(x)\alpha(a) = \bar{\gamma}(q(x))\bar{\alpha}(p(a))$$

And the sesquilinear map $[,]_{E/N_{\gamma}}$ also is continuous, because:

$$\bar{\alpha}([q(x),q(y)]_{E/F_{\gamma}}) = \bar{\alpha}(p(\langle x,y\rangle_E)) = \alpha(\langle x,y\rangle_E) \leq \gamma(x)\gamma(y) = \bar{\gamma}(q(x))\bar{\gamma}(q(y)).$$

Therefore these operations extend to continuous maps $E_{\gamma} \times A_{\alpha} \to E_{\gamma}$ and $[,]: E_{\gamma} \times E_{\gamma} \to A_{\alpha}$, so we obtain a full C^* -basic triple $(E_{\gamma}, A_{\alpha}, [,])$. Therefore $(A_{\alpha}, \alpha) = (E_{\gamma}^r, \bar{\gamma}^r)$ by 3.9. As for the last assertion, we have to prove that $\gamma^r = \alpha$

or, equivalently, that $\bar{\gamma}^r = \bar{\alpha}$. So it is enough to show that $\gamma^r = \bar{\gamma}^r p$. But, if $a \in A$:

$$\bar{\gamma}^r(p(a)) = \sup\{\bar{\gamma}(q(x)p(a)) : \bar{\gamma}(q(x)) \le 1\} = \sup\{\bar{\gamma}(q(xa)) : \gamma(x) \le 1\} = \gamma^r(a).$$

Propositions 3.5 and 3.14 allow us to define maps $\Phi_r : \mathcal{SN}(E) \to \mathcal{SN}_{cs}(E_0^r)$ and $\Psi_r : \mathcal{SN}_{cs}(E_0^r) \to \mathcal{SN}(E)$ such that $\Phi_r(\gamma) = \gamma^r$, given by (3.1), and $\Psi_r(\alpha) = \tilde{\alpha}$, given by (3.5). We want to show that in fact Φ_r and Ψ_r are mutually inverse maps that preserve the order.

Theorem 3.18. Let E be an admissible *-tring. Then the maps $\Phi_r : \mathcal{SN}(E) \to \mathcal{SN}_{cs}(E_0^r)$ and $\Psi_r : \mathcal{SN}_{cs}(E_0^r) \to \mathcal{SN}(E)$ are mutually inverse isomorphisms of lattices. Moreover $\Phi_r(\mathcal{N}(E)) = \mathcal{N}_{cs}(E_0^r)$ and $\Psi_r(\mathcal{N}_{cs}(E_0^r)) = \mathcal{N}(E)$.

Proof. By Corollary 3.15 we have $\Psi_r\Phi_r=Id_{\mathcal{SN}(E)}$, and Proposition 3.17 shows that $\Phi_r\Psi_r=Id_{\mathcal{SN}_{cs}(E_0^r)}$, so the maps Φ_r and Ψ_r are mutually inverse. Besides, it follows from 3.5 that $\Phi_r(\gamma)$ is a norm if and only if so is γ . On the other hand is clear that Ψ_r preserves the order, thus it remains to be shown that Φ_r also preserves the order. To this end consider $\gamma_1 \leq \gamma_2$ in $\mathcal{SN}(E)$. Since $id: (E, \gamma_2) \to (E, \gamma_1)$ is continuous, it induces a homomorphism $\pi: E_{\gamma_2} \to E_{\gamma_1}$, which in turn induces, according with Proposition 3.11, a homomorphism $\pi^r: E_{\gamma_2}^r \to E_{\gamma_1}^r$, which is necessarily contractive. Thus if $a \in E_0^r$, we have:

$$\gamma_1^r(a) = \bar{\gamma_1^r}(\pi^r(a + N_{\gamma_2^r})) \le \bar{\gamma_2^r}(a + N_{\gamma_1^r}) = \gamma_2^r(a),$$

which shows that $\gamma_1^r \leq \gamma_2^r$.

All we have done to the right side can be done also to the left side. For example, every admissible *-tring E induces a (left) admissible and full basic triple $(E, E_0^l, \langle \,, \, \rangle_l)$, we have an isomorphism of posets $\Phi_l : \mathcal{SN}(E) \to \mathcal{SN}_{cs}(E_0^l)$ with inverse $\Psi_l : \mathcal{SN}_{cs}(E_0^l) \to \mathcal{SN}(E)$, given by $\Phi_l(\gamma) = \gamma^l$ and $\Psi(\alpha) = \tilde{\alpha}$, where $\gamma^l(a) := \sup\{\gamma(ax) : \gamma(x) \leq 1\}$ and $\tilde{\alpha}(x) := \alpha(\langle x, x \rangle_l)^{1/2}$, etc. Then we obtain the following consequences:

Corollary 3.19. Let E be an admissible *-tring. Then $\Phi_r\Psi_l: \mathcal{SN}_{cs}(E_0^l) \to \mathcal{SN}_{cs}(E_0^r)$ is an isomorphism of lattices such that $\Phi_r\Psi_l(\mathcal{N}_{cs}(E_0^l)) = \mathcal{N}_{cs}(E_0^r)$. The inverse of $\Phi_r\Psi_l$ is $\Phi_l\Psi_r$.

As mentioned at the end of 3.1 in [12][Theorem 3.1], Zettl proved that any C^* -tring is of the form $E = E_+ \oplus E_-$, where E_+ and E_-^{op} are isomorphic to a TRO. In fact we have $E_+ := \{x \in E : \langle x, x \rangle_r \text{ is positive}\}$, $E_- := \{x \in E : -\langle x, x \rangle_r \text{ is positive}\}$, and E_+ and E_- are ideals of E such that $\langle E_+, E_- \rangle = 0$. If $E_p := E_+ \oplus E_-^{op}$, we will have that $E_p^r = E^r$ and $E_p^l = E^l$, and now E_p is a Morita–Rieffel equivalence between E^l and E^r . Thus we have:

Corollary 3.20. Let E be an admissible *-tring and $\gamma \in \mathcal{SN}(E)$. Then E^l_{γ} and E^r_{γ} are Morita-Rieffel equivalent C^* -algebras.

In general we will have to deal with algebras that strictly contain E_0^r , but whose C^* -seminorms are essentially the same, as the following results show.

Proposition 3.21. Let I be a selfadjoint ideal of a *-algebra A, and suppose that $\alpha \in \mathcal{SN}(I)$. Let $\alpha' : A \to [0, \infty]$ be given by $\alpha'(a) := \sup\{\alpha(ax) : x \in I, \alpha(x) \leq 1\}$. For every $a \in A$ consider $L_a : I \to I$, such that $L_a(x) = ax$, $\forall x \in I$. Then the following statements are equivalent:

- (1) $\alpha'(a) < \infty, \forall a \in A$.
- (2) L_a is bounded, $\forall a \in A$.
- (3) α can be extended to a C^* -seminorm on A.

Suppose that one of the conditions above holds true. Then:

- (a) α' is a C^* -seminorm on A, and $\alpha' \leq \beta$ for every $\beta \in \mathcal{SN}(A)$ that extends α .
- (b) If α is a norm, then α' is a norm if and only if $Ann_A(I) = 0$, where $Ann_A(I) := \{a \in A : ax = 0, \forall x \in I\}.$

Proof. Since $||L_a|| = \alpha'(a)$, we have that conditions 1. and 2. are equivalent. It is also clear that 3. \Rightarrow 1. Suppose now that $\alpha'(a) < \infty$, $\forall a \in A$. Let show that α' is a C^* -seminorm on A that extends α . It is easy to check that $\alpha'(ab) \leq \alpha'(a)\alpha'(b)$, $\forall a, b \in A$. Moreover:

$$\alpha'(a^*a) = \sup\{\alpha(a^*ax) : x \in I, \alpha(x) \le 1\} \ge \sup\{\alpha(x^*a^*ax) : x \in I, \alpha(x) \le 1\}$$

$$\ge \sup\{\alpha(ax)^2 : x \in I, \alpha(x) \le 1\} = \alpha'(a)^2.$$

Therefore $\alpha' \in \mathcal{SN}(A)$. The fact that α' extends α , as well as assertion (a), are consequences of the fact that for every C^* -seminorm β on A one has that $\beta(a) = \sup\{\beta(ab) : \beta(b) \leq 1\}$. Finally, suppose that α is a norm on I. Then $\alpha'(a) = 0 \iff \alpha(ax) = 0, \forall x \in I$, that is $\alpha'(a) = 0 \iff a \in \operatorname{Ann}_A(I)$. \square

Theorem 3.22. Let $(E, A, \langle , \rangle)$ be an admissible basic triple, with E a faithful A-module, and admissible as *-tring. Suppose that any C^* -seminorm on E_0^r can be extended in a unique way to a C^* -seminorm on A (recall Corollary 2.12). Then the lattices $\mathcal{SN}(E)$ and $\mathcal{SN}_{cs}^{\langle , \rangle}(A)$ are isomorphic. If in addition $Ann_A(E_0^r) = 0$, the posets $\mathcal{N}(E)$ and $\mathcal{N}_{cs}^{\langle , \rangle}(A)$ are isomorphic as well.

Proof. Since any C^* -seminorm on E_0^r can be uniquely extended to a C^* -seminorm on A, we are allowed to identify $\mathcal{SN}(A)$ and $\mathcal{SN}(E_0^r)$ as lattices, and it is clear that this yields also an identification between $\mathcal{SN}_{cs}^{\langle , \rangle}(A)$ and $\mathcal{SN}_{cs}(E_0^r)$, and the latter is isomorphic to $\mathcal{SN}(E)$ by 3.18. If moreover $\operatorname{Ann}_A(E_0^r) = 0$, the same argument applies to $\mathcal{N}(E)$ and $\mathcal{N}_{cs}(A)$.

In case A is a Banach *-algebra, any C^* -seminorm on a *-ideal can be extended to a C^* -seminorm defined on the whole algebra. Moreover we have:

Proposition 3.23. Let A be an admissible Banach *-algebra and I a dense *-ideal of A, not necessarily closed. Then any C^* -norm on I can be uniquely extended to a C^* -norm on A.

Proof. Let $\alpha \in \mathcal{N}(I)$. By 3.7 α has a unique extension to a C^* -seminorm on A, and by 3.21 this extension must be α' such that $\alpha'(a) = \sup\{\alpha(ax) : x \in I, \alpha(x) \leq 1\}$. Suppose $a \in \operatorname{Ann}_A(I)$. Then $aa^* = 0$, because I is dense in A and ax = 0, $\forall x \in I$. Thus a = 0 for A is admissible. Then α' is a norm by 3.21. \square

Corollary 3.24. Let $(E, A, \langle , \rangle_E)$ be an admissible basic triple with A a Banach *-algebra and E a faithful A-module. Suppose in addition that E is an admissible *-tring such that E_0^r is a dense ideal of A (recall Corollary 2.12). Then the lattices SN(E) and $SN_{cs}(A)$ are isomorphic, as well as the partially ordered sets N(E) and $N_{cs}(A)$.

Proof. Just combine Theorem 3.22 with Proposition 3.7 and Proposition 3.23. \square

Corollary 3.25. Let $(E, A, \langle , \rangle_A)$ and $(E, B, \langle , \rangle_B)$ be respectively left and right admissible basic triples, with A and B Banach *-algebras such that E is an (A - B)-bimodule with the given structure, and $\langle x, y \rangle_A z = x \langle y, z \rangle_B$, $\forall x, y, z \in E$. If E is faithful as a left A-module and as a right B-module, and E_0^l and E_0^r are dense in A and B respectively, then there is an isomorphism of lattices between $\mathcal{SN}_{cs}^{\langle,\rangle_A}(A)$ and $\mathcal{SN}_{cs}^{\langle,\rangle_B}(B)$, that restricts to an isomorphism between the posets $\mathcal{N}_{cs}^{\langle,\rangle_A}(A)$ and $\mathcal{N}_{cs}^{\langle,\rangle_B}(B)$.

3.3. Positive modules. In general is not a simple task to decide if a given C^* -seminorm satisfies the Cauchy-Schwarz property with respect to a certain sesquilinear map. However this is always the case for the positive modules we introduce next.

Let α be a C^* -seminorm on the *-algebra A, and let $p_{\alpha}: A \to A_{\alpha}$ be the canonical map, where A_{α} is the Hausdorff completion of A. If $\Lambda \subseteq \mathcal{SN}(A)$, then $A_{\Lambda}^+ := \cap_{\alpha \in \Lambda} p_{\alpha}^{-1}(A_{\alpha}^+)$ is a cone. When $\Lambda = \mathcal{SN}(A)$, we write A^+ instead of A_{Λ}^+ . Therefore A^+ is the set of elements of A that are positive in any C^* -Hausdorff completion of A. Of course the map $\Lambda \mapsto A_{\Lambda}^+$ is order reversing.

Definition 3.26. Given $\Lambda \subseteq \mathcal{SN}(A)$, we say that $a \in A$ is positive in (A, Λ) , or that it is Λ -positive, if $a \in A_{\Lambda}^+$. The elements of A^+ are just called the positive elements of A.

It is clear that A^+ contains the cone $C_A := \{\sum_{i,j=1}^n a_i^* a_j : n \in \mathbb{N}, a_i \in A, i = 1, \dots n\}$, and that $p_{\alpha}(C_A)$ is dense in $A_{\alpha}^+, \forall \alpha \in \mathcal{SN}(A)$. Also note that if $\phi : A \to B$ is a homomorphism between *-algebras, then $\phi(A^+) \subseteq B^+$ and $\phi(C_A) \subseteq C_B$.

If $\mathcal{SN}(A)$ is bounded, with $\alpha := \max \mathcal{SN}(A)$, then a is positive in A if and only if a is positive in (A, α) . In particular, if A is a Banach *-algebra, then $a \in A^+$ if and only if $\iota(a) \in C^*(A)^+$, where $\iota : A \to C^*(A)$ is the natural map of A into its C^* -enveloping algebra $C^*(A)$.

Lemma 3.27. Let A be C^* -closable. Then $A^+ = \bigcap \{p_\alpha^{-1}(A_\alpha^+) : \alpha \in \mathcal{N}(A)\}.$

Proof. Clearly we have that $A^+ \subseteq \bigcap \{p_{\alpha}^{-1}(A_{\alpha}^+) : \alpha \in \mathcal{N}(A)\}$. Let $\beta \in \mathcal{SN}(A)$. Since the maximum of two C^* -seminorms is again a C^* -seminorm, and since A is C^* -closable, we may pick $\beta' \in \mathcal{N}(A)$ such that $\beta' \geq \beta$. Then the identity map on A induces a homomorphism $\phi : A_{\beta'} \to A_{\beta}$, determined by $\phi(p_{\beta'}(a)) = p_{\beta}(a)$, $\forall a \in A$. If $a \in \bigcap \{p_{\alpha}^{-1}(A_{\alpha}^+) : \alpha \in \mathcal{N}(A)\}$ then $p_{\beta'}(a) \in A_{\beta'}^+$, and therefore $p_{\beta}(a) \in A_{\beta}^+$. This proves the converse inclusion.

Once we have a cone of positive elements on a *-algebra A, we are able to define a notion similar to that of Hilbert module.

Definition 3.28. Let A be a *-algebra, E a right A-module, and $\Lambda \subseteq \mathcal{SN}(A)$. We say that a map $\langle \cdot, \cdot \rangle : E \times E \to A$ is a Λ -semi-pre-inner product on E if:

- (1) $\langle x, \lambda_1 y + \lambda_2 z \rangle = \lambda_1 \langle x, y \rangle + \lambda_2 \langle x, z \rangle, \forall x, y, z \in E, \lambda_1, \lambda_2 \in \mathbb{C}.$
- (2) $\langle x, ya \rangle = \langle x, y \rangle a, \forall x, y \in E, a \in A.$
- (3) $\langle y, x \rangle = \langle x, y \rangle^*, \forall x, y \in E.$
- (4) $\langle x, x \rangle$ is Λ -positive, $\forall x \in E$.

The pair (E, \langle , \rangle) is then called a right positive Λ -module. In case $\Lambda = \mathcal{SN}(A)$ we say that (E, \langle , \rangle) is a right positive A-module.

Similarly we define left semi-pre-inner-products and left positive modules.

Definition 3.29. An admissible *-tring E is right (left) positive if (E, \langle , \rangle_r) is a positive E_0^r -module (respectively: (E, \langle , \rangle_l) is a positive E_0^l -module). It is said positive if it is both left and right positive.

Observe that if E is a C^* -tring, which is positive as an admissible *-tring, then it is obviously a positive C^* -tring. Conversely, it is readily checked that any positive C^* -tring is a positive admissible *-tring.

Proposition 3.30. Let (A, α) be a C^* -seminormed algebra and (E, \langle , \rangle) a right positive (A, α) -module. Let $\tilde{\alpha} : E \to [0, \infty)$ be given by $\tilde{\alpha}(x) = \sqrt{\alpha(\langle x, x \rangle)}$, $\forall x \in E$. Consider E as a *-tring with $(x, y, z) := x \langle y, z \rangle$, $\forall x, y, z \in E$. Then:

- (1) We have $\alpha(a) \leq \alpha(b)$ whenever a and b-a are positive elements of A.
- (2) $\tilde{\alpha}(x)^2 \langle y, y \rangle \langle x, y \rangle^* \langle x, y \rangle$ is positive in (A, α) , and $\alpha(\langle x, y \rangle) \leq \tilde{\alpha}(x)\tilde{\alpha}(y)$, $\forall x, y \in E$ (Cauchy-Schwarz).
- (3) $\alpha(\langle x, x \rangle)a^*a a^*\langle x, x \rangle a \ge 0, \ \forall x \in E, \ a \in A.$
- (4) $\tilde{\alpha}(xa) \leq \tilde{\alpha}(x)\alpha(a), \forall x \in E, a \in A.$
- (5) $\tilde{\alpha} \in \mathcal{SN}(E)$.

Proof. Let $p_{\alpha}: A \to A/I_{\alpha} =: A_{\alpha}$ be the natural map, where I_{α} is the ideal $I_{\alpha} := \{a \in A : \alpha(a) = 0\}, \text{ and let } \bar{\alpha} \text{ be the quotient norm on } A_{\alpha}.$ Now let $F := \operatorname{span}\{xb \in E : x \in E, b \in I_{\alpha}\}.$ Then $EI_{\alpha} \subseteq F$, so E/F is an A/I_{α} module. Moreover, $\langle E, F \rangle \subseteq I_{\alpha}$ and $\langle F, E \rangle \subseteq I_{\alpha}$, so we can consider the map $[,]: E/F \times E/F \to A/I_{\alpha}$ given by $[q(x), q(y)] = p_{\alpha}(\langle x, y \rangle)$, which satisfies properties 1.-4. of Definition 3.28 above. If a and b-a are positive in A, then $0 \le$ $p_{\alpha}(a) \leq p_{\alpha}(b)$ in A_{α} , and therefore $\bar{\alpha}(p_{\alpha}(a)) \leq \bar{\alpha}(p_{\alpha}(b))$, that is $\alpha(a) \leq \alpha(b)$. This proves 1. Now, the first part of the second statement follows from the proof of [6, Proposition 1.1], since $p_{\alpha}(\tilde{\alpha}(x)^2\langle y,y\rangle - \langle y,x\rangle\langle x,y\rangle) = \bar{\alpha}([q(x),q(x)])[q(y),q(y)] -$ [q(y), q(x)][q(x), q(y)] in A_{α} . The second part of 2. follows from the first one and from 1. To see 3. just observe that by applying p_{α} to the element $\alpha(\langle x, x \rangle)a^*a$ $a^*\langle x,x\rangle a$ of A we get the positive element $\bar{\alpha}([x,x])p_{\alpha}(a)^*p_{\alpha}(a)-p_{\alpha}(a)^*[x,x]p_{\alpha}(a)$ of A_{α} . Assertion 4. easily follows from 1. and 3: by 3. we have $a^*\langle x, x\rangle a \leq$ $\tilde{\alpha}(x)^2 a^* a$, then $\tilde{\alpha}(xa)^2 = \alpha(\langle xa, xa \rangle) = \alpha(a^* \langle x, x \rangle a)$, and by 1. this is less or equal to $\alpha(\tilde{\alpha}(x)^2a^*a) = \tilde{\alpha}(x)^2\alpha(a)^2$. It is clear that $\tilde{\alpha}(\lambda x) = |\lambda|\tilde{\alpha}(x), \forall x \in E$, $\lambda \in \mathbb{C}$, and from the Cauchy-Schwarz inequality just proved it readily follows that $\tilde{\alpha}$ also satisfies the triangle inequality, so it is a seminorm on E. Now, if $x,y,z\in E$: $\tilde{\alpha}(x\langle y,z\rangle)^2=\alpha(\langle y,z\rangle^*\langle x,x\rangle\langle y,z\rangle)$. Thus, in the case x=y=z:

$$\tilde{\alpha}((x,x,x)) = \alpha(\langle x,x\rangle^3)^{1/2} = \alpha(\langle x,x\rangle^{1/2})^3 = \tilde{\alpha}(x)^3.$$

According to 3. we have $\langle y, z \rangle^* \langle x, x \rangle \langle y, z \rangle \leq \alpha(\langle x, x \rangle) \langle y, z \rangle^* \langle y, z \rangle$ in (A, α) . From this fact, together with 4. and the Cauchy-Schwarz inequality we conclude that

$$\tilde{\alpha}(x\langle y, z \rangle)^2 \le \tilde{\alpha}(x)^2 \alpha(\langle y, z \rangle)^2 \le (\tilde{\alpha}(x) \,\tilde{\alpha}(y) \,\tilde{\alpha}(z))^2$$

so $\tilde{\alpha}$ is a C^* -seminorm on E.

Corollary 3.31. If E is a right positive *-tring, then $\mathcal{SN}_{cs}(E_0^r) = \mathcal{SN}(E_0^r)$, and $\mathcal{SN}(E) \cong \mathcal{SN}(E_0^r)$ and $\mathcal{N}(E) \cong \mathcal{N}(E_0^r)$ as ordered sets.

Proposition 3.32. Let E be an admissible *-tring and $\gamma \in \mathcal{SN}(E)$. If E is a right positive (E_0^r, γ^r) -module, then E is also a left positive (E_0^l, γ^l) -module. Therefore E is right positive if and only if is left positive.

Proof. Let E_{γ} be the Hausdorff completion of (E, γ) . Since E_{γ} is a right Hilbert module over E_{γ}^{r} , it turns out that E_{γ} is a positive C^{*} -tring, and therefore a left Hilbert module over E_{γ}^{l} , so E is a left positive (E_{0}^{l}, γ^{l}) -module.

Proposition 3.33. Let B be an admissible Banach *-algebra and suppose E is a right closed ideal of B such that span $\{x^*y: x, y \in E\}$ is dense in B. Let A be the closure in B of span $\{xy^*: x, y \in E\}$. If xx^* is positive in A, $\forall x \in E$, then the restriction map $\varphi: \mathcal{SN}(B) \to \mathcal{SN}(A)$, $\beta \mapsto \beta|_A$, is a lattice isomorphism such that $\varphi(\mathcal{N}(B)) = \mathcal{N}(A)$, and for each $\beta \in \mathcal{SN}(B)$ the Hausdorff completion B_{β} of B is Morita-Rieffel equivalent to the Hausdorff completion $A_{\varphi(\beta)}$ of A. In particular, the corresponding enveloping C^* -algebras $C^*(B)$ and $C^*(A)$ of B and A are Morita-Rieffel equivalent C^* -algebras.

Proof. Let $\langle \, , \, \rangle_B : E \times E \to B$ and $\langle \, , \, \rangle_A : E \times E \to A$ be such that $\langle x,y \rangle_B = x^*y$ and $\langle x,y \rangle_A = xy^*$. Then E is both a positive B-module and a positive A-module. Since B is admissible, so are E and A. Besides E is a faithful B-module, for if $xb = 0 \ \forall x \in E$, then $\sum_j x_j^* y_j b = 0 \ \forall x_j, y_j \in E$, so $b^*b = 0$, and this implies b = 0 because B is admissible. Similarly, E is a faithful A-module. It follows by 2.12 that we can identify E_0^r with span $\{x^*y : x,y \in E\}$ and E_0^l with span $\{xy^* : x,y \in E\}$. Now the proof ends with an invocation to Corollary 3.25

4. C^* -Ternary rings

As previously mentioned, Zettl found a unique decomposition $E = E_+ \bigoplus E_-$ of any C^* -tring E, E_+ being isomorphic to a TRO and E_- being isomorphic to an anti-TRO (see the discussion preceding Corollary 3.20). Of course, because of the uniqueness of the fundamental decomposition, there is a left version of the stuation above: $E_+ := \{x \in E : \langle x, x \rangle_l \in E_+^l\}$, $E_- := \{x \in E : \langle x, x \rangle_l \in -E_+^l\}$, $\langle E_+, E_- \rangle_l = 0$, $E^l = E_+^l \oplus E_-^l$, and $(E_+, -\langle \cdot, \cdot \rangle_l)$ and $(E_-, -\langle \cdot, \cdot \rangle_l)$ are full left Hilbert E_+^l and E_-^l modules respectively. This way, E is an $(E^l - E^r)$ Banach bimodule that satisfies

$$\langle x, y \rangle_l z = \mu(x, y, z) = x \langle y, z \rangle_r, \ \forall x, y, z \in E.$$

If E is a C^* -tring, we define $E_p := E_+ \oplus E_-^{\text{op}}$. Then E_p is a positive C^* -tring, and $E_p^r = E^r$, $E_p^l = E^l$. Therefore E_p is a $(E^l - E^r)$ -imprimitivity bimodule, so in

particular E^l and E^r are Morita–Rieffel equivalent. Note also that if $\phi: E \to F$ is a homomorphism of C^* -trings, then $\phi(E_+) \subseteq F_+$ and $\phi(E_-) \subseteq F_-$, because $\langle \phi(x), \phi(x) \rangle = \phi^r(\langle x, x \rangle)$. Therefore $\phi: E_p \to F_p$ is also a homomorphism of C^* -trings. Thus $E \mapsto E_p$ is a functor.

Let E^* be the reverse *-tring of E. It is clear that a norm on E is a C^* -norm if and only if it is a C^* -norm on E^* . Moreover, E is a (positive) C^* -tring if and only if so is E^* , and $E^l = (E^*)^r$, $E^r = (E^*)^l$. Note that E and E^* are essentially the same object as C^* -trings. Thus the properties of E^r and E^l deduced from properties of E will be the same.

Definition 4.1. By a left (right) ideal of the C^* -ternary ring E we mean a closed subspace F of E such that $(E, E, F) \subseteq F$ (respectively: $(F, E, E) \subseteq F$). An ideal of E is both a left and a right ideal of E. We denote by L(E), R(E), and I(E) the families of left, right and twosided ideals of E.

Our definition of ideal, for a closed subspace F of E, is equivalent to the definition which just requires the condition $(E, F, E) \subset F$ to be satisfied. Note that E_+ and E_- are ideals in every C^* -tring E. Moreover, since E_+ and E_- are orthogonal, it easily follows that a closed subspace F of E is an ideal of E if and only if it is an ideal in E_p . Thus the ideal structures of E and of E_p are the same.

If A is a C^* -algebra, we will denote by I(A) and H(A) respectively the families of (closed) twosided ideals and hereditary C^* -subalgebras of A.

As in the algebraic case, if E is a C^* -tring and F is a sub- C^* -tring of E, then the subalgebra $\overline{\text{span}}\langle F, F \rangle_r$ of E^r may be taken to represent the C^* -algebra F^r . With this choice of F^r we have the following result:

Proposition 4.2. The map $L(E) \to H(E^r)$ given by $F \mapsto F^r$ is a bijection, with inverse given by $A \mapsto EA$. When restricted to I(E), the map $F \mapsto F^r$ is a bijection onto $I(E^r)$. Moreover, all of these maps are lattice isomorphisms.

Proof. We prove that the map $L(E) \to H(E^r)$ is a bijection. Recalling that we may replace E by E_p (which can be seen as a full right Hilbert E^r -module), the rest of the proof follows from [8, 3.22]. If A is a C^* -subalgebra of E^r : $(E, E, EA) = E\langle E, EA \rangle = E\langle E, E \rangle A = (E, E, E) A \subseteq EA$, so EA is a left ideal in E. Conversely, if F is a left ideal in E:

$$\langle F, F \rangle \langle E, E \rangle \langle F, F \rangle = \langle E \langle F, F \rangle, E \langle F, F \rangle \rangle = \langle (E, F, F), (E, F, F) \rangle \subseteq \langle F, F \rangle.$$

Thus, taking the closed linear spans in both sides of the above inclusion we have: $F^rE^rF^r=F^r$, which shows that F^r is hereditary. To see that the correspondences are mutually inverses, note that if F is a C^* -tring, then $F=FF^r$. On the other hand, if A is a hereditary C^* -subalgebra of E^r , then $EA=\overline{\operatorname{span}}\langle EA,EA\rangle_r=\overline{\operatorname{span}}A\langle E,E\rangle_rA=AE^rA=A$.

Corollary 4.3. Let $\pi: E \to F$ be a homomorphism of *-trings, where E and F are C^* -trings. Then $(\ker \pi)^r = \ker(\pi^r)$.

Proof. It is clear that $\ker \pi \supseteq E \ker \pi^r$, so $(\ker \pi)^r \supseteq \ker \pi^r$. On the other hand $(\ker \pi)^r = \overline{\operatorname{span}\{\langle x,y\rangle_r : x,y \in \ker \pi\}} \subseteq \ker \pi^r$.

Remark 4.4. By Proposition 2.17 if $\pi: E \to F$ is a surjective homomorphism between C^* -trings, then $\pi_0^r: E_0^r \to F_0^r$ is also surjective, so also is $\pi^r: E^r \to F^r$ for the image of π^r is closed. However the converse is false: consider the Hilbert space inclusion $\mathbb{C} \stackrel{\iota}{\hookrightarrow} \mathbb{C}^2$; then ι is not onto, although ι^r is the identity on \mathbb{C} .

For a proof of the next result the reader is referred to [8, 3.25].

Proposition 4.5. Let F be an ideal of a C^* -tring E, and consider the quotient E/F with its natural structure of *-tring. Then E/F is a C^* -tring with the quotient norm, and $(E/F)^r = E^r/F^r$.

Corollary 4.6. Let E and G be C^* -trings, and $\pi: E \to G$ a homomorphism of *-trings. Consider $F = \ker(\pi)$, and let $p: E^r \to E^r/F^r$ be the quotient map. Then there exists a unique homomorphism of C^* -algebras $\overline{\pi^r}: E^r/F^r \to G^r$ such that $\overline{\pi^r}p = \pi^r$. The homomorphism $\overline{\pi^r}$ is injective. In particular, if $\pi: E \to E/F$ is the quotient map, where F is an ideal of E, then $\overline{\pi^r}: E^r/F^r \to (E/F)^r$ is a natural isomorphism.

Proof. Proposition 3.11 provides a unique homomorphism of C^* -algebras π^r : $E^r \to G^r$ such that $\langle \pi(x), \pi(y) \rangle = \pi^r(\langle x, y \rangle)$, $\forall x, y \in E$. The existence and uniqueness of $\overline{\pi^r}$, as well as its injetivity, follow now from the quotient universal property, together with the fact that $\ker(\pi^r) = F^r$ by Corollary 4.3. Finally, if F is an ideal of E, by Proposition 4.5 we have that E/F is a C^* -tring, and the projection $\pi: E \to E/F$ is a homomorphism of *-trings.

Corollary 4.7. The functor $E \mapsto E^r$, $\pi \mapsto \pi^r$, from the category of C^* -trings into the category of C^* -algebras, is exact. More precisely: if

$$0 \longrightarrow F_1 \stackrel{\phi}{\longrightarrow} F_2 \stackrel{\psi}{\longrightarrow} F_3 \longrightarrow 0$$

is an exact sequence of C^* -trings, then the sequence:

$$0 \longrightarrow F_1^r \stackrel{\phi^r}{\longrightarrow} F_2^r \stackrel{\psi^r}{\longrightarrow} F_3^r \longrightarrow 0$$

also is exact.

Corollary 4.8. If $\pi: E \to F$ is a homomorphism of C^* -trings, then $\pi(E)$ is closed in F. The ideals of a C^* -tring E are exactly the kernels of the homomorphisms defined on E.

5. Applications

5.1. C*-algebras associated with Fell bundles. The proof of Theorem 1.1 of [2] relies on the existence of a certain inner product (see Corollary 5.3 below), although no proof is included there of the fact that such inner product is indeed positive. In the following lines we provide such a proof, and we refine the above mentioned result.

Recall that a right ideal $\mathcal{E} = (E_t)_{t \in G}$ of a Fell bundle $\mathcal{B} = (B_t)_{t \in G}$ is a sub-Banach bundle of \mathcal{B} such that $\mathcal{EB} \subseteq \mathcal{E}$.

Given a right Hilbert B-module X, let denote by D_X the cone of finite sums $\sum_i \langle x_i, x_i \rangle \subseteq B^+$. It is clear that if $\{X_\lambda\}_{\lambda \in \Lambda}$ is a family of right Hilbert B-modules and $X := \bigoplus_\lambda X_\lambda$ (direct sum of Hilbert modules), then $\sum_\lambda D_{X_\lambda} \subseteq D_X$ -with equality if Λ is finite- and $\sum_\lambda D_{X_\lambda}$ is dense in D_X .

Similarly, for the right ideal \mathcal{E} of the Fell bundle \mathcal{B} , we define $D_{\mathcal{E}} := \{\sum_{i=1}^{n} c_i^* c_i : n \in \mathbb{N}, c_i \in \mathcal{E}, \forall i\} \subseteq B_e^+$. Then we have:

Lemma 5.1. Let $\mathcal{E} = (E_t)_{t \in G}$ be a right ideal of the Fell bundle $\mathcal{B} = (B_t)_{t \in G}$. Then span $(\mathcal{E}^*\mathcal{E} \cap B_e)$ is dense in B_e if and only if the cone $D_{\mathcal{E}}$ satisfies the following property:

 $\forall b \in B_e, \ \epsilon > 0, \ there \ exists \ d \in D_{\mathcal{E}} \ such \ that \ ||d|| \le 1 \ and \ ||b - bd|| < \epsilon. \ (5.1)$

Proof. Suppose that $b \in B_e$ is such that for any $\epsilon > 0$ there exists $d \in D_{\mathcal{E}}$ such that $||b-bd|| < \epsilon$. Since $D_{\mathcal{E}} \subseteq \operatorname{span}(\mathcal{E}^*\mathcal{E} \cap B_e)$ and the latter is an ideal in B_e , we conclude that $b \in \overline{\operatorname{span}}(\mathcal{E}^*\mathcal{E} \cap B_e)$. Then $\operatorname{span}(\mathcal{E}^*\mathcal{E} \cap B_e)$ is dense in B_e whenever $D_{\mathcal{E}}$ satisfies (5.1). Note now that $D_{\mathcal{E}} = \sum_{t \in G} D_{E_t}$, which is dense in D_E , where $E := \bigoplus_{t \in G} E_t$. Thus $D_{\mathcal{E}}$ satisfies (5.1) if and only if that property holds for D_E . Assume that $\operatorname{span}(\mathcal{E}^*\mathcal{E} \cap B_e)$ is dense in B_e . Then E is a full Hilbert module over B_e , and therefore it satisfies (5.1) by [6, (ii) of Lemma 7.2].

Lemma 5.2. Let $\mathcal{B} = (B_t)_{t \in G}$ be a Fell bundle over the locally compact group G, $\mathcal{A} = (A_t)$ a sub-Fell bundle of \mathcal{B} , and $\mathcal{E} = (E_t)$ a right ideal of \mathcal{B} such that $\mathcal{A} \subseteq \mathcal{E}$, $\mathcal{E}\mathcal{E}^* \subseteq \mathcal{A}$ and span $(\mathcal{E}^*\mathcal{E} \cap B_e)$ is dense in B_e . If $\xi \in L^1(\mathcal{E})$, then $\xi * \xi^*$ can be arbitrarily approximated in $L^1(\mathcal{A})$ by a finite sum $\sum_{j=1}^m \eta_j * \eta_j^*$, where $\eta_j \in L^1(\mathcal{A})$, $\forall j = 1, ..., m$.

Proof. We will suppose that $\xi \in C_c(\mathcal{E})$, which is clearly enough. Since $C_0(\mathcal{E})$ is a nondegenerate right Banach B_e -module, given a positive integer n there exists $b_n \in B_e$ such that $\|\xi - \xi b_n\| < 1/n$ and $0 \le b_n \le 1$. Then we can find $c_n \in D_{\mathcal{E}}$ such that $\|b_n^{1/2} - b_n^{1/2} c_n\| < 1/n$. Set $d_n := b_n^{1/2} c_n b_n^{1/2}$ and note that $d_n \in D_{\mathcal{E}}$ because \mathcal{E} is a right ideal. The continuity of the operations imply $\|b_n - d_n\| \to 0$ and $\|\xi - \xi d_n\|_1 \to 0$. Thus $\|\xi * \xi^* - \xi d_n * \xi^*\|_1 \to 0$.

Now for every n there exist $u_1, \ldots, u_{m_n} \in \mathcal{E}$ such that $d_n = \sum_{j=1}^{m_n} u_j^* u_j$. Thus $\xi d_n * \xi^* = \sum_{j=1}^{m_n} (\xi u_j^* u_j) * \xi^* = \sum_{j=1}^{m_n} (\xi u_j^*) * (\xi u_j^*)^*$ and, as \mathcal{E} is a right ideal, $\xi u_j^* \in C_c(\mathcal{A})$. This completes the proof.

Corollary 5.3. Under the assumptions of Lemma 5.2, let $\| \|_{\mathcal{A}} : L^1(\mathcal{A}) \to [0, \infty)$ be the maximal C^* -norm of $L^1(\mathcal{A})$. Then $L^1(\mathcal{E}) \times L^1(\mathcal{E}) \to L^1(\mathcal{A})$ given by $(\xi, \eta) \mapsto \xi * \eta^*$ is an inner product.

Corollary 5.4. Under the assumptions of Lemma 5.2, the map $\varphi : \mathcal{SN}(L^1(\mathcal{B})) \to \mathcal{SN}(L^1(\mathcal{B}))$ given by $\beta \mapsto \beta|_{L^1(\mathcal{A})}$ is an isomorphism of partially ordered sets that sends the maximal and reduced norms on $L^1(\mathcal{B})$ to the maximal and reduced norms on $L^1(\mathcal{A})$ respectively, and such that $\varphi(\mathcal{N}(L^1(\mathcal{B}))) = \mathcal{N}(L^1(\mathcal{A}))$. Moreover, the Hausdorff completions of $L^1(\mathcal{B})$ and $L^1(\mathcal{A})$ with respect to β and $\varphi(\beta)$ respectively are Morita-Rieffel equivalent.

Proof. We only have to prove the correspondence between the reduced C^* -norms, but this is the content of [2].

5.2. **Tensor products of** C^* **-trings.** In the present section we apply the previous results to the study of tensor products of C^* -trings. Maximal and minimal tensor product for TROs were constructed in [5] using linking algebras, but we define tensor products of C^* -trings E and F using the tensor products of E^r and F^r . The main result is Theorem 5.12.

From now on the algebraic tensor product of the \mathbb{C} -vector spaces E_1, \ldots, E_n will be denoted by $E_1 \odot \ldots \odot E_n$, or just by $\bigodot_{j=1}^n E_j$. Let E_{ij} , F_i be complex vector spaces, $\forall i=1,\ldots,m,\ j=1,\ldots,n$, and suppose that $\alpha_i:\prod_{j=1}^n E_{ij}\to F_i$ is a n-linear map, for each $i=1,\ldots,m$. Then it is clear that there exists a unique n-linear map $\alpha:=\alpha_1\odot\cdots\odot\alpha_m:\prod_{j=1}^n \bigodot_{i=1}^m E_{ij}\to \bigodot_{i=1}^m F_i$ such that $\alpha(\bigodot_{i=1}^m e_{i1},\ldots, \bigodot_{i=1}^m e_{in})=\bigodot_{i=1}^m \alpha_i(e_{i1},\ldots,e_{in})$. Using this fact we have the following result, whose straightforward proof is left to the reader.

Proposition 5.5. If (E, μ) , (F, ν) are *-trings, then $(E \odot F, \mu \odot \nu)$ is also a *-tring. Furthermore, if $(E, A, \langle , \rangle_A)$ and $(F, B, \langle , \rangle_B)$, are full basic triples associated to (E, μ) and (F, ν) , respectively, then $(E \odot F, A \odot B, \langle , \rangle_A \odot \langle , \rangle_B)$ is a full basic triple associated to $(E \odot F, \mu \odot \nu)$.

Definition 5.6. A C^* -tensor product of two *-trings $(E, \mu, \|\cdot\|)$ and $(F, \nu, \|\cdot\|)$ is a completion of the corresponding algebraic tensor product $(E \bigcirc F, \mu \odot \nu)$ with respect to a C^* -norm. If γ is such a C^* -norm, we denote by $E \bigotimes_{\gamma} F$ the corresponding C^* -tensor product.

Definition 5.7. We say that a C^* -tring E is nuclear if for every C^* -tring F there exists just one C^* -tensor product $E \bigotimes F$.

We will see next that $\mathcal{SN}(E \odot F) = \mathcal{SN}(E_p \odot F)$, which implies, in particular, that a C^* -tring E is nuclear if and only if E_p is nuclear.

Proposition 5.8. Let E be a *-tring, and F_1, F_2 ideals of E such that $E = F_1 \oplus F_2$. If $\gamma \in \mathcal{SN}(E)$, and x = y + z, with $y \in F_1$ and $z \in F_2$, then $\gamma(x) = \max\{\gamma(y), \gamma(z)\}$.

Proof. Since $\gamma(x) = \sup\{\gamma((x, u, u)) : u \in E, \gamma(u) \leq 1\}$, it follows that $\gamma(x) \geq \gamma(y)$ and $\gamma(x) \geq \gamma(z)$, so $\gamma(x) \geq \max\{\gamma(y), \gamma(z)\}$. To prove the converse inequality, let us first introduce the following notation. For $u \in E$ let $u_0 := z$, $u_n := (u_{n-1}, u_{n-1}, u_{n-1})$ if $n \geq 1$. Then we have that $\gamma(u_n) = \gamma(u_{n-1})^3, \forall n \geq 1$, so $\gamma(u_n) = \gamma(u)^{3^n}, \forall n \geq 0$. Since $(E, F_1, F_2) = 0$, it follows that $x_n = y_n + z_n$. Thus: $\gamma(x) = \gamma(x_n)^{1/3^n} = \gamma(y_n + z_n)^{1/3^n} \leq (\gamma(y_n) + \gamma(z_n))^{1/3^n} = (\gamma(y)^{3^n} + \gamma(z)^{3^n})^{1/3^n} \xrightarrow{n} \max\{\gamma(y), \gamma(z)\}$, whence $\gamma(x) \leq \max\{\gamma(y), \gamma(z)\}$.

Corollary 5.9. Let E and F be C^* -trings. Then $\mathcal{SN}(E \odot F) = \mathcal{SN}(E_p \odot F)$ and $\mathcal{N}(E \odot F) = \mathcal{N}(E_p \odot F)$. Consequently a C^* -tring E is nuclear if and only if E_p is nuclear.

