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REPRODUCING PAIRS OF MEASURABLE FUNCTIONS AND
PARTIAL INNER PRODUCT SPACES

J.-P. ANTOINE 1∗ and C. TRAPANI 2

Communicated by P. Aiena

Abstract. We continue the analysis of reproducing pairs of weakly measur-
able functions, which generalize continuous frames. More precisely, we examine
the case where the defining measurable functions take their values in a par-
tial inner product space (PIP spaces). Several examples, both discrete and
continuous, are presented.

1. Introduction

Frames and their relatives are most often considered in the discrete case, for
instance in signal processing [10]. However, continuous frames have also been
studied and offer interesting mathematical problems. They have been introduced
originally by Ali, Gazeau and one of us [1, 2] and also, independently, by Kaiser
[14]. Since then, several papers dealt with various aspects of the concept, see for
instance [11], [12], [17] or [18]. However, there may occur situations where it is
impossible to satisfy both frame bounds.

Therefore, several generalizations of frames have been introduced. Semi-frames
[6, 7], for example, are obtained when functions only satisfy one of the two frame
bounds. It turns out that a large portion of frame theory can be extended to this
larger framework, in particular the notion of duality.
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More recently, a new generalization of frames was introduced by Balazs and
Speckbacher [21], namely, reproducing pairs. Here, given a measure space (X,µ),
one considers a couple of weakly measurable functions (ψ, φ), instead of a single
mapping, and one studies the correlation between the two (a precise definition
is given below). This definition also includes the original definition of a contin-
uous frame [1, 2] to which it reduces when ψ = φ. In a previous paper [8], we
have analyzed in detail the mathematical structure generated by a reproducing
pair and we have described a number of concrete examples. In particular, we
have shown that a reproducing pair (ψ, φ) determines a couple of Hilbert spaces
Vψ(X,µ), Vφ(X,µ), conjugate duals of each other with respect to the L2(X, dµ)
inner product. And this immediately suggests to work in the context of partial
inner product spaces (pip-spaces) [4].

The increase of freedom in choosing the mappings ψ and φ, however, leads
to the problem of characterizing the range of the analysis operators, which in
general need no more be contained in L2(X, dµ), as in the frame case. Therefore,
we extend the theory to the case where the weakly measurable functions take their
values in a partial inner product space (pip-space). We discuss first the case of
a rigged Hilbert space, then we consider a genuine pip-space. We conclude with
two natural families of examples, namely, Hilbert scales and several pip-spaces
generated by the family {Lp(X, dµ), 1 ≤ p ≤ ∞}.

We might remark that the increased flexibity afforded by reproducing pairs
effectively yields new insights in some physical problems [8] or [22].

2. Preliminaries

Before proceeding, we list our definitions and conventions. The framework
is a (separable) Hilbert space H, with the inner product 〈·|·〉 linear in the first
factor. Given an operator A on H, we denote its domain by D(A), its range by
Ran (A) and its kernel by Ker (A). GL(H) denotes the set of all invertible bounded
operators on H with bounded inverse. Throughout the paper, we will consider
weakly measurable functions ψ : X → H, where (X,µ) is a locally compact space
with a Radon measure µ, that is, 〈ψx|f〉 is µ−measurable for every f ∈ H. Then
the weakly measurable function ψ is a continuous frame if there exist constants
0 < m ≤ M <∞ (the frame bounds) such that

m ‖f‖2 ≤
∫
X

|〈f |ψx〉|2 dµ(x) 6 M ‖f‖2 ,∀ f ∈ H. (2.1)

Given the continuous frame ψ, the analysis operator Cψ : H → L2(X, dµ) is
defined as

(Cψf)(x) = 〈f |ψx〉, f ∈ H, (2.2)

and the corresponding synthesis operator C∗ψ : L2(X, dµ) → H as (the integral
being understood in the weak sense, as usual)

C∗ψξ =

∫
X

ξ(x)ψx dµ(x), for ξ ∈ L2(X, dµ). (2.3)

As usual, we identify a function ξ with its residue class in L2(X, dµ).
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We set S := C∗ψCψ, which is self-adjoint.
More generally, the couple of weakly measurable functions (ψ, φ) is called a

reproducing pair if [8]

(a) The sesquilinear form

Ωψ,φ(f, g) =

∫
X

〈f |ψx〉〈φx|g〉 dµ(x) (2.4)

is well-defined and bounded on H×H, that is, |Ωψ,φ(f, g)| ≤ c ‖f‖ ‖g‖, for some
c > 0.

(b) The corresponding bounded (resolution) operator Sψ,φ belongs to GL(H).

Under these hypotheses, one has

Sψ,φf =

∫
X

〈f |ψx〉φx dµ(x), ∀ f ∈ H, (2.5)

the integral on the r.h.s. being defined in weak sense. If ψ = φ, we recover the
notion of continuous frame, so that we have indeed a genuine generalization of
the latter. Notice that Sψ,φ is in general neither positive, nor self-adjoint, since
S∗ψ,φ = Sφ,ψ . However, if ψ, φ is reproducing pair, then ψ, S−1

ψ,φφ is a dual pair,
that is, the corresponding resolution operator is the identity. Therefore, there
is no restriction of generality to assume that Sφ,ψ = I [21]. The worst that can
happen is to replace some norms by equivalent ones.

In [8], it has been shown that each weakly measurable function φ generates
an intrinsic pre-Hilbert space Vφ(X,µ) and, moreover, a reproducing pair (ψ, φ)
generates two Hilbert spaces, Vψ(X,µ) and Vφ(X,µ), conjugate dual of each other
with respect to the L2(X,µ) inner product. Let us briefly sketch that construc-
tion, that we will generalize further on.

Given a weakly measurable function φ, let us denote by Vφ(X,µ) the space of
all measurable functions ξ : X → C such that the integral

∫
X
ξ(x)〈φx|g〉 dµ(x)

exists for every g ∈ H (in the sense that ξ〈φ·|g〉 ∈ L1(X, dµ)) and defines a
bounded conjugate linear functional on H, i.e., ∃ c > 0 such that∣∣∣∣∫

X

ξ(x)〈φx|g〉 dµ(x)

∣∣∣∣ ≤ c ‖g‖ , ∀ g ∈ H. (2.6)

Clearly, if (ψ, φ) is a reproducing pair, all functions ξ(x) = 〈f |ψx〉 = (Cψf)(x)
belong to Vφ(X,µ).

By the Riesz lemma, we can define a linear map Tφ : Vφ(X,µ) → H by the
following weak relation

〈Tφξ|g〉 =

∫
X

ξ(x)〈φx|g〉 dµ(x), ∀ ξ ∈ Vφ(X,µ), g ∈ H. (2.7)

Next, we define the vector space

Vφ(X,µ) = Vφ(X,µ)/Ker Tφ

and equip it with the norm

‖[ξ]φ‖φ := sup
‖g‖≤1

∣∣∣∣∫
X

ξ(x)〈φx|g〉 dµ(x)

∣∣∣∣ = sup
‖g‖≤1

|〈Tφξ|g〉| , (2.8)
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where we have put [ξ]φ = ξ + Ker Tφ for ξ ∈ Vφ(X,µ). Clearly, Vφ(X,µ) is a
normed space. However, the norm ‖·‖φ is in fact Hilbertian, that is, it derives
from an inner product, as can be seen as follows. First, it turns out that the map

T̂φ : Vφ(X,µ) → H, T̂φ[ξ]φ := Tφξ is a well-defined isometry of Vφ(X,µ) into H.
Next, one may define on Vφ(X,µ) an inner product by setting

〈[ξ]φ|[η]φ〉(φ) := 〈T̂φ[ξ]φ|T̂φ[η]φ〉, [ξ]φ, [η]φ∈ Vφ(X,µ),

and one shows that the norm defined by 〈·|·〉(φ) coincides with the norm ‖ · ‖φ
defined in (2.8). One has indeed

‖[ξ]φ‖(φ) =
∥∥∥T̂φ[ξ]φ∥∥∥ = ‖Tφξ‖ = sup

‖g‖≤1

|〈Tφξ|g〉| = ‖[ξ]φ‖φ .

Thus Vφ(X,µ) is a pre-Hilbert space.
With these notations, the main result of [8] reads as

Theorem 2.1. If (ψ, φ) is a reproducing pair, the spaces Vφ(X,µ) and Vψ(X,µ)
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilinear
form

〈〈ξ|η〉〉
µ

:=

∫
X

ξ(x)η(x) dµ(x), (2.9)

which coincides with the inner product of L2(X,µ) whenever the latter makes
sense. This is true, in particular, for φ = ψ, since then ψ is a continuous frame
and Vψ(X,µ) is a closed subspace of L2(X,µ).

In this paper, we will consider reproducing pairs in the context of pip-spaces.
The motivation is the following. Let (ψ, φ) be a reproducing pair. By definition,

〈Sψ,φf |g〉 =

∫
X

〈f |ψx〉〈φx|g〉 dµ(x) =

∫
X

Cψf(x) Cφg(x) dµ(x) (2.10)

is well defined for all f, g ∈ H. The r.h.s. coincides with the sesquilinear form
(2.9), that is, the L2 inner product, but generalized, since in general Cψf, Cφg need
not belong to L2(X, dµ). If, following [21], we make the innocuous assumption
that ψ is bounded, i.e., supx∈X ‖ψx‖H ≤ c for some c > 0 (often ‖ψx‖H = const.,
e.g. for wavelets or coherent states), then (Cψf)(x) = 〈f |ψx〉 ∈ L∞(X, dµ).

These two facts suggest to take RanCψ within some pip-space of measurable
functions, possibly related to the Lp spaces. We shall present several possibilities
in that direction in Section 6.

3. Reproducing pairs and RHS

We begin with the simplest example of a pip-space, namely, a rigged Hilbert
space (RHS). Let indeed D[t] ⊂ H ⊂ D×[t×] be a RHS with D[t] reflexive (so
that t and t× coincide with the respective Mackey topologies). Given a measure
space (X,µ), we denote by 〈·, ·〉 the sesquilinear form expressing the duality
between D and D×. As usual, we suppose that this sesquilinear form extends
the inner product of D (and H). This allows to build the triplet above. Let
x ∈ X 7→ ψx, x ∈ X 7→ φx be weakly measurable functions from X into D×.
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Instead of (2.4), we consider he sesquilinear form

ΩDψ,φ(f, g) =

∫
X

〈f, ψx〉〈φx, g〉 dµ(x), f, g ∈ D. (3.1)

For short we put ΩD := ΩDψ,φ and we assume that it is jointly continuous on D×D,

that is, ΩD ∈ B(D,D) in the notation of [3, Sec.10.2]. Writing

〈Sψ,φf, g〉 :=

∫
X

〈f, ψx〉〈φx, g〉 dµ(x), ∀ f, g ∈ D, (3.2)

we see that the operator Sψ,φ belongs to L(D,D×), the space of all continuous
linear maps from D into D×.

3.1. A Hilbertian approach. We first assume that the sesquilinear form ΩD is
well-defined and bounded on D ×D in the topology of H. Then ΩDψ,φ extends to
a bounded sesquilinear form on H×H, denoted by the same symbol.

The definition of the space Vφ(X,µ) must be modified as follows. Instead of
(2.6), we suppose that the integral below exists and defines a conjugate linear
functional on D, bounded in the topology of H, i.e.,∣∣∣∣∫

X

ξ(x)〈φx, g〉 dµ(x)

∣∣∣∣ ≤ c ‖g‖ , ∀ g ∈ D. (3.3)

Then the functional extends to a bounded conjugate linear functional on H,
since D is dense in H. Hence, for every ξ ∈ Vφ(X,µ), there exists a unique vector
hφ,ξ ∈ H such that ∫

X

ξ(x)〈φx, g〉 dµ(x) = 〈hφ,ξ|g〉, ∀g ∈ D.

It is worth remarking that this interplay between the two topologies on D is
similar to the approach of Werner [23], who treats L2 functions as distributions,
thus identifies the L2 space as the dual of D = C∞0 with respect to the norm
topology. And, of course, this is fully in the spirit of pip-spaces.

Then, we can define a linear map Tφ : Vφ(X,µ) → H by

Tφξ = hφ,ξ ∈ H, ∀ ξ ∈ Vφ(X,µ), (3.4)

in the following weak sense

〈Tφξ|g〉 =

∫
X

ξ(x)〈φx, g〉 dµ(x), g ∈ D, ξ ∈ Vφ(X,µ).

In other words we are imposing that
∫
X
ξ(x)φx dµ(x) converge weakly to an ele-

ment of H.
The rest proceeds as before. We consider the space Vφ(X,µ) = Vφ(X,µ)/Ker Tφ,

with the norm ‖[ξ]φ‖φ = ‖Tφξ‖, where, for ξ ∈ Vφ(X,µ), we have put [ξ]φ =

ξ + Ker Tφ. Then Vφ(X,µ) is a pre-Hilbert space for that norm.
Note that φ was called in [8] µ-independent whenever Ker Tφ = {0}. In that

case, of course, Vφ = Vφ.
Assume, in addition, that the corresponding bounded operator Sψ,φ is an el-

ement of GL(H). Then (ψ, φ) is a reproducing pair and Theorem 3.14 of [8]
remains true, that is,
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Theorem 3.1. If (ψ, φ) is a reproducing pair, the spaces Vφ(X,µ) and Vψ(X,µ)
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilinear
form

〈[ξ]φ|[η]ψ〉 =

∫
X

ξ(x)η(x) dµ(x), ∀ ξ ∈ Vφ(X,µ), η ∈ Vψ(X,µ). (3.5)

Example 3.2. To give a trivial example, consider the Schwartz rigged Hilbert
space S(R) ⊂ L2(R, dx) ⊂ S×(R), (X,µ) = (R, dx), ψx(t) = φx(t) = 1√

2π
eixt .

Then Cφf = f̂ , the Fourier transform, so that 〈f |φ(·)〉 ∈ L2(R, dx).
In this case

Ωψ,φ(f, g) =

∫
R
〈f, ψx〉〈φx, g〉 dx = 〈f̂ |ĝ〉 = 〈f |g〉, ∀f, g ∈ S(R),

and Vφ(R, dx) = L2(R, dx).

3.2. The general case. In the general case, we only assume that the form Ω is
jointly continuous on D×D, with no other regularity requirement. In that case,
the vector space Vφ(X,µ) must be defined differently. Let the topology of D be
given by a directed family P of seminorms. Given a weakly measurable function
φ, we denote again by Vφ(X,µ) the space of all measurable functions ξ : X → C
such that the integral

∫
X
ξ(x)〈φx, g〉 dµ(x) exists for every g ∈ D and defines a

continuous conjugate linear functional on D, namely, there exists c > 0 and a
seminorm p ∈ P such that∣∣∣∣∫

X

ξ(x)〈φx, g〉 dµ(x)

∣∣∣∣ ≤ c p(g).

This in turn determines a linear map Tφ : Vφ(X,µ) → D× by the following
relation

〈Tφξ, g〉 =

∫
X

ξ(x)〈φx, g〉 dµ(x), ∀ ξ ∈ Vφ(X,µ), g ∈ D. (3.6)

Next, we define as before the vector space

Vφ(X,µ) = Vφ(X,µ)/Ker Tφ,

and we put again [ξ]φ = ξ + Ker Tφ for ξ ∈ Vφ(X,µ).
Now we need to introduce a topology on Vφ(X,µ). We proceed as follows. Let

M be a bounded subset of D[t]. Then we define

p̂M([ξ]φ) := sup
g∈M

|〈Tφξ, g〉| . (3.7)

That is, we are defining the topology of Vφ(X,µ) by means of the strong dual
topology t× of D× which we recall is defined by the seminorms

‖F‖M = sup
g∈M

|〈F |g〉, F ∈ D×,

where M runs over the family of bounded subsets of D[t]. As said above, the
reflexivity of D entails that t× is equal to the Mackey topology τ(D×,D). More
precisely,
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Lemma 3.3. The map T̂φ : Vφ(X,µ) → D×, T̂φ[ξ]φ := Tφξ is a well-defined linear
map of Vφ(X,µ) into D× and, for every bounded subset M of D[t], one has

p̂M([ξ]φ) = ‖Tφξ‖M, ∀ξ ∈ Vφ(X,µ)

The latter equality obviously implies the continuity of Tφ.
Next we investigate the dual Vφ(X,µ)∗ of the space Vφ(X,µ), that is, the set

of continuous linear functionals on Vφ(X,µ). First, we have to choose a topology
for Vφ(X,µ)∗. As usual we take the strong dual topology. This is defined by the
family of seminorms

qR(F ) := sup
[ξ]φ∈R

|F ([ξ]φ)|,

where R runs over the bounded subsets of Vφ(X,µ).

Theorem 3.4. Assume that D[t] is a reflexive space and let φ be a weakly mea-
surable function. If F is a continuous linear functional on Vφ(X,µ), then there
exists a unique g ∈ D such that

F ([ξ]φ) =

∫
X

ξ(x)〈φx, g〉 dµ(x), ∀ ξ ∈ Vφ(X,µ) (3.8)

Moreover, every g ∈ H defines a continuous functional F on Vφ(X,µ) with
‖F‖φ∗ ≤ ‖g‖, by (3.8).

Proof. Let F ∈ Vφ(X,µ)∗. Then, there exists a bounded subset M of D[t] such
that

|F ([ξ]φ)| ≤ p̂M([ξ]φ) = ‖Tφξ‖M, ∀ ξ ∈ Vφ(X,µ).

Let Mφ := {Tφξ : ξ ∈ Vφ(X,µ)} = Ran T̂φ. Then Mφ is a vector subspace of D×.

Let F̃ be the functional defined on Mφ by

F̃ (Tφξ) := F ([ξ]φ), ξ ∈ Vφ(X,µ).

We notice that F̃ is well-defined. Indeed, if Tφξ = Tφξ
′, then ξ − ξ′ ∈ Ker Tφ.

Hence, [ξ]φ = [ξ′]φ and F ([ξ]φ) = F ([ξ′]φ)

Hence, F̃ is a continuous linear functional on Mφ which can be extended (by
the Hahn-Banach theorem) to a continuous linear functional on D×. Thus, in
virtue of the reflexivity of D, there exists a vector g ∈ D such that

F̃ (Tφξ) = 〈T̂φ[ξ]φ, g〉 = 〈Tφξ, g〉 =

∫
X

ξ(x)〈φx, g〉 dµ(x).

In conclusion,

F ([ξ]φ) =

∫
X

ξ(x)〈φx, g〉 dµ(x), ∀ ξ ∈ Vφ(X,µ).

Moreover, every g ∈ D obviously defines a continuous linear functional F on
Vφ(X,µ) by (3.8). In addition, if R is a bounded subset of Vφ(X,µ), we have

qR(F ) = sup
[ξ]φ∈R

|F ([ξ]φ)| = sup
[ξ]φ∈R

∣∣∣∣∫
X

ξ(x)〈φx, g〉 dµ(x)

∣∣∣∣
= sup

[ξ]φ∈R
|〈Tφξ, g〉| ≤ sup

[ξ]φ∈R
p̂M([ξ]φ),
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for any bounded subset M of D containing g. �

In the present context, the analysis operator Cφ is defined in the usual way,
given in (2.2). Then, particularizing the discussion of Theorem 3.4 to the func-
tional 〈Cφg, ·〉, one can interpret the analysis operator Cφ as a continuous op-
erator from D to Vφ(X,µ)∗. As in the case of frames or semi-frames, one may
characterize the synthesis operator in terms of the analysis operator.

Proposition 3.5. Let φ be weakly measurable, then T̂φ ⊆ C∗φ. If, in addition,

Vφ(X,µ) is reflexive, then T̂ ∗φ = Cφ. Moreover, φ is µ-total (i.e. KerCφ = {0})
if and only if Ran T̂φ is dense in D×.

Proof. As Cφ : D → Vφ(X,µ)∗ is a continuous operator, it has a continuous

adjoint C∗φ : Vφ(X,µ)∗∗ → H [20, Sec.IV.7.4]. Let C]
φ := C∗φ�Vφ(X,µ). Then

C]
φ = T̂φ since, for every f ∈ D, [ξ]φ ∈ Vφ(X,µ),

〈Cφf, [ξ]φ〉 =

∫
X

〈f, φx〉ξ(x) dµ(x) = 〈f, T̂φ[ξ]φ〉. (3.9)

If Vφ(X,µ) is reflexive, we have, of course, C]
φ = C∗φ = T̂φ.

If φ is not µ-total, then there exists f ∈ D, f 6= 0 such that (Cφf)(x) = 0 for

a.e. x ∈ X. Hence, f ∈ (Ran T̂φ)
⊥ := {f ∈ D : 〈F |f〉 = 0, ∀F ∈ Ran T̂φ} by

(3.9). Conversely, if φ is µ-total, as (Ran T̂φ)
⊥ = KerCφ = {0}, by the reflexivity

of D and D×, it follows that Ran T̂φ is dense in D×. �

In a way similar to what we have done above, we can define the space Vψ(X,µ),
its topology, the residue classes [η]ψ, the operator Tψ, etc, replacing φ by ψ. Then,
Vψ(X,µ) is a locally convex space.

Theorem 3.6. Under the condition (3.1), every bounded linear functional F on
Vφ(X,µ), i.e., F ∈ Vφ(X,µ)∗, can be represented as

F ([ξ]φ) =

∫
X

ξ(x)η(x) dµ(x), ∀ [ξ]φ ∈ Vφ(X,µ), (3.10)

with η ∈ Vψ(X,µ). The residue class [η]ψ ∈ Vψ(X,µ) is uniquely determined.

Proof. By Theorem 3.4, we have the representation

F (ξ) =

∫
X

ξ(x)〈φx, g〉 dµ(x).

It is easily seen that η(x) = 〈g, φx〉 ∈ Vψ(X,µ).
It remains to prove uniqueness. Suppose that

F (ξ) =

∫
X

ξ(x)η′(x) dµ(x).

Then ∫
X

ξ(x)(η′(x)− η(x)) dµ(x) = 0.

Now the function ξ(x) is arbitrary. Hence, taking in particular for ξ(x) the
functions 〈f, ψx〉, f ∈ D, we get [η]ψ = [η′]ψ. �
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The lesson of the previous statements is that the map

j : F ∈ Vφ(X,µ)∗ 7→ [η]ψ ∈ Vψ(X,µ) (3.11)

is well-defined and conjugate linear. On the other hand, j(F ) = j(F ′) implies
easily F = F ′. Therefore Vφ(X,µ)∗ can be identified with a closed subspace of

Vψ(X,µ) := {[ξ]ψ : ξ ∈ Vψ(X,µ)}. Working in the framework of Hilbert spaces,
as in Section 3.1, we proved in [8] that the spaces Vφ(X,µ)∗ and Vψ(X,µ) can
be identified. The conclusion was that if (ψ, φ) is a reproducing pair, the spaces
Vφ(X,µ) and Vψ(X,µ) are both Hilbert spaces, conjugate dual of each other with
respect to the sesquilinear form (3.5). And if φ and ψ are also µ-total, then the
converse statement holds true.

In the present situation, however, a result of this kind cannot be proved with
techniques similar to those adopted in [8], which are specific of Hilbert spaces. In
particular, the condition (b), Sψ,φ ∈ GL(H), which was essential in the proof of
[8, Lemma 3.11], is now missing, and it is not clear by what regularity condition
it should replaced.

However, assume that Ran Ĉψ,φ[‖·‖φ] = Vφ(X,µ)[‖ · ‖φ] and Ran Ĉφ,ψ[‖·‖ψ] =

Vψ(X,µ)[‖ · ‖ψ], where we have defined the operator Ĉφ,ψ : H → Vψ(X,µ) by

Ĉφ,ψf := [Cφf ]ψ and similarly for Ĉψ,φ. Then the proof of [8, Theorem 3.14]
works and the same result may be obtained. This is, however, a strong and
non-intuitive assumption.

4. Reproducing pairs and genuine pip-spaces

In this section, we will consider the case where our measurable functions take
their values in a genuine pip-space. However, for simplicity, we will restrict
ourselves to a lattice of Banach spaces (LBS) or a lattice of Hilbert spaces (LHS)
[4]. For the convenience of the reader, we have summarized in the Appendix the
basic notions concerning LBSs and LHSs.

Let (X,µ) be a locally compact, σ-compact measure space. Let VJ = {Vp, p ∈
J} be a LBS or a LHS of measurable functions with the property

ξ ∈ Vp, η ∈ Vp =⇒ ξη ∈ L1(X,µ) and

∣∣∣∣∫
X

ξ(x)η(x) dµ(x)

∣∣∣∣ ≤ ‖ξ‖p ‖η‖p.

(4.1)
Thus the central Hilbert space is H := Vo = L2(X,µ) and the spaces Vp, Vp
are dual of each other with respect to the L2 inner product. The partial inner
product, which extends that of L2(X,µ), is denoted again by 〈·|·〉. As usual we
put V =

∑
p∈J Vp and V # =

⋂
p∈J Vp. According to the general theory of pip-

spaces [4], V is the algebraic inductive limit of the Vp’s (see the Appendix). Thus
ψ : X → V means that ψ : X → Vp for some p ∈ J .

Example 4.1. A typical example is the lattice generated by the Lebesgue spaces
Lp(R, dx), 1 ≤ p ≤ ∞, with 1

p
+ 1

p
= 1 [4]. We shall discuss it in detail in Section

6.

We will envisage two approaches, depending whether the functions ψx them-
selves belong to V or rather the scalar functions Cψf .
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4.1. Vector-valued measurable functions ψx. This approach is the exact gen-
eralization of the one used in the RHS case. Let x ∈ X 7→ ψx, x ∈ X 7→ φx weakly
measurable functions from X into V , where the latter is equipped with the weak
topology σ(V, V #). More precisely, assume that ψ : X → Vp for some p ∈ J and
φ : X → Vq for some q ∈ J , both weakly measurable. In that case, the analysis
of Section 3.1 may be repeated verbatim, simply replacing D by V #, thus defin-
ing reproducing pairs. The problem with this approach is that, in fact, it does
not exploit the pip-space structure, only the RHS V # ⊂ H ⊂ V ! Clearly, this
approach yields no benefit, so we turn to a different strategy.

4.2. Scalar measurable functions Cψf . Let ψ, φ be weakly measurable func-
tions from X into H. In view of (2.10), (4.1) and the definition of V , we assume
that the following condition holds:

(p) ∃ p ∈ J such that Cψf = 〈f |ψ·〉 ∈ Vp and Cφg = 〈g|φ·〉 ∈ Vp,∀ f, g ∈ H.

We recall that Vp is the conjugate dual of Vp. In this case, then

Ωψ,φ(f, g) :=

∫
X

〈f |ψx〉〈φx|g〉 dµ(x), f, g ∈ H,

defines a sesquilinear form on H×H and one has

|Ωψ,φ(f, g)| ≤ ‖Cψf‖p ‖Cφg‖p , ∀ f, g ∈ H. (4.2)

If Ωψ,φ is bounded as a form on H×H (this is not automatic, see Corollary 4.4),
there exists a bounded operator Sψ,φ in H such that∫

X

〈f |ψx〉〈φx|g〉 dµ(x) = 〈Sψ,φf |g〉, ∀ f, g ∈ H. (4.3)

Then (ψ, φ) is a reproducing pair if Sψ,φ ∈ GL(H).

Let us suppose that the spaces Vp have the following property

(k) If ξn → ξ in Vp, then, for every compact subset K ⊂ X, there exists a
subsequence {ξKn } of {ξn} which converges to ξ almost everywhere in K.

We note that condition (k) is satisfied by Lp-spaces [19].
As seen before, Cψ : H → V , in general. This means, given f ∈ H, there exists

p ∈ J such that Cψf = 〈f |ψ·〉 ∈ Vp. We define

Dr(Cψ) = {f ∈ H : Cψf ∈ Vr}, r ∈ J.
In particular, Dr(Cψ) = H means Cψ(H) ⊂ Vr.

Proposition 4.2. Assume that (k) holds. Then Cψ : Dr(Cψ) → Vr is a closed
linear map.

Proof. Let fn → f in H and {Cψfn} be Cauchy in Vr. Since Vr is complete,
there exists ξ ∈ Vr such that ‖Cψfn − ξ‖r → 0. By (k), for every compact subset
K ⊂ X, there exists a subsequence {fKn } of {fn} such that (Cψf

K
n )(x) → ξ(x)

a.e. in K. On the other hand, since fn → f in H, we get

〈fn|ψx〉 → 〈f |ψx〉, ∀x ∈ X,
and the same holds true, of course, for {fKn }. From this we conclude that ξ(x) =
〈f |ψx〉 almost everywhere. Thus, f ∈ Dr(Cψ) and ξ = Cψf . �
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By a simple application of the closed graph theorem we obtain

Corollary 4.3. Assume that (k) holds. If for some r ∈ J , Cψ(H) ⊂ Vr, then
Cψ : H → Vr is continuous.

Combining Corollary 4.3 with (4.2), we get

Corollary 4.4. Assume that (k) holds. If Cψ(H) ⊂ Vp and Cφ(H) ⊂ Vp, the
form Ω is bounded on H×H, that is, |Ωψ,φ(f, g)| ≤ c ‖f‖ ‖g‖.

Hence, if condition (k) holds, Cψ(H) ⊂ Vr implies that Cψ : H → Vr is con-
tinuous. If we don’t know whether the condition holds, we will have to assume
explicitly that Cψ : H → Vr is continuous.

If Cψ : H → Vr continuously, then C∗ψ : Vr → H exists and it is continuous. By
definition, if ξ ∈ Vr,

〈Cψf |ξ〉 =

∫
X

〈f |ψx〉ξ(x) dµ(x), ∀ f ∈ H. (4.4)

The relation (4.4) then implies that∫
X

〈f |ψx〉ξ(x) dµ(x) = 〈f |
∫
X

ψxξ(x) dµ(x)〉, ∀ f ∈ H.

Thus,

C∗ψξ =

∫
X

ψxξ(x) dµ(x).

Of course, what we have said about Cψ holds in the very same way for Cφ.
Assume now that for some p ∈ J, Cψ : H → Vp and Cφ : H → Vp continuously.
Then, C∗φ : Vp → H so that C∗φCψ is a well-defined bounded operator in H. As
before, we have

C∗φη =

∫
X

η(x)φx dµ(x), ∀ η ∈ Vp.

Hence,

C∗φCψf =

∫
X

〈f |ψx〉φx dµ(x) = Sψ,φf, ∀ f ∈ H,

the last equality following also from (4.3) and Corollary 4.4. Of course, this
does not yet imply that Sψ,φ ∈ GL(H), thus we don’t know whether (ψ, φ) is a
reproducing pair.

Let us now return to the pre-Hilbert space Vφ(X,µ). First, the defining relation
(3.3) of [8] must be written as

ξ ∈ Vφ(X,µ) ⇔
∣∣∣∣∫
X

ξ(x)(Cφg)(x) dµ(x)

∣∣∣∣ ≤ c ‖g‖ , ∀ g ∈ H.

Since Cφ : H → Vp, the integral is well defined for all ξ ∈ Vp. This means,
the inner product on the r.h.s. is in fact the partial inner product of V , which
coincides with the L2 inner product whenever the latter makes sense. We may
rewrite the r.h.s. as

|〈ξ|Cφg〉| ≤ c ‖g‖ ,∀ g ∈ H, ξ ∈ Vp.
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where 〈·|·〉 denotes the partial inner product. Next, by (4.1), one has, for ξ ∈
Vp, g ∈ H,

|〈ξ|Cφg〉| ≤ ‖ξ‖p ‖Cφg‖p ≤ c ‖ξ‖p ‖g‖ ,
where the last inequality follows from Corollary 4.3 or the assumption of conti-
nuity of Cφ. Hence indeed ξ ∈ Vφ(X,µ), so that Vp ⊂ Vφ(X,µ).

As for the adjoint operator, we have C∗φ : Vp → H. Then we may write, for
ξ ∈ Vp, g ∈ H, 〈ξ|Cφg〉 = 〈Tφξ|g〉, thus C∗φ is the restriction from Vφ(X,µ) to Vp
of the operator Tφ : Vφ → H introduced in Section 2, which reads now as

〈Tφξ|g〉 =

∫
X

ξ(x)〈φx|g〉 dµ(x), ∀ ξ ∈ Vp, g ∈ H. (4.5)

Thus C∗φ ⊂ Tφ.
Next, the construction proceeds as in Section 3.

The space Vφ(X,µ) = Vφ(X,µ)/Ker Tφ, with the norm ‖[ξ]φ‖φ = ‖Tφξ‖, is a

pre-Hilbert space. Then Theorem 3.14 and the other results from Section 3 of [8]
remain true. In particular, we have:

Theorem 4.5. If (ψ, φ) is a reproducing pair, the spaces Vφ(X,µ) and Vψ(X,µ)
are both Hilbert spaces, conjugate dual of each other with respect to the sesquilinear
form (2.9), namely,

〈〈ξ|η〉〉
µ

:=

∫
X

ξ(x)η(x) dµ(x).

Note the form (2.9) coincides with the inner product of L2(X,µ) whenever the
latter makes sense.

Let (ψ, φ) is a reproducing pair. Assume again that Cφ : H → Vp continuously,

which me may write Ĉφ,ψ : H → Vp/Ker Tψ, where Ĉφ,ψ : H → Vψ(X,µ) is the

operator defined by Ĉφ,ψf := [Cφf ]ψ, already introduced at the end of Section

3.2. In addition, by [8, Theorem 3.13], one has Ran Ĉψ,φ[‖·‖φ] = Vφ(X,µ)[‖ · ‖φ]
and Ran Ĉφ,ψ[‖·‖ψ] = Vψ(X,µ)[‖ · ‖ψ].

Putting everything together, we get

Corollary 4.6. Let (ψ, φ) be a reproducing pair. Then, if Cψ : H → Vp and
Cφ : H → Vp continuously, one has

Ĉφ,ψ : H → Vp/Ker Tψ = Vψ(X,µ) ' Vφ(X,µ)∗, (4.6)

Ĉψ,φ : H → Vp/Ker Tφ = Vφ(X,µ) ' Vψ(X,µ)∗. (4.7)

In these relations, the equality sign means an isomorphism of vector spaces,
whereas ' denotes an isomorphism of Hilbert spaces.

Proof. On one hand, we have Ran Ĉφ,ψ = Vψ(X,µ). On the other hand, under
the assumption Cφ(H) ⊂ Vp, one has Vp ⊂ Vψ(X,µ), hence Vp/Ker Tψ = {ξ +
Ker Tψ, ξ ∈ Vp} ⊂ Vψ(X,µ). Thus we get Vψ(X,µ) = Vp/Ker Tψ as vector spaces.
Similarly Vφ(X,µ) = Vp/Ker Tφ. �



138 J.-P. ANTOINE, C. TRAPANI

Notice that, in Condition (p), the index p cannot depend on f, g. We need some
uniformity, in the form Cψ(H) ⊂ Vp and Cφ(H) ⊂ Vp . This is fully in line with
the philosophy of pip-spaces: the building blocks are the (assaying) subspaces Vp,
not individual vectors.

5. The case of a Hilbert triplet or a Hilbert scale

5.1. The general construction. We have derived in the previous section the
relations Vp ⊂ Vφ(X,µ), Vp ⊂ Vψ(X,µ), and their equivalent ones (4.6), (4.7).
Then, since Vψ(X,µ) and Vφ(X,µ) are both Hilbert spaces, it seems natural to
take for Vp, Vp Hilbert spaces as well, that is, take for V a LHS. The simplest case
is then a Hilbert chain, for instance, the scale (A.3) {Hk, k ∈ Z} built on the
powers of a self-adjoint operator A > I . This situation is quite interesting, since
in that case one may get results about spectral properties of symmetric operators
(in the sense of pip-space operators) [9].

Thus, let (ψ, φ) be a reproducing pair. For simplicity, we assume that Sψ,φ = I,
that is, ψ, φ are dual to each other.

If ψ and φ are both frames, there is nothing to say, since then Cψ(H), Cφ(H) ⊂
L2(X,µ) = Ho, so that there is no need for a Hilbert scale. Thus we assume
that ψ is an upper semi-frame and φ is a lower semi-frame, dual to each other. It
follows that Cψ(H) ⊂ L2(X,µ). Hence Condition (p) becomes: There is an index
k ≥ 1 such that Cψ : H → Hk and Cφ : H → Hk continuously, thus Vp ≡ Hk

and Vp ≡ Hk. This means we are working in the Hilbert triplet

Vp ≡ Hk ⊂ Ho = L2(X,µ) ⊂ Hk ≡ Vp . (5.1)

Next, according to Corollary 4.6, we have Vψ(X,µ) = Hk/Ker Tψ and Vφ(X,µ) =
Hk/Ker Tφ, as vector spaces.

In addition, since φ is a lower semi-frame, [6, Lemma 2.1] tells us that Cφ has
closed range in L2(X,µ) and is injective. However its domain

D(Cφ) := {f ∈ H :

∫
X

|〈f |φx〉|2 dν(x) <∞}

need not be dense, it could be {0}. Thus Cφ maps its domain D(Cφ) onto a
closed subspace of L2(X,µ), possibly trivial, and the whole of H into the larger
space Hk.

5.2. Examples. As for concrete examples of such Hilbert scales, we might men-
tion two. First the Sobolev spaces Hk(R), k ∈ Z, in H0 = L2(R, dx), which is the

scale generated by the powers of the self-adjoint operator A1/2, where A := 1− d2

dx2 .
The other one corresponds to the quantum harmonic oscillator, with Hamiltonian
Aosc := x2 − d2

dx2 . The spectrum of Aosc is {2n + 1, n = 0, 1, 2, . . .} and it gets
diagonalized on the basis of Hermite functions. It follows that A−1

osc, which maps
every Hk onto Hk−1, is a Hilbert-Schmidt operator. Therefore, the end space of
the scale D∞(Aosc) :=

⋂
kHk, which is simply Schwartz’ space S of C∞ functions

of fast decrease, is a nuclear space.
Actually one may give an explicit example, using a Sobolev-type scale. Let HK

be a reproducing kernel Hilbert space (RKHS) of (nice) functions on a measure
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space (X,µ), with kernel function kx, x ∈ X, that is, f(x) = 〈f |kx〉K , ∀f ∈ HK .
The corresponding reproducing kernel is K(x, y) = ky(x) = 〈ky|kx〉K . Choose
the weight function m(x) > 1, the analog of the weight (1 + |x|2) considered
in the Sobolev case. Define the Hilbert scale Hk, k ∈ Z, determined by the
multiplication operator Af(x) = m(x)f(x), ∀x ∈ X. Hence, for each l ≥ 1,

Hl ⊂ H0 ≡ HK ⊂ Hl .

Then, for some n ≥ 1, define the measurable functions φx = kxm
n(x), ψx =

kxm
−n(x), so that Cψ : HK → Hn, Cφ : HK → Hn continuously, and they are

dual of each other. One has indeed 〈φx|g〉K = 〈kxmn(x)|g〉K = 〈kx|g mn(x)〉K =

g(x)mn(x) ∈ Hn and 〈ψx|g〉K = g(x)m−n(x) ∈ Hn, which implies duality. Thus
(ψ, φ) is a reproducing pair with Sψ,φ = I, where ψ is an upper semi-frame and
φ a lower semi-frame.

In this case, one can compute the operators Tψ, Tφ explicitly. The definition
(4.5) reads as, for all ξ ∈ Hn, g ∈ HK ,

〈Tφξ|g〉K =

∫
X

ξ(x)〈φx|g〉K dµ(x), =

∫
X

ξ(x) g(x)mn(x) dµ,

that is, (Tφξ)(x) = ξ(x)mn(x) or Tφξ = ξ mn. However, since the weight m(x) >
1 is invertible, g mn runs over the whole of Hn whenever g runs over HK . Hence
ξ ∈ Ker Tφ ⊂ Hn means that 〈Tφξ|g〉K = 0, ∀g ∈ HK , which implies ξ = 0,
since the duality between Hn and Hn is separating. The same reasoning yields
Ker Tψ = {0}. Therefore Vφ(X,µ) = Hn and Vψ(X,µ) = Hn.

A more general situation may be derived from the discrete example of Section
6.1.3 of [8]. Take a sequence of weights m := {|mn|}n∈N ∈ c0,mn 6= 0, and
consider the space `2m with norm ‖ξ‖`2m :=

∑
n∈N |mnξn|2. Then we have the

following triplet replacing (5.1)

`21/m ⊂ `2 ⊂ `2m. (5.2)

Next, for each n ∈ N, define ψn = mnθn, where θ is a frame or an orthonormal
basis in `2. Then ψ is an upper semi-frame. Moreover, φ := {(1/mn)θn}n∈N
is a lower semi-frame, dual to ψ, thus (ψ, φ) is a reproducing pair. Hence, by
[8, Theorem 3.13], Vψ ' RanCφ = M1/m(Vθ(N)) = `2m and Vφ ' RanCψ =
Mm(Vθ(N)) = `21/m (here we take for granted that Ker Tψ = Ker Tφ = {0}).

For making contact with the situation of (5.1), consider in `2 the diagonal
operator A := diag[n], n ∈ N (the number operator), that is (Aξ)n = n ξn, n ∈ N,
which is obviously self-adjoint and larger than 1. Then Hk = D(Ak) with norm
‖ξ‖k =

∥∥Akξ∥∥ ≡ `2
r(k) , where (r(k))n = nk (note that 1/r(k) ∈ c0). Hence we have

Hk = `2r(k) ⊂ Ho = `2 ⊂ Hk = `21/r(k) , (5.3)

where (1/r(k))n = n−k. In addition, as in the continuous case discussed above,
the end space of the scale, D∞(A) :=

⋂
kHk, is simply Schwartz’ space s of

fast decreasing sequences, with dual D∞(A) :=
⋃
kHk = s′, the space of slowly

increasing sequences. Here too, this construction shows that the space s is nuclear,
since every embedding A−1 : Hk+1 → Hk is a Hilbert-Schmidt operator.



140 J.-P. ANTOINE, C. TRAPANI

However, the construction described above yields a much more general family
of examples, since the weight sequences m are not ordered.

6. The case of Lp spaces

Following the suggestion made at the end of Section 2, we present now several
possibilities of taking RanCψ in the context of the Lebesgue spaces Lp(R, dx).

As it is well-known, these spaces don’t form a chain, since two of them are
never comparable. We have only

Lp ∩ Lq ⊂ Ls, for all s such that p < s < q.

Take the lattice J generated by I = {Lp(R, dx), 1 ≤ p ≤ ∞}, with lattice
operations [4, Sec.4.1.2]:

• Lp ∧ Lq = Lp ∩ Lq is a Banach space for the projective norm ‖f‖p∧q =
‖f‖p + ‖f‖q

• Lp ∨ Lq = Lp + Lq is a Banach space for the inductive norm
‖f‖p∨q = inff=g+h {‖g‖p + ‖h‖q; g ∈ Lp, h ∈ Lq}

• For 1 < p, q < ∞, both spaces Lp ∧ Lq and Lp ∨ Lq are reflexive and
(Lp ∧ Lq)× = Lp ∨ Lq.

Moreover, no additional spaces are obtained by iterating the lattice operations to
any finite order. Thus we obtain an involutive lattice and a LBS, denoted by V

J
.

It is convenient to introduce a unified notation:

L(p,q) =

{
Lp ∧ Lq = Lp ∩ Lq, if p ≥ q,
Lp ∨ Lq = Lp + Lq, if p ≤ q.

Following [4, Sec.4.1.2], we represent the space L(p,q) by the point (1/p, 1/q) of
the unit square J = [0, 1]× [0, 1]. In this representation, the spaces Lp are on the
main diagonal, intersections Lp∩Lq above it and sums Lp+Lq below, the duality
is [L(p,q)]× = L(p,q), that is, symmetry with respect to L2. Hence, L(p,q) ⊂ L(p′,q′)

if (1/p, 1/q) is on the left and/or above (1/p′, 1/q′) The extreme spaces are

V #

J
= L(∞,1) = L∞ ∩ L1, and V

J
= L(1,∞) = L1 + L∞.

For a full picture, see [4, Fig.4.1].
There are three possibilities for using the Lp lattice for controlling reproducing

pairs
(1) Exploit the full lattice J , that is, find (p, q) such that, ∀f, g ∈ H, Cψf #Cφg

in the pip-space V
J
, that is, Cψf ∈ L(p,q) and Cφg ∈ L(p,q).

(2) Select in V
J

a self-dual Banach chain V
I
, centered around L2, symbolically.

. . . L(s) ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L(s) . . . , (6.1)

such that Cψf ∈ L(s) and Cφg ∈ L(s) (or vice-versa). Here are three examples of
such Banach chains.

• The diagonal chain : q = p

L∞ ∩ L1 ⊂ . . . ⊂ Lq ∩ Lq ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lq + Lq = (Lq ∩ Lq)× ⊂ . . . ⊂ L1 + L∞.

The space L1 + L∞ has been considered by Gould [13].
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Figure 1. (i) The pair L(s), L(s) for s in the second quadrant; (ii)

The pair L(t), L(t) for t in the first quadrant.

