

Adv. Oper. Theory 1 (2016), no. 2, 160–163 http://doi.org/10.22034/aot.1609.1004 ISSN: 2538-225X (electronic) http://aot-math.org

NON-ISOMORPHIC C*-ALGEBRAS WITH ISOMORPHIC UNITARY GROUPS

AHMED AL-RAWASHDEH

Communicated by E. Katsoulis

ABSTRACT. Dye, [Ann. of Math. (2) 61 (1955), 73–89] proved that the discrete unitary group in a factor determines the algebraic type of the factor. Afterwards, for a large class of simple unital C^* -algebras, Al-Rawashdeh, Booth and Giordano [J. Funct. Anal. 262 (2012), 4711–4730] proved that the algebras are *-isomorphic if and only if their unitary groups are isomorphic as abstract groups. In this paper, we give a counterexample in the non-simple case. Indeed, we give two C^* -algebras with isomorphic unitary groups but the algebras themselves are not *-isomorphic.

1. INTRODUCTION

In [4], H. Dye proved that two von Neumann factors not of type I_{2n} are isomorphic (via a linear or a conjugate linear *-isomorphism) if and only if their unitary groups are isomorphic as abstract groups. Indeed, he proved the following main theorem:

Theorem 1.1 ([4], Theorem 2). Let M and N be factors not of type I_{2n} , and let φ be a group isomorphism between their unitary groups $\mathcal{U}(M)$ and $\mathcal{U}(N)$. Then there exists a linear (or conjugate linear) *-isomorphism ψ of M onto N which implements φ in the following sense: for some (possible discontinuous) character λ of $\mathcal{U}(M)$ and all $u \in \mathcal{U}(M)$, $\varphi(u) = \lambda(u)\psi(u)$.

Date: Received: Sep. 20, 2016; Accepted: Dec. 4, 2016.

Copyright 2016 by the Tusi Mathematical Research Group.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L05; Secondary 46L35.

Key words and phrases. C*-algebra, unitary group, *-isomorphism.

In [[3], Theorem 1], M. Broise shows that the unitary group of a factor not of type I_n has no non-trivial characters. Therefore Dye's result can be rewritten as follows:

Theorem 1.2. If N and M are two von Neumann factors not of type $I_n(n < \infty)$, then any isomorphism between their unitary groups is implemented by a linear or a conjugate linear *-isomorphism between the factors.

Then extending the above result to some cases of simple, unital C^* -algebras, the author in [1] proved that if φ is a continuous automorphism of the unitary group of a UHF-algebra, then φ is implemented by linear or conjugate linear *-isomorphism.

In [2], Al-Rawashdeh, Booth and Giordano generalized Dye's approach for a large class of simple, unital C^* -algebras. An isomorphism of the unitary groups, induces an isomorphism of their K-theory. In particular, if A and B are both simple unital AF-algebras, both irrational rotation algebras, or both Cuntz algebras and their unitary groups are isomorphic (as abstract groups), then A and B are isomorphic as C^* -algebras. In general, they proved the following main theorems:

Theorem 1.3 ([2], Theorem 4.10). Let A and B be two simple, unital AH-algebras of slow dimension growth and of real rank zero. Then A and B are isomorphic if and only if their unitary groups are topologically isomorphic.

Theorem 1.4 ([2], Corollary 5.7). Let A and B be two unital Kirchberg algebras belonging to the UCT-class \mathcal{N} . Then A and B are isomorphic if and only if their unitary groups are isomorphic (as abstract groups).

In this paper, we give an example of two C^* -algebras whose unitary groups are isomorphic, however the algebras themselves are not *-isomorphic. The counterexample is given in the non-simple C^* -algebra C(X), where X is a compact set. Recall that the unitary group of C(X) is the group of all continuous functions from X to the unit circle \mathbb{T} , which is denoted by $C(X, \mathbb{T})$.

2. The Counterexample

Let us recall Milutin's theorem which is stated as follows:

Theorem 2.1 (Milutin). [[7], p.494] If X and Y are two compact, metrizable spaces which are non-countable, then $C(X, \mathbb{R}) \simeq C(Y, \mathbb{R})$ as Banach spaces.

Let us recall the following results of V. Pestov in [6]. Let ζ denote the group homomorphism from $C(X, \mathbb{T})$ to the cohomotopy group $\pi^1(X)$ assigning to every mapping its homotopy class. Denote by $C^0(X, \mathbb{T})$ the kernel of ζ . Let X be a topological space and θ be the map of the linear space $C(X, \mathbb{R})$ to the group $C(X, \mathbb{T})$, given by $\theta(f) = \exp(2\pi i f)$. The image of $C(X, \mathbb{R})$ under θ is contained in $C^0(X, \mathbb{T})$ and θ is an additive group homomorphism. If $x_0 \in X$, then let

$$C(X, x_0, \mathbb{R}) = \{ f \in C(X, \mathbb{R}); f(x_0) = 0 \},\$$

$$C(X, x_0, \mathbb{T}) = \{ f \in C(X, \mathbb{T}); f(x_0) = 1 \},\$$

$$C^0(X, x_0, \mathbb{T}) = \{ f \in C^0(X, \mathbb{T}); f(x_0) = 1 \}.\$$

Obviously, θ maps $C(X, x_0, \mathbb{R})$ to $C^0(X, x_0, \mathbb{T})$. Denote by θ_0 the restriction of θ to $C(X, x_0, \mathbb{R})$.

Proposition 2.2 ([6], Pro.13). Let X be a path-connected space and let $x_0 \in X$. Then the map $\theta_0 : C(X, x_0, \mathbb{R}) \to C^0(X, x_0, \mathbb{T})$ is an algebraic isomorphism.

For every element $x_0 \in X$, the groups $C^0(X, \mathbb{T})$ and $C^0(X, x_0, \mathbb{T}) \oplus \mathbb{T}$ are isomorphic under the mapping $f \mapsto (f.f(x_0)^{-1}, f(x_0))$. Similarly, the groups $C(X, x_0, \mathbb{R}) \oplus \mathbb{R}$ and $C(X, \mathbb{R})$ under the mapping $f \mapsto (f - f(x_0), f(x_0))$, (see [[6], Lemma 7]).

Consider the following short exact sequence:

$$0 \longrightarrow C^0(X, \mathbb{T}) \xrightarrow{\iota} C(X, \mathbb{T}) \xrightarrow{\zeta} \pi^1(X) \longrightarrow 0.$$

If X is compact, then $C(X, \mathbb{T})$ splits, i.e. $C(X, \mathbb{T}) = C^0(X, \mathbb{T}) \oplus \pi^1(X)$. Now let us prove the following lemma:

Lemma 2.3. Let X and Y be two compact spaces. If $C(Y, \mathbb{R})$ and $C(X, \mathbb{R})$ are isomorphic as Banach spaces, then there is an isomorphism between $C(Y, \mathbb{R})$ and $C(X, \mathbb{R})$ which sends 1 (as a constant function) to itself and hence sends all constant functions to constants.

Proof. Let ψ denote the isomorphism from $C(Y, \mathbb{R})$ onto $C(X, \mathbb{R})$. If $x_0 \in X$, and $k \in \mathbb{R} \setminus \{-1\}$, then we define

$$\varphi_k : C(X, \mathbb{R}) \to C(X, \mathbb{R})$$

 $g \mapsto g + kg(x_0).$

It is clear that φ_k is a linear map and $\varphi_k(1) = 1 + k$. The map φ_k is surjective: If $h \in C(X, \mathbb{R})$, then $h - \frac{k}{k+1}h(x_0) \in C(X, \mathbb{R})$ and

$$\varphi_k(h - \frac{k}{k+1}h(x_0)) = h + kh(x_0) - \frac{k}{k+1}h(x_0)\varphi_k(1) = h.$$

Now to show that φ_k is injective, let $g \in \ker(\varphi_k)$. Then for every $x \in X$, $g(x) + kg(x_0) = 0$ and in particular, $(k+1)g(x_0) = 0$, therefore g = 0, hence φ_k is a bijective.