Our aim is to prove that there is an isomorphism between $\mathcal{N}(E \odot F)$ and $\mathcal{N}(E^r \odot F^r)$. The key step is to show that each C^* -norm on $E_0^r \odot F_0^r$ has unique extension to a C^* -norm on $E^r \odot F^r$.

Lemma 5.10. Let I and J be *-ideals (not necessarily closed) of the C*-algebras A and B, respectively. Then the map $\Theta \colon \mathcal{N}(A \odot B) \to \mathcal{N}(I \odot J)$, $\gamma \mapsto \gamma|_{I \odot J}$, is

an order preserving surjection. If, in addition, I and J are dense in A and B, respectively, then Θ is a bijection.

Proof. Clearly Θ is order preserving. Fix $\delta \in \mathcal{N}(I \odot J)$. Given $a \in A$ and $z = \sum_{j=1}^n x_i \odot y_j \in I \odot J$, define $w := \sum_{j=1}^n (\|a\|^2 - a^*a)^{1/2} x_i \odot y_j \in A \odot B$. In case A is unital it is clear that $w \in I \odot J$. If A is not unital, I is an ideal of the unitization of A, so $w \in I \odot J$ in any case. Then

$$||a||^2 z^* z - (\sum_{j=1}^n ax_i \odot y_j)^* (\sum_{j=1}^n ax_i \odot y_j) = w^* w \in (I \otimes_{\delta} J)^+$$

and $\delta(\sum_{j=1}^n ax_i \odot y_j) \leq \|a\|\delta(\sum_{j=1}^n x_i \odot y_j)$. Similarly, if $b \in B$, we also have $\delta(\sum_{j=1}^n x_i \odot by_j) \leq \|b\|\delta(\sum_{j=1}^n x_i \odot y_j)$. Thus $\delta((a \odot b)z) \leq \|a\| \|b\|\delta(z)$, $\forall a \in A$, $b \in B$ and $z \in I \odot J$. Therefore, according to 3.21, the map $\delta' : A \odot B \to \mathbb{R}$ such that $\delta'(c) := \sup\{\delta(cz) : \delta(z) \leq 1\}$ is a C^* -seminorm on $A \odot B$ that extends δ . In case I and J are dense in A and B, respectively, $I \odot J$ is dense in $A \odot B$ with respect to any C^* -norm [10, Corollary T.6.2]. Thus Θ is injective.

Proposition 5.11. Let E and F be positive C^* -trings and consider the admissible full basic triples $(E, E_0^r, \langle , \rangle_r^E)$ and $(F, F_0^r, \langle , \rangle_r^F)$ given by Theorem 2.10. Then the full basic triple $(E \odot F, E_0^r \odot F_0^r, \langle , \rangle_r^E \odot \langle , \rangle_r^F)$ is admissible. Furthermore, $E \odot F$ is positive and

$$\mathcal{SN}_{cs}^{\langle,\rangle_r^F \odot \langle,\rangle_r^F} (E_0^r \bigcirc F_0^r) = \mathcal{SN}(E_0^r \bigcirc F_0^r)$$

Proof. To simplify our notation we denote $[\,\,]$ the map $\langle\,\,,\,\,\rangle_r^E \odot \langle\,\,,\,\,\rangle_r^F$. Note $E_0^r \odot F_0^r$ -module is admissible because it is a *-subalgebra of the C*-closable *-algebra $E^r \odot F^r$. We will show that $E \odot F$ is a positive $E_0^r \odot F_0^r$ -module. Lemma 5.10 implies there is a maximal C*-norm on $E_0^r \odot F_0^r$, namely the restriction of the maximal C*-norm of $E^r \odot F^r$. The comments preceding Lemma 3.27 imply that, to show $E \odot F$ is positive, it suffices to prove that $[u,u] \geq 0$ in the maximal tensor product $E^r \bigotimes_{\max} F^r$. Given $u = \sum_{j=1}^n x_j \otimes y_j \in E \odot F$ we have

$$[u, u] = \sum_{j,k=1}^{n} \langle x_j, x_k \rangle_r^E \odot \langle y_j, y_k \rangle_F^r.$$

Then Lemmas 4.2 and 4.3 of [6] give the desired result.

To show [u, u] = 0 implies u = 0 we use the linking algebras $\mathbb{L}(E)$ and $\mathbb{L}(F)$ and the linear maps

$$\alpha \colon E \bigodot F \to \mathbb{L}(E) \bigodot \mathbb{L}(F), \ x \odot y \mapsto \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix},$$
$$\beta \colon \mathbb{L}(E) \bigodot \mathbb{L}(F) \to E \bigodot F, \ \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \odot \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \mapsto x_{12} \odot y_{12},$$
$$\gamma \colon E \bigodot F \to \mathbb{L}(E) \bigodot \mathbb{L}(F), \ a \odot b \mapsto \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} \odot \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix}.$$

Then
$$\alpha(u)^*\alpha(u) = \gamma([u, u]) = 0$$
, so $\alpha(u) = 0$ and $u = \beta(\alpha(u)) = 0$.

Theorem 5.12. Let E and F be C^* -ternary rings. Then every set among the partially ordered sets $\mathcal{N}(E^l \odot F^l)$, $\mathcal{N}(E \odot F)$ and $\mathcal{N}(E^r \odot F^r)$ is isomorphic to

each other. Besides, if $\gamma \in \mathcal{N}(E \odot F)$ and γ^l and γ^r are the corresponding C^* -norms on $\mathcal{N}(E^l \odot F^l)$ and $\mathcal{N}(E^r \odot F^r)$ respectively, then $E \bigotimes_{\gamma} F$ is a Morita-Rieffel equivalence bimodule between $E^l \bigotimes_{\gamma^l} F^l$ and $E^r \bigotimes_{\gamma^r} F^r$.

Proof. Proposition 5.11 together with Corollary 3.31 imply $\mathcal{N}(E \odot F)$ is isomorphic (as a partially ordered set) to $\mathcal{N}(E \odot F)_0^r$). By 5.5 the posets $\mathcal{N}(E \odot F)_0^r$) and $\mathcal{N}(E_0^r \odot F_0^r)$ are isomorphic, and the latter is isomorphic to $\mathcal{N}(E^r \odot F^r)$ by Lemma 5.10. Thus $\mathcal{N}(E \odot F) \cong \mathcal{N}(E^r \odot F^r)$. Similarly we have $\mathcal{N}(E \odot F) \cong \mathcal{N}(E^l \odot F^l)$.

Corollary 5.13. Let E and F be C^* -trings. Then there exist a maximum C^* -norm $\|\cdot\|_{\max}$ on $E \bigcirc F$, and a minimum C^* -norm $\|\cdot\|_{\min}$ on $E \bigcirc F$, and

$$(E \bigotimes_{\max} F)^{l} = E^{l} \bigotimes_{\max} F^{l}, \qquad (E \bigotimes_{\max} F)^{r} = E^{r} \bigotimes_{\max} F^{r},$$
$$(E \bigotimes_{\min} F)^{l} = E^{l} \bigotimes_{\min} F^{l} \qquad (E \bigotimes_{\min} F)^{r} = E^{r} \bigotimes_{\min} F^{r}.$$

Corollary 5.14 (cf. [5, Theorem 6.5]). The following assertions are equivalent for a C^* -tring E:

- (1) E is a nuclear C^* -tring (5.7).
- (2) E^l is a nuclear C^* -algebra.
- (3) E^r is a nuclear C^* -algebra.

The equivalence between 2. and 3. in 5.14 is exactly the following well-known result ([3], [11]): if A and B are two Morita–Rieffel equivalent C^* -algebras then A is nuclear if and only if so is B.

5.3. **Exact** C^* -**trings.** To end the section we introduce the notion of exact C^* -tring, extending the notion of exact TRO of [5], and we prove a result similar to Corollary 5.14. The reader is referred to [9] for the theory of exact C^* -algebras.

Suppose that $0 \longrightarrow F_1 \xrightarrow{\phi} F_2 \xrightarrow{\psi} F_3 \longrightarrow 0$ is an exact sequence of C^* -trings, that is, ϕ and ψ are homomorphisms of C^* -trings, ϕ is injective, ψ is surjective, and $\ker \psi = \phi(F_1)$. Let E be a C^* -tring. Then the sequence

$$0 \longrightarrow E \bigcirc F_1 \xrightarrow{id \odot \phi} E \bigcirc F_2 \xrightarrow{id \odot \psi} E \bigcirc F_3 \longrightarrow 0$$

also is exact. We have an inclusion

$$(E \bigodot F_2)/(E \bigodot F_1) \hookrightarrow (E \bigotimes_{\min} F_2)/(E \bigotimes_{\min} F_1)$$

and the latter quotient is a C^* -tring. Then there exists a C^* -norm γ on $E \odot F_3$ such that

$$0 \longrightarrow E \bigotimes_{\min} F_1 \xrightarrow{id \otimes \phi} E \bigotimes_{\min} F_2 \xrightarrow{id \otimes \psi} E \bigotimes_{\gamma} F_3 \longrightarrow 0$$

is exact. Since γ is greater or equal to the minimum norm, the identity map on $E \bigcirc F_3$ extends to a surjective homomorphism $E \bigotimes_{\gamma} F_3 \to E \bigotimes_{\min} F_3$.

Definition 5.15. We say that a C^* -tring E is exact if for each exact sequence

$$0 \longrightarrow F_1 \longrightarrow F_2 \longrightarrow F_3 \longrightarrow 0$$

of C^* -trings we have that

$$0 \longrightarrow E \bigotimes_{\min} F_1 \longrightarrow E \bigotimes_{\min} F_2 \longrightarrow E \bigotimes_{\min} F_3 \longrightarrow 0$$

also is exact.

Proposition 5.16. Let E and F be C^* -trings, and suppose that G is an ideal of F (Definition 4.1). Then

$$0 \longrightarrow E \bigotimes_{\min} G \longrightarrow E \bigotimes_{\min} F \longrightarrow E \bigotimes_{\min} (F/G) \longrightarrow 0$$

is exact if and only if the following sequence is exact:

$$0 \longrightarrow E^r \bigotimes_{\min} G^r \longrightarrow E^r \bigotimes_{\min} F^r \longrightarrow E^r \bigotimes_{\min} \left(F^r / G^r \right) \longrightarrow 0$$

Proof. Suppose first that the sequence below is exact:

$$0 \longrightarrow E \bigotimes_{\min} G \longrightarrow E \bigotimes_{\min} F \longrightarrow E \bigotimes_{\min} (F/G) \longrightarrow 0$$

By Corollaries 5.13 and 4.7, we have the following commutative diagram

$$0 \longrightarrow \left(E \bigotimes_{\min} G\right)^r \longrightarrow \left(E \bigotimes_{\min} F\right)^r \longrightarrow \left(E \bigotimes_{\min} (F/G)\right)^r \longrightarrow 0$$

$$\cong \downarrow \qquad \qquad \cong \downarrow \qquad \qquad \cong \downarrow$$

$$0 \longrightarrow E^r \bigotimes_{\min} G^r \longrightarrow E^r \bigotimes_{\min} F^r \longrightarrow E^r \bigotimes_{\min} (F/G)^r \longrightarrow 0$$

$$= \downarrow \qquad \qquad \cong \downarrow$$

$$0 \longrightarrow E^r \bigotimes_{\min} G^r \longrightarrow E^r \bigotimes_{\min} F^r \longrightarrow E^r \bigotimes_{\min} F^r/G^r \longrightarrow 0$$

Since the upper two rows are exact, the third one also is exact.

To prove the converse, note first that

$$0 \longrightarrow E \bigotimes_{\min} G \longrightarrow E \bigotimes_{\min} F \longrightarrow (E \bigotimes_{\min} F)/(E \bigotimes_{\min} G) \longrightarrow 0$$

is exact, and $(E \bigotimes_{\min} F)/(E \bigotimes_{\min} G)$ is a C^* -completion of the ternary ring $E \bigodot (F/G)$. Denoting the corresponding C^* -norm by γ , we have a surjective homomorphism $\phi: E \bigotimes_{\gamma} (F/G) \to E \bigotimes_{\min} (F/G)$ which extends the identity on $E \bigodot (F/G)$. Now, applying the exact functor $E \mapsto E^r$ we obtain the commutative diagram with exact rows that follows:

It follows that the homomorphism ϕ^r is an isomorphism.

Corollary 5.17 (cf. [5, Theorem 6.1]). A C^* -tring E is exact (5.15) if and only if E^r is an exact C^* -algebra.

As previously for nuclear C^* -algebras, we easily obtain from 5.17 the following known result([7]): if A and B are Morita-Rieffel equivalent C^* -algebras, then A is exact if and only if B is exact.

References

- F. Abadie, Enveloping Actions and Takai Duality for Partial Actions, J. Funct. Anal. 197 (2003), 14–67.
- F. Abadie, L. Martí Pérez, On the amenability of partial and enveloping actions, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3689–3693.
- W. Beer, On Morita equivalence of nuclear C*-algebras, J. Pure Appl. Math. 26 (1982), no. 3, 249–267.
- 4. J. M. Fell and R. S. Doran, Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles, Pure and Applied Mathematics vol. 125 and vol. 126, Academic Press, Inc., Boston, MA, 1988.
- M. Kaur and Z.J. Ruan, Local properties of ternary rings of operators and their linking C*-algebras, J. Funct. Anal. 195 (2002), no. 2, 262–305.
- 6. E. C. Lance, *Hilbert C*-modules. A toolkit for operator algebraists*, London Mathematical Society, Lecture Note Series **210**, Cambridge University Press, 1995.
- C. K. Ng, C*-exactness and crossed products by actions and coactions, J. London Math. Soc. (2) 51 (1995), 321–330.
- I. Raeburn and D. P. Williams, Morita equivalence and continuous-trace C*-algebras, Math. Surveys and Monographs, Volume 60, Amer. Math. Society, 1998.
- 9. S. Wassermann, Exact C*-algebras and related topics, Lecture Notes Series 19, Seoul National University, 1994.
- 10. N. E. Wegge-Olsen, K-Theory and C^* -algebras, Oxford Science Publications, Oxford University Press, Oxford-New York-Tokyo, 1993.
- 11. H. H. Zettl, Strong Morita equivalence of C*-algebras preserves nuclearity, Arch. Math. (Basel) 38 (1982), no. 5, 448–452.
- 12. H. H. Zettl, A characterization of ternary rings of operators, Advances in Math. 48 (1983), no. 2, 117–143.

 1 Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.

E-mail address: fabadie@cmat.edu.uy

²DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA DEL LITORAL, UNIVERSIDAD DE LA REPÚBLICA, RIVERA 1350, 50000, SALTO, URUGUAY.

E-mail address: dferraro@unorte.edu.uy