• The horizontal chain q = 2 :

L∞ ∩ L2 ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L1 + L2.

• The vertical chain p = 2 :

L2 ∩ L1 ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L2 + L∞.

All three chains are presented in Figure 1. In this case, the full chain belongs
to the second and fourth quadrants (top left and bottom right). A typical point
is then s = (p, q) with, 2 ≤ p ≤ ∞, 1 ≤ q ≤ 2, so that one has the situation
depicted in (6.1), that is, the spaces L(s), L(s) to which Cψf , resp. Cφg, belong,
are necessarily comparable to each other and to L2. In particular, one of them is
necessarily contained in L2. Note the extreme spaces of that type are L2, L∞ ∩
L2, L∞ ∩ L1 and L2 ∩ L1 (see Figure 1).

(3) Choose a dual pair in the first and third quadrant (top right, bottom left).

A typical point is then t = (p′, q′), with 1 < p′, q′ < 2, so that the spaces L(t), L(t)

are never comparable to each other, nor to L2.
Let us now add the boundedness condition mentioned at the end of Section 2,

supx∈X ‖ψx‖H ≤ c and supx∈X ‖φx‖H ≤ c′ for some c, c′ > 0. Then Cψf(x) =
〈f |ψx〉 ∈ L∞(X, dµ) and Cφf(x) = 〈f |φx〉 ∈ L∞(X, dµ). Therefore, the third
case reduces to the second one, since we have now (in the situation of Figure 1).

L∞ ∩ L(t) ⊂ L∞ ∩ L2 ⊂ L∞ ∩ L(t).
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Following the pattern of Hilbert scales, we choose a (Gel’fand) triplet of Banach
spaces. One could have, for instance, a triplet of reflexive Banach spaces such as

L(s) ⊂ . . . ⊂ L2 ⊂ . . . ⊂ L(s), (6.2)

corresponding to a point s inside of the second quadrant, as shown in Figure 1.
In this case, according to (4.6) and (4.7), Vψ = L(s)/Ker Tψ and Vφ = L(s)/Ker Tφ.

On the contrary, if we choose a point t in the second quadrant, case (3) above,
it seems that no triplet arises. However, if (ψ, φ) is a nontrivial reproducing pair,
with Sψ,φ = I, that is, ψ, φ are dual to each other, one of them, say ψ, is an upper
semi-frame and then necessarily φ is a lower semi-frame [6, Prop.2.6]. Therefore
Cψ(H) ⊂ L2(X,µ), that is, case (3) cannot be realized.

Inserting the boundedness condition, we get a triplet where the extreme spaces
are no longer reflexive, such as

L∞ ∩ L(t) ⊂ L∞ ∩ L2 ⊂ L∞ ∩ L(t),

and then Vψ = (L∞ ∩ L(t))/Ker Tψ and Vφ = (L∞ ∩ L(t))/Ker Tφ.
In conclusion, the only acceptable solution is the triplet (6.2), with s strictly

inside of the second quadrant, that is, s = (p, q) with, 2 ≤ p <∞, 1 < q ≤ 2.
A word of explanation is in order here, concerning the relations Vψ = L(s)/Ker Tψ

and Vφ = L(s)/Ker Tφ. On the l.h.s., L(s) and L(s) are reflexive Banach spaces,
with their usual norm, and so are the quotients by Tψ, resp. Tφ. On the other
hand, Vψ(X,µ)[‖ · ‖ψ] and Vφ(X,µ)[‖ · ‖φ] are Hilbert spaces. However, there
is no contradiction, since the equality sign = denotes an isomorphism of vector
spaces only, without reference to any topology. Moreover, the two norms, Banach
and Hilbert, cannot be comparable, unless they are equivalent [16, Coroll. 1.6.8],
which is impossible in the case of Lp, p 6= 2. The same is true for any LBS where
the spaces Vp are not Hilbert spaces.

Although we don’t have an explicit example of a reproducing pair, we indicate
a possible construction towards one. Let θ(1) : R → L2 be a measurable function

such that 〈h|θ(1)
x 〉 ∈ Lq, ∀h ∈ L2, 1 < q < 2 and let θ(2) : R → L2 be a measurable

function such that 〈h|θ(2)
x 〉 ∈ Lq, ∀h ∈ L2. Define ψx := min(θ

(1)
x , θ

(2)
x ) ≡ θ

(1)
x ∧θ(2)

x

and φx := max(θ
(1)
x , θ

(2)
x ) ≡ θ

(1)
x ∨ θ(2)

x . Then we have

(Cψh)(x) = 〈h|ψx〉 ∈ Lq ∩ Lq, ∀h ∈ L2

(Cφh)(x) = 〈h|φx〉 ∈ Lq + Lq, ∀h ∈ L2

and we have indeed Lq ∩Lq ⊂ L2 ⊂ Lq +Lq. It remains to guarantee that ψ and
φ are dual to each other, that is,∫

X

〈f |ψx〉〈φx|g〉 dµ(x) =

∫
X

Cψf(x) Cφg(x) dµ(x) = 〈f |g〉, ∀ f, g ∈ L2.

7. Outcome

We have seen in [8] that the notion of reproducing pair is quite rich. It gener-
ates a whole mathematical structure, which ultimately leads to a pair of Hilbert
spaces, conjugate dual to each other with respect to the L2(X,µ) inner product.
This suggests that one should make more precise the best assumptions on the
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measurable functions or, more precisely, on the nature of the range of the analy-
sis operators Cψ, Cφ. This in turn suggests to analyze the whole structure in the
language of pip-spaces, which is the topic of the present paper. In particular, a
natural choice is a scale, or simply a triplet, of Hilbert spaces, the two extreme
spaces being conjugate duals of each other with respect to the L2(X,µ) inner
product. Another possibility consists of exploiting the lattice of all Lp(R, dx)
spaces, or a subset thereof, in particular a (Gel’fand) triplet of Banach spaces.
Some examples have been described above, but clearly more work along these
lines is in order.

Appendix A. Lattices of Banach or Hilbert spaces and operators
on them

A.1. Lattices of Banach or Hilbert spaces. For the convenience of the reader,
we summarize in this Appendix the basic facts concerning pip-spaces and oper-
ators on them. However, we will restrict the discussion to the simpler case of
a lattice of Banach (LBS) or Hilbert spaces (LHS). Further information may be
found in our monograph [4] or our review paper [5].

Let thus J = {Vp, p ∈ I} be a family of Hilbert spaces or reflexive Banach
spaces, partially ordered by inclusion. Then I generates an involutive lattice J ,
indexed by J , through the operations (p, q, r ∈ I):

. involution: Vr ↔ Vr = V ×r , the conjugate dual of Vr

. infimum: Vp∧q := Vp ∧ Vq = Vp ∩ Vq

. supremum: Vp∨q := Vp ∨ Vq = Vp + Vq.

It turns out that both Vp∧q and Vp∨q are Hilbert spaces, resp. reflexive Banach
spaces, under appropriate norms (the so-called projective, resp. inductive norms).
Assume that the following conditions are satisfied:

(i) I contains a unique self-dual, Hilbert subspace Vo = Vo.
(ii) for every Vr ∈ I, the norm ‖ · ‖r on Vr = V ×r is the conjugate of the norm

‖ · ‖r on Vr.

In addition to the family J = {Vr, r ∈ J}, it is convenient to consider the two
spaces V # and V defined as

V =
∑
q∈I

Vq, V # =
⋂
q∈I

Vq. (A.1)

These two spaces themselves usually do not belong to I. According to the general
theory of pip-spaces [4], V is the algebraic inductive limit of the Vp’s and V # is
the projective limit of the Vp’s .

We say that two vectors f, g ∈ V are compatible if there exists r ∈ J such that f ∈
Vr, g ∈ Vr . Then a partial inner product on V is a Hermitian form 〈·|·〉 defined
exactly on compatible pairs of vectors. In particular, the partial inner product
〈·|·〉 coincides with the inner product of Vo on the latter. A partial inner prod-
uct space (pip-space) is a vector space V equipped with a partial inner product.
Clearly LBSs and LHSs are particular cases of pip-spaces.

From now on, we will assume that our pip-space (V, 〈·|·〉) is nondegenerate, that
is, 〈f |g〉 = 0 for all f ∈ V # implies g = 0. As a consequence, (V #, V ) and every
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couple (Vr, Vr), r ∈ J, are a dual pair in the sense of topological vector spaces
[15]. In particular, the original norm topology on Vr coincides with its Mackey
topology τ(Vr, Vr), so that indeed its conjugate dual is (Vr)

× = Vr, ∀ r ∈ J . Then,
r < s implies Vr ⊂ Vs, and the embedding operator Esr : Vr → Vs is continuous
and has dense range. In particular, V # is dense in every Vr. In the sequel, we
also assume the partial inner product to be positive definite, 〈f |f〉 > 0 whenever
f 6= 0.

A standard, albeit trivial, example is that of a Rigged Hilbert space (RHS)
Φ ⊂ H ⊂ Φ# (it is trivial because the lattice I contains only three elements).

Familiar concrete examples of pip-spaces are sequence spaces, with V = ω
the space of all complex sequences x = (xn), and spaces of locally integrable
functions with V = L1

loc(R, dx), the space of Lebesgue measurable functions,
integrable over compact subsets.

Among LBSs, the simplest example is that of a chain of reflexive Banach spaces.
The prototype is the chain I = {Lp := Lp([0, 1]; dx), 1 < p < ∞} of Lebesgue
spaces over the interval [0, 1].

L∞ ⊂ . . . ⊂ Lq ⊂ Lr ⊂ . . . ⊂ L2 ⊂ . . . ⊂ Lr ⊂ Lq ⊂ . . . ⊂ L1, (A.2)

where 1 < q < r < 2 (of course, L∞ and L1 are not reflexive). Here Lq and Lq

are dual to each other (1/q + 1/q = 1), and similarly Lr, Lr (1/r + 1/r = 1).
As for a LHS, the simplest example is the Hilbert scale generated by a self-

adjoint operator A > I in a Hilbert spaceHo. Let Hn be D(An), the domain
of An, equipped with the graph norm ‖f‖n = ‖Anf‖, f ∈ D(An), for n ∈ N or
n ∈ R+, and Hn := H−n = H×

n (conjugate dual):

D∞(A) :=
⋂
n

Hn ⊂ . . . ⊂ H2 ⊂ H1 ⊂ H0 ⊂ H1 ⊂ H2 . . . ⊂ D∞(A) :=
⋃
n

Hn.

(A.3)
Note that here the index n may be integer or real, the link between the two cases
being established by the spectral theorem for self-adjoint operators. Here again
the inner product of H0 extends to each pair Hn,H−n, but on D∞(A) it yields
only a partial inner product. A standard example is the scale of Sobolev spaces
Hs(R), s ∈ Z, in H0 = L2(R, dx).

A.2. Operators on LBSs and LHSs. Let VJ be a LHS or a LBS. Then an
operator on VJ is a map from a subset D(A) ⊂ V into V , such that

(i) D(A) =
⋃
q∈d(A) Vq, where d(A) is a nonempty subset of J ;

(ii) For every q ∈ d(A), there exists p ∈ J such that the restriction of A to Vq
is a continuous linear map into Vp (we denote this restriction by Apq);

(iii) A has no proper extension satisfying (i) and (ii).

We denote by Op(VJ , ) the set of all operators on VJ . The continuous linear
operator Apq : Vq → Vp is called a representative of A. The properties of A are
conveniently described by the set j(A) of all pairs (q, p) ∈ J×J such that A maps
Vq continuously into Vp Thus the operator A may be identified with the collection
of its representatives,

A ' {Apq : Vq → Vp : (q, p) ∈ j(A)}. (A.4)
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It is important to notice that an operator is uniquely determined by any of its
representatives, in virtue of Property (iii): there are no extensions for pip-space
operators.

We will also need the following sets:
d(A) = {q ∈ J : there is a p such that Apq exists},
i(A) = {p ∈ J : there is a q such that Apq exists}.

The following properties are immediate:

. d(A) is an initial subset of J : if q ∈ d(A) and q′ < q, then q′ ∈ d(A), and
Apq′ = ApqEqq′ , where Eqq′ is a representative of the unit operator.

. i(A) is a final subset of J : if p ∈ i(A) and p′ > p, then p′ ∈ i(A) and
Ap′q = Ep′pApq.

Although an operator may be identified with a separately continuous sesquilin-
ear form on V #×V #, or a conjugate linear continuous map V # into V , it is more
useful to keep also the algebraic operations on operators, namely:

(i) Adjoint: every A ∈ Op(VJ) has a unique adjoint A× ∈ OpVJ), defined
by

〈A×y|x〉 = 〈y|Ax〉, forx ∈ Vq, q ∈ d(A) and y ∈ Vp, p ∈ i(A), (A.5)

that is, (A×)qp = (Apq)
′, where (Apq)

′ : Vp → Vq is the adjoint map of Apq.
Furthermore, one has A×× = A, for every A ∈ Op(VJ): no extension is
allowed, by the maximality condition (iii) of the definition.

(ii) Partial multiplication: Let A,B ∈ Op(VJ). We say that the product BA
is defined if and only if there is a r ∈ i(A) ∩ d(B), that is, if and only if
there is a continuous factorization through some Vr:

Vq
A→ Vr

B→ Vp, i.e., (BA)pq = BprArq, for some q ∈ d(A), p ∈ i(B).
(A.6)

Of particular interest are symmetric operators, defined as those operators satisfy-
ing the relation A× = A, since these are the ones that could generate self-adjoint
operators in the central Hilbert space, for instance by the celebrated KLMN
theorem, suitably generalized to the pip-space environment [4, Section 3.3].
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829–856.

2. S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Continuous frames in Hilbert space, Annals of
Phys. 222 (1993), 1–37.



146 J.-P. ANTOINE, C. TRAPANI

3. J.-P. Antoine, A. Inoue, and C. Trapani, Partial ∗-algebras and their operator realizations,
Mathematics and Its Applications, vol. 553, Kluwer, Dordrecht, NL, 2002.

4. J.-P. Antoine and C. Trapani , Partial inner product spaces: theory and applications, Lec-
ture Notes in Mathematics, vol. 1986, Springer-Verlag, Berlin, 2009.

5. J.-P. Antoine and C. Trapani, The partial inner product space method: A quick overview,
Adv. Math. Phys. 2010, Art. ID 457635, 37 pp.; Erratum, Adv. Math. Phys. 2011, Art. ID
272703, 1 p.

6. J.-P. Antoine and P. Balazs, Frames and semi-frames, J. Phys. A: Math. Theor. 44 (2011),
205–201; Corrigendum, ibid. 44 (2011), 479–501.

7. J.-P. Antoine and P. Balazs, Frames, semi-frames, and Hilbert scales, Numer. Funct. Anal.
Optimiz. 33 (2012), 736–769.

8. J.-P. Antoine, M. Speckbacher and C. Trapani, Reproducing pairs of measurable functions,
Acta Appl. Math. (2017), DOI 10.1007/s10440-017-0095-4.

9. J.-P. Antoine and C. Trapani, Operators on partial inner product spaces: Towards a spectral
analysis, Mediterr. J. Math. 13 (2016), 323–351

10. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, MA, 2003
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