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Abstract. We characterize Banach lattices on which each positive weak*
Dunford–Pettis operator is weakly (resp., M-weakly, resp., order weakly) com-
pact. More precisely, we prove that if F is a Banach lattice with order contin-
uous norm, then each positive weak* Dunford–Pettis operator T : E −→ F is
weakly compact if, and only if, the norm of E′ is order continuous or F is re-
flexive. On the other hand, when the Banach lattice F is Dedekind σ-complete,
we show that every positive weak* Dunford–Pettis operator T : E −→ F is
M-weakly compact if, and only if, the norms of E′ and F are order continuous
or E is finite-dimensional.

1. Introduction and preliminaries

Recall from [1] that an operator T from a Banach space X into a Banach space
Y is said to be weak Dunford–Pettis (wDP) if the sequence fn(T (xn)) converges
to 0 whenever (xn) converges weakly to 0 in X and (fn) converges weakly to 0 in
Y ′, equivalently, T carries relatively weakly compact subsets of X onto Dunford–
Pettis subsets of Y .

Recently in [9], we have defined a new class of operators that we called weak*
Dunford–Pettis operators. This class of operators is essentially based on the
concept of limited sets introduced in [7]. We have characterized this class of
operators and studied some of its properties in [9]. Let us recall that an operator
T from a Banach space X into a Banach space Y is called weak* Dunford–Pettis
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whenever xn −→ 0 for σ(X,X ′) in X and fn −→ 0 for σ(Y ′, Y ) in Y ′ imply
fn(T (xn)) −→ 0, equivalently, T carries relatively weakly compact subsets of X
onto limited subsets of Y . Furthermore, if Y is a Grothendieck space then, the
notions of weak Dunford–Pettis and weak* Dunford–Pettis operators coincide.

Note that there exists an operator which is weak* Dunford–Pettis but not
weakly compact. In fact, the identity operator of the Banach lattice `1 is weak*
Dunford–Pettis but it is not weakly compact. Conversely, there exists an operator
which is weakly compact but fails to be weak* Dunford–Pettis. In fact, the
identity operator of the Banach lattice `2 is weakly compact but it is not weak*
Dunford–Pettis.

In [2] the authors studied the weak compactness of Dunford–Pettis (resp., weak
Dunford–Pettis) operators. Also, in [5] the authors studied the M-weak compact-
ness of positive Dunford-Pettis (resp., semi-compact) operators. On the other
hand, the class of weak* Dunford–Pettis operators is bigger than the class of
Dunford–Pettis operators and is included in that of weak Dunford–Pettis opera-
tors. So, it is natural to study the weak compactness of weak* Dunford–Pettis
operators and the connection between weak* Dunford–Pettis and M-weakly com-
pact ( resp., order weakly compact) operators on Banach lattices.

The article is organized as follows, after a preliminary, we study the weak
compactness of weak* Dunford–Pettis operators (Theorem 2.1 and Theorem 2.2).
As consequences, we will obtain a characterization of reflexive Banach lattices
(Corollary 2.3). Further, we characterize Banach lattices for which each weak*
Dunford–Pettis operator is M-weakly compact (Theorem 2.4) and we finish the
paper by characterizing Banach lattices on which each weak* Dunford–Pettis
operator is order weakly compact (Theorem 2.5).

Throughout this paper X, Y will denote Banach spaces and E, F will denote
Banach lattices. The positive cone of E will be denoted by E+. BX is the closed
unit ball of X.

Let us recall from [1] that an operator T : X −→ Y is called a Dunford–
Pettis operator if T carries weakly convergent sequences into norm convergent
sequences. Alternatively, T : X −→ Y is a Dunford–Pettis operator if, and only
if, T carries relatively weakly compact sets into norm totally bounded sets. Also,
T : E −→ X is said to be M -weakly compact if for every disjoint sequence (xn) in
BE we have ‖T (xn)‖ −→ 0 and T : E −→ X is said to be order weakly compact
if it carries order bounded intervals of E to relatively weakly compact sets in
X. Equivalently, for every disjoint order bounded sequence (xn) in E we have
‖T (xn)‖ −→ 0.

Following [7], a norm bounded subset A of X is said to be a limited set if every
weak* null sequence (fn) of X ′ converges uniformly on A. It is easy to check
that every relatively norm compact set is limited but the converse is not true in
general. In fact, the set {en : n ∈ N} of unit coordinate vectors is a limited set
in `∞ which is not relatively compact.

A Banach space X has the Dunford–Pettis (DP) property if, and only if,
fn(xn) −→ 0 for every weakly null pair of sequences ((xn), (fn)) in X × X ′.



194 K. EL FAHRI, J. H’MICHANE, A. EL KADDOURI, O. ABOUTAFAIL

Next Borwein et al. [4] introduced a stronger version of DP property. A Ba-
nach space X has the Dunford–Pettis* (DP*) property if, fn(xn) −→ 0 for every
weakly null sequence (xn) in X and every weak* null sequence (fn) in X ′.

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and
its norm satisfies the following property: for each x, y ∈ E such that |x| ≤ |y|,
we have ‖x‖ ≤ ‖y‖. A norm ‖ · ‖ of a Banach lattice E is order continuous if for
each generalized sequence (xα) such that xα ↓ 0 in E, (xα) converges to 0 for the
norm ‖ · ‖ where the notation xα ↓ 0 means that (xα) is decreasing, its infimum
exists and inf(xα) = 0.

Note that if E is a Banach lattice, its topological dual E ′, endowed with the
dual norm and the dual order, is also a Banach lattice. Also, a vector lattice E
is Dedekind σ-complete if every majorized countable nonempty subset of E has
a supremum. We will use the term operator T : E −→ F to mean a bounded
linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. Note that
each positive linear mapping on a Banach lattice is continuous. If an operator
T : E −→ F is positive, then its adjoint T ′ : F ′ −→ E ′ is likewise positive, where
T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E. For
terminologies concerning Banach lattice theory and positive operators we refer
the reader to the excellent book of Aliprantis-Burkinshaw [1].

2. Main results

Our first result gives a characterization of Banach lattices E for which each
positive weak* Dunford–Pettis operator T : E −→ E is weakly compact (resp.,
M-weakly compact).

Theorem 2.1. Let E be Dedekind σ-complete. Then, the following assertions
are equivalent:

(1) the norms of E and E ′ are order continuous;
(2) every positive weak* Dunford–Pettis operator from E into E is M-weakly

compact;
(3) for all operators S, T : E −→ E such that 0 ≤ S ≤ T and T is weak*

Dunford–Pettis, S is M-weakly compact;
(4) every positive weak* Dunford–Pettis operator from E into E is weakly

compact;
(5) for every positive weak* Dunford–Pettis operator T : E −→ E, the opera-

tor product T 2 is weakly compact.

Proof. (1) =⇒ (2) Let T : E −→ E be a positive weak* Dunford–Pettis operator,
and let (xn) ⊂ BE be a disjoint sequence. We shall show that ‖T (xn)‖ −→ 0.
By [8, Corollary 2.6], it suffices to prove that |T (xn)| −→ 0 in the σ(E, E ′)-
topology of E and fn(Txn) −→ 0 for every disjoint and norm bounded sequence
(fn) ⊂ (E ′)+. Indeed,

- Let f ∈ (E ′)+. As the norm of E ′ is order continuous then, xn −→ 0 and
|xn| −→ 0 in the σ(E, E ′)-topology of E (because (xn) is disjoint). On the
other hand, it follows from [1, Theorem 1.23] that for each n there exists some
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gn ∈ [−f, f ] with f |T (xn)| = gn(T (xn)). Now, since |xn| −→ 0 in the σ(E, E ′)-
topology of E and T is positive then, 0 ≤ f |Txn| = gn(Txn) = T ′(gn)(xn) ≤
|T ′(gn)||xn| ≤ T ′(f)|xn| −→ 0 and hence |T (xn)| −→ 0 in the σ(E, E ′)-topology
of E.

- Let (fn) ⊂ (E ′)+ be a disjoint and norm bounded sequence. As the norm
of E is order continuous then, it follows from [10, Corollary 2.4.3] that fn −→ 0
in the σ(E ′, E)-topology of E ′. Now, since T is weak* Dunford–Pettis then
fn(Txn) −→ 0.

(2) =⇒ (3) Let S, T : E −→ E be two operators such that 0 ≤ S ≤ T and T is
weak* Dunford–Pettis. By [6, Theorem 3.1], S is likewise weak* Dunford–Pettis
and by our hypothesis S is M-weakly compact.

(3) =⇒ (4) Let T : E −→ E be a positive weak* Dunford–Pettis operator.
Since 0 ≤ T ≤ T , it follows that T is M-weakly compact, and hence it is weakly
compact.

(4) =⇒ (5) Obvious.
(5) =⇒ (1) Step 1: We prove that the norm of E is order continuous. If

not, it follows from the proof of [12, Theorem 1] that E contains a closed sub-
lattice isomorphic to `∞ and there is a positive projection P : E −→ `∞. Let
i : `∞ −→ E be the canonical injection of `∞ into E. Since `∞ has the DP*
property, the operator T = i◦P : E −→ `∞ −→ E is weak* Dunford–Pettis. But,
its second power T 2 which coincides with T , is not weakly compact. Otherwise,
the operator

P ◦ T ◦ i : `∞ −→ E −→ `∞ −→ E −→ `∞

would be weakly compact. But P ◦T ◦ i, which is just the identity operator Id`∞ ,
is not weakly compact. This presents a contradiction and hence E has an order
continuous norm.

Step 2: We show that the norm of the topological dual E ′ is order continuous.
If not, [10, Proposition 2.3.11 and Theorem 2.4.14] affirm the existence of a sub-
lattice H of E isomorphic to `1 and a positive projection P2 : E −→ `1. Now, let
T2 be the operator defined by

T2 = i2 ◦ P2 : E −→ `1 −→ E

where i2 : `1 −→ E is the canonical injection of `1 into E. Since `1 has the
DP* property, T2 is weak* Dunford–Pettis but (T2)

2 = T2 is not weakly compact.
Otherwise, the operator P2 ◦ T2 ◦ i2 = Id`1 would be weakly compact, and this
gives a contradiction. �

In the following result we give necessary and sufficient conditions on E and
F under which every weak* Dunford–Pettis operator T : E −→ F is weakly
compact.

Theorem 2.2. Let F be a Banach lattice with order continuous norm. Then the
following assertions are equivalent:

(1) every positive weak* Dunford–Pettis operator T : E −→ F is weakly com-
pact;

(2) one of the following is valid:
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(a) the norm of E ′ is order continuous;
(b) F is reflexive .

Proof. (1) =⇒ (2) Assume that the norm of E ′ is not order continuous. It follows
from [10, Proposition 2.3.11 and Theorem 2.4.14] that E contains a sub-lattice
isomorphic to `1 and there exists a positive projection P : E −→ `1. To finish the
proof we have to show that F is reflexive. By the Eberlein-Smulian’s Theorem
it suffices to show that every sequence (xn) in the closed unit ball of F has a
sub-sequence converges weakly to an element of F .

Consider the operator S : `1 −→ F defined by S((αi)) =
∑∞

i=1 αixi for each
(αi) ∈ `1. The composed operator

T = S ◦ P : E −→ `1 −→ F

is weak* Dunford–Pettis and hence by our hypothesis T is weakly compact. So,
the sequence (xn) = (T (en)) has a sub-sequence which converges weakly to an
element of F , where (en) is the canonical basis of `1.

(2; a) =⇒ (1) The same proof as the implication (1) =⇒ (2) of Theorem 2.1.
(2; b) =⇒ (1) Obvious. �

Remark 1. We need the condition “the norm of F is order continuous” just
for the proof of the first sufficient condition. Indeed, the identity operator of
the Banach lattice `∞ is weak* Dunford–Pettis but fails to be weakly compact.
However, the norm of (`∞)′ is order continuous.

A Banach lattice E is said to be an AM-space if for each x, y ∈ E such that
inf(x, y) = 0, we have ‖x + y‖ = max{‖x‖, ‖y‖}. The Banach lattice E is an
AL-space if its topological dual E ′ is an AM-space.

As a consequence of Theorem 2.2 and [1, Theorem 5.24], we obtain the following
characterization of reflexive Banach lattices.

Corollary 2.3. Let E be an infinite-dimensional AL−space and F with order
continuous norm. Then, the following assertions are equivalent:

(1) F is reflexive;
(2) every operator from E into F is weakly compact;
(3) every positive weak* Dunford–Pettis operator from E into F is weakly

compact.

Proof. (1) =⇒ (2) Follows from [1, Theorem 5.24].
(2) =⇒ (3) Obvious.
(3) =⇒ (1) The norm of E ′ is not order continuous. Indeed, if the norm of E ′

is order continuous, as E is an AL−space then, E ′ is an AM−space with unit
and hence it follows from [11, Theorem 5.10] that there exists some f ∈ (E ′)+

such that BE′ = [−f, f ] is weakly compact, this implies that E ′ is reflexive and
hence E is reflexive. Now, by [1, Exercise 14 page 253] the Banach lattice E is
finite-dimensional. This gives a contradiction. Finally, since the norm of E ′ is
not order continuous, it follows from Theorem 2.2 that F is reflexive. �

Recall from Aliprantis-Burkinshaw [1, page 222], that E is said to be lattice
embeddable into F whenever there exists a lattice homomorphism T : E −→ F
and there exist two positive constants K and M satisfying
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K‖x‖ ≤ ‖T (x)‖ ≤ M‖x‖ for all x ∈ E.

T is called a lattice embedding from E into F . In this case T (E) is a closed
sub-lattice of F which can be identified with E.

Note that there exist weak* Dunford–Pettis operators that are not M-weakly
compact. Indeed, the operator T : `1 −→ `∞ defined by

T ((αn)) = (
∞∑

n=1

αn)∞n=1 =
∞∑

n=1

αn(1, 1, 1, . . .)

is weak* Dunford–Pettis but fails to be M-weakly compact.

Theorem 2.4. Let F be a Dedekind σ-complete Banach lattices. Then the fol-
lowing assertions are equivalent:

(1) every positive weak* Dunford–Pettis operator T : E −→ F is M-weakly
compact;

(2) one of the following is valid:
(a) the norms of E ′ and F are order continuous;
(b) E is finite-dimensional.

Proof. (1) =⇒ (2) Step 1. We prove that if the norm of F is not order continuous,
then E is finite-dimensional.

In fact, assume that the norm of F is not order continuous and E is infinite-
dimensional. We will construct a positive operator T : E −→ F which is weak*
Dunford–Pettis but is not M-weakly compact. Since, E is infinite-dimensional
then, [3, Lemma 2.3] implies that there exist a positive disjoint sequence (xn) of
E+ such that ‖xn‖ = 1 for all n. So, by [3, Lemma 2.5], there exists a positive
disjoint sequence (gn) of E ′ with ‖gn‖ ≤ 1 such that gn(xm) = 1 for all n = m
and gn(xm) = 1 for n 6= m.

Now, consider the positive operator P : E −→ `∞ defined by P (x) = (gn(x))n.
On the other hand, since the norm of F is not order continuous, it follows from

[1, Theorem 4.51] that `∞ is lattice embeddable in F . i.e., there exists a lattice
homomorphism S : `∞ −→ F and there exist two positive constants M and m
satisfying

m ‖(λk)k‖∞ ≤ ‖S ((λk)k) ‖ ≤ M ‖(λk)k‖∞
for all (λk)k ∈ `∞.
Put T = S ◦ P : E −→ `∞ −→ F and note that T is a positive weak* Dunford–
Pettis (Because `∞ has DP* property), but is not M-weakly compact. Indeed,
since (xn) is a disjoint norm bounded sequence in E+ and

‖T (xn)‖ = ‖S ◦ P (xn)‖ = ‖S((gk(xn))k)‖
≥ m‖(gk(xn))‖∞ = m|gn(xn)| = m

for every n then, T is not M-weakly compact.
Step 2. We prove that if the norm of E ′ is not order continuous then,

F = {0}. Assume that the norm of E ′ is not order continuous and F 6= {0}.
There exist 0 < y ∈ F+ and it follows from [10, Theorem 2.4.14 and Proposition
2.3.11] the existence of a sub-lattice H of E isomorphic to `1 and a positive
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projection P2 : E −→ `1.
On the other hand, we define the positive operator S2 : `1 −→ F defined by

S2((λn)n) = (
∞∑

n=1

λn)y

for all ((λn)n) ⊂ `1. Put T2 = S2 ◦ P2 : E −→ `1 −→ F , and note that T2 is a
positive weak* Dunford–Pettis. On the other hand, consider the sequence (en)
in `1, where en is the sequence with nth entry equals to 1 and others are zero.
From T2(en) = y for each n ∈ N , it follows that ‖T2(en)‖ 9 0. Hence T2 is not
M-weakly compact.

(2; a) =⇒ (1) The same as the proof of (1) =⇒ (2) in Theorem 2.1.
(2; b) =⇒ (1)) In this case, every operator T : E −→ F is M-weakly compact.

In fact, if E is finite-dimensional then for every norm bounded disjoint sequence
(xn) of E there exists some n0 such that xn = 0 for all n ≥ n0. So, T (xn) = 0 for
all n ≥ n0. Then ‖T (xn)‖ −→ 0 and hence T is M-weakly compact. �

Remark 2. The condition “F is Dedekind σ-complete” is not an accessory in the
above theorem. Indeed, each positive operator T : `∞ −→ c is M-weakly compact,
but neither the assertion (a) nor the assertion (b) was valid.

Finally, we characterize Banach lattices on which each weak* Dunford–Pettis
operator is order weakly compact. Note that a weak* Dunford–Pettis operator is
not necessary order weakly compact. In fact, the identity operator Id∞ : `∞ −→
`∞ is weak* Dunford–Pettis but fails to be order weakly compact.

Theorem 2.5. Let F be a Dedekind σ-complete Banach lattices. Then the fol-
lowing assertions are equivalent:

(1) every positive weak* Dunford–Pettis operator T : E −→ F is order weakly
compact;

(2) one of the following is valid:
(a) the norm of E are order continuous;
(b) the norm of F are order continuous.

Proof. (1) =⇒ (2) Assume by way of contradiction that neither E nor F has an
order continuous norm. To finish the proof, we have to construct a positive weak*
Dunford–Pettis operator T : E −→ F which is not order weakly compact.
Since the norm of E is not order continuous, it follows from [1, Theorem 4.14]
that there exists some y ∈ E+ and a disjoint sequence (xn) ⊂ [0, y] which does
not converge to zero in norm. We may assume that ‖xn‖ = 1 for all n. Hence, by
[3, Lemma 2.5], there exists a positive disjoint sequence (gn) of E ′ with ‖gn‖ ≤ 1
such that gn(xm) = 1 for all n = m and gn(xm) = 1 for n 6= m.

We define the positive operator P as follows:

P : E −→ `∞, P (x) = (gn(x))n.

On the other hand, since the norm of F is not order continuous, it follows from
[1, Theorem 4.51] that `∞ is lattice embeddable in F . i.e., there exists a lattice
homomorphism S : `∞ −→ F and there exists two positive constants M and m
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satisfying
m ‖(λk)k‖∞ ≤ ‖S ((λk)k) ‖ ≤ M ‖(λk)k‖∞

for all (λk)k ∈ `∞. Put T = S ◦P : E −→ `∞ −→ F , and note that T is a positive
weak* Dunford–Pettis (Because `∞ has DP*property), but it is not order weakly
compact. Indeed, since (xn) is an order bounded disjoint sequence in E and

‖T (xn)‖ = ‖S ◦ P (xn)‖ = ‖S((gk(xn))k)‖
≥ m‖(gk(xn))‖∞ = m|gn(xn)| = m

for every n then, T is not order weakly compact.
(2; a) =⇒ (1) In this case, each operator T : E −→ F is order weakly compact.
(2; b) =⇒ (1) Let T : E −→ F be a positive weak* Dunford–Pettis operator

and let (xn) be a positive disjoint order bounded sequence in E. We shall show
that ‖T (xn)‖ −→ 0. By [8, Corollary 2.6], it suffices to proof that |T (xn)| −→ 0
in the σ(F, F ′)-topology of F and fn(T (xn)) −→ 0 for every disjoint and norm
bounded sequence (fn) ⊂ (F ′)+. Indeed:
- As (xn) is a positive disjoint order bounded sequence in E then, xn −→ 0 in
the σ(E, E ′)-topology of E (see [1, Remark in page 192]) hence 0 ≤ T (xn) −→ 0
for σ(F, F ′).
- Let (fn) ⊂ (F ′)+ be a disjoint and norm bounded sequence. As the norm of F is
order continuous, then by [10, Corollary 2.4.3], fn −→ 0 in the σ(F ′, F )-topology
of F ′. Now, since T is weak* Dunford–Pettis then, fn(T (xn)) −→ 0. This show
that T is order weakly compact. �

Remark 3. The some example in the above remark affirm that the condition “F
Dedekind σ-complete” is not an accessory.
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