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PRESERVATION OF TENSOR SUM AND TENSOR PRODUCT

C. S. KUBRUSLY and N. LEVAN

Abstract. This note deals with preservation of tensor sum and tensor product of Hilbert space op-
erators. Basic operations with tensor sum are presented. The main result addresses to the problem of

transferring properties from a pair of operators to their tensor sum and to their tensor product. Suf-
ficient conditions are given to ensure that properties preserved by ordinary sum and ordinary product
are preserved by tensor sum and tensor product, which are equally relevant for both finite-dimensional
and infinite-dimensional spaces.

1. Introduction

Tensor sum and tensor product of Hilbert space operators can be thought of as an extension to
infinite-dimensional spaces of the traditional Kronecker sum and Kronecker product of matrices
on finite-dimensional spaces. For example, see [2, p. 238] and [3] where several finite-dimensional
applications of both Kronecker sum and Kronecker product can be found. Let A and B be operators
on Hilbert spaces. If A⊗B denotes their tensor product, then their tensor sum is given by

(A⊗ I) + (I ⊗B),

where I stands for the identity operator. Theoretical aspects of tensor sums have been considered
in current literature. For instance, essential spectrum, as well as Weyl and Browder spectra, of
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tensor sums were investigated in [10]. Applications involving tensor sums have also been considered
recently in [5, 6, 7, 8].

In this paper we are concerned with the problem of preserving properties by tensor sum and
product. That is, properties of A and B that can be transferred to the tensor sum (A⊗ I)+(I ⊗B)
and to the tensor product A⊗B. After considering some basic operations with tensor sum in
Proposition 2 the main result is established in Theorem 1, where preservation by both tensor
sum and tensor product is investigated. The compact case is treated in Theorem 2. Applica-
tions of Theorem 1 are considered in Corollaries 1 and 2 where, in particular, it is shown how
proper contractiveness and strict positivity are both preserved by tensor product and tensor sum,
respectively.

2. Preliminaries

Let H and K be nonzero complex Hilbert spaces. We shall consider the concept of tensor product
space in terms of the single tensor product of vectors as a conjugate bilinear functional on the
Cartesian product of H and K. (See, e.g., [9], [18] and [19] – for an abstract approach see, e.g.,
[1], [4] and [21].) The single tensor product of x ∈ H and y ∈ K is a conjugate bilinear functional
x⊗ y : H×K → C defined by (x⊗ y) (u, v) = 〈x ;u〉 〈y ; v〉 for every (u, v) ∈ H ×K. The tensor
product space is the completion of the inner product space consisting of all (finite) sums of single
tensors, which is a Hilbert space with respect to the inner product〈∑

i

xi ⊗ yi ;
∑
j

wj ⊗ zj

〉
=
∑
i

∑
j

〈xi ;wj〉 〈yi ; zj〉

for every
∑

i xi ⊗ yi and
∑
j wj ⊗ zj in H⊗K. (The norm on H⊗K is the one generated by

the above inner product.) By an operator on a normed space X we mean a bounded linear
transformation of X into itself. Let B[X ] be the normed algebra (equipped with the induced
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uniform norm) of all operators on X . The tensor product of two operators A in B[H] and B in
B[K] is the transformation A⊗B : H⊗K → H⊗K defined by

(A⊗B)
∑
i

xi ⊗ yi =
∑
i

Axi ⊗Byi for every
∑
i

xi ⊗ yi ∈ H ⊗K,

which is an operator in B[H⊗K]. Although the tensor product is not a binary operation, it
somehow deserves its name since it is distributive with respect to (ordinary) addition. Indeed,
the proposition below states some of the basic operations with tensor product of Hilbert space
operators (where A∗ denotes the adjoint of A and ‖A‖ the norm of A).