Let $\psi(1) = f$. As f is a non-zero function which belongs to $C(X, \mathbb{R})$, there exists $x_0 \in X$ such that $|f(x_0)| = ||f||_{\infty}$. Let $k = 2\text{sign}(f(x_0))$. Then for all $x \in X$,

$$\varphi_k(f)(x) = f(x) + kf(x_0) = f(x) + 2\text{sign}(f(x_0)).f(x_0) = f(x) + 2|f(x_0)| > 0.$$

The map $\psi_1 = \varphi_k \circ \psi$ is an isomorphism from $C(Y, \mathbb{R})$ onto $C(X, \mathbb{R})$ with $\psi_1(1) > 0$. Then define $\Phi : C(Y, \mathbb{R}) \to C(X, \mathbb{R})$ by $g \mapsto \frac{1}{\psi_1(1)}\psi_1(g)$ and hence the lemma is checked. \Box

Finally, let us introduce the following main counterexample:

Example 2.4. Consider X = [0, 1] and $Y = [0, 1] \times [0, 1]$ as subspaces of the usual topology of \mathbb{R} and \mathbb{R}^2 , respectively. As X and Y are not homeomorphic topological spaces, the C^* -algebras C(X) and C(Y) are not *-isomorphic.

Claim: $C(X, \mathbb{T}) \simeq C(Y, \mathbb{T})$ as abstract groups.

Proof. As X and Y are both contractible subsets of \mathbb{R} and \mathbb{R}^2 , their cohomology groups $H^q(X) = H^q(Y) = 0$, for all q > 0. the cohomotopy groups $\pi^1(X)$ and $\pi^1(Y)$ are trivial. As X and Y are both compact metrizable non-countable spaces, there exists a Banach space-isomorphism Φ from $C(X, \mathbb{R})$ to $C(Y, \mathbb{R})$, by Milutin's theorem. We may assume that Φ maps constant functions onto themselves. Now define

$$\psi: C(X, x_0, \mathbb{R}) \to C(Y, y_0, \mathbb{R})$$
$$f \mapsto \Phi(f) - \Phi(f)(y_0).$$

It is clear that ψ is a linear. If $g \in C(Y, y_0, \mathbb{R})$, then $h = \Phi^{-1}(g) - \Phi^{-1}(g)(x_0) \in C(X, x_0, \mathbb{R})$ and $\psi(h) = g$, hence ψ is a surjective. If $\psi(f) = 0$, then for all $y \in Y$, $\Phi(f)(y) = \Phi(f)(y_0)$, therefore $\Phi(f)$ is a constant function of Y and then f = 0. Hence ψ is an isomorphism. By Proposition (2.2), we have that $C^0(X, \mathbb{T}) \simeq C^0(Y, \mathbb{T})$, hence $C(X, \mathbb{T}) \simeq C(Y, \mathbb{T})$ and the example is completed. \Box

Acknowledgments. The author would like to thank Professor Thierry Giordano from the University of Ottawa-Canada, for his guidance and help. Also, the author would like to thank the referee for the valuable comments and suggestions.

References

- A. Al-Rawashdeh, On The Extension of Unitary Group Isomorphisms of Unital UHF-Algebras, Internat. J. Math. 26 (2015), no. 8, 1550061, 20 pp.
- A. Al-Rawashdeh, A. Booth, and T. Giordano, Unitary Groups As a Complete Invariant, J. Funct. Anal. 262 (2012), 4711–4730.
- M. Broise, Commutateurs Dans le Groupe Unitaire d'un Facteur, (French) J. Math. Pures Appl. (9) 46 1967 299–312.
- H. Dye, On the Geometry of Projections in Certain Operator Algebras, Ann. of Math. (2) 61 (1955), 73–89.
- S.-T. Hu, *Homotopy Theory*, Pure and Applied Mathematics, Vol. VIII Academic Press, New York-London 1959
- V. Pestov, Free Abelian Topological Groups and the Pontryagin-Van Kampen Duality, Bull. Austral. Math. Soc. 52 (1995), 297–311.
- M. Valdivia, *Topics in Locally Convex Spaces*, North-Holland Mathematics Studies, 67, 85. North-Holland Publication Co., Amesterdam-New York. 1982.

DEPARTMENT OF MATHEMATICAL SCIENCES, AHMED AL-RAWASHDEH, P.O.BOX 15551, AL-AIN, ABU DHABI, UNITED ARAB EMIRATES.

E-mail address: aalrawashdeh@uaeu.ac.ae