Proposition 1. For every α, β ∈ C, A,A1, A2 ∈ B[H] and B,B1, B2 ∈ B[K],

(a) αβ (A⊗B) = αA⊗ βB,
(b) (A1 +A2)⊗ (B1 +B2) = A1 ⊗B1 +A2 ⊗B1 +A1 ⊗B2 +A2 ⊗B2,
(c) A1A2 ⊗B1B2 = (A1 ⊗B1) (A2 ⊗B2),
(d) (A⊗B)∗ = A∗ ⊗B∗,
(e) ‖A⊗B‖ = ‖A‖ ‖B‖.

If A and B are invertible, then so is A⊗B and

(f) (A⊗B)−1 = A−1 ⊗B−1.

For an expository paper on tensor product (including a proof of Proposition 1), the reader is
referred to [12].
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3. Tensor Sum

Let A and B be arbitrary operators on H and on K, respectively. An immediate consequence of
Proposition 1(c) reads as follows.

A⊗B = (A⊗ I) (I ⊗B) = (I ⊗B) (A⊗ I),(1)

where the identity on K makes the tensor product with A and the identity on H makes the tensor
product with B. Recall from Proposition 1(a) that

αI ⊗ α−1I = I ⊗ I,

which is the identity operator on H⊗K for every nonzero scalar α, and

A⊗O = O ⊗B = O ⊗O,

which is the null operator on H⊗K, where the null operator on K makes the tensor product with
A and the null operator on H makes the tensor product with B. The tensor sum of A and B is
the transformation A�B : H⊗K → H⊗K defined by

A�B = (A⊗ I) + (I ⊗B),(2)

which is an operator in B[H⊗K]. (It is sometimes written ⊕ instead of � but we reserve the
symbol ⊕ for orthogonal direct sum, as usual.) When the tensor product (in a finite-dimensional
setting) is identified with the Kronecker product of matrices, the correspondent expression in (2)
is referred to as the Kronecker sum (see e.g., [2, p. 238] and [3]). This justifies the nomenclature
tensor sum. However, it is worth noticing that the tensor sum is not commutative. Indeed,

A�O = A⊗ I, O �B = I ⊗B,

A� I = A⊗ I + I ⊗ I, I �B = I ⊗ I + I ⊗B.



JJ J I II

Go back

Full Screen

Close

Quit

In particular, if H = K and A = B, then

A�O = A⊗ I 6= I ⊗A = O �A,

A� I = A⊗ I + I ⊗ I 6= I ⊗ I + I ⊗A = I �A.

Basic operations with tensor sum of Hilbert space operators are summarized in the next proposition.
Its proof is straightforward, hence omitted.

Proposition 2. For every α, β ∈ C, A,A1, A2 ∈ B[H] and B,B1, B2 ∈ B[K],

(a) (α+ β)(A�B) = αA� βB + βA� αB,
(b) (A1 +A2) � (B1 +B2) = A1 �B1 +A2 �B2,
(c) (A1 �B1)(A2 �B2) = A1 ⊗B2 +A2 ⊗B1 +A1A2 �B1B2,
(d) (A�B)∗ = A∗ �B∗,
(e) ‖A�B‖ ≤ ‖A‖+ ‖B‖.

4. Preservation

The next theorem is the central result of this note. It gives sufficient conditions to ensure when
a property that is preserved by ordinary product and by ordinary sum is also preserved by tensor
product and tensor sum. For simplicity, we assume that the Hilbert spaces throughout this section
are separable.
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Theorem 1. Let C′ and C be classes of operators on Hilbert spaces such that

(i) C ⊆ C,
(ii) every operator unitary equivalent to an operator in C′ or in C is an operator in C′ or in C,

respectively, and
(iii) direct sum of countably many copies of an operator in C ′ or in C is an operator in C′ or in

C, respectively.
(a) If the product of commuting operators acting on the same space, one in C′ and the other in
C, is in C′, then the tensor product of two operators, one in C′ and the other in C, is in C′.

(b) If the sum of commuting operators acting on the same space, one in C′ and the other in C,
is in C′, then the tensor sum of two operators, one in C′ and the other in C, is in C′.

Proof. Let H and K be Hilbert spaces. Take A in B[H] and B in B[K]. From (1),

A⊗B = (A⊗ I) (I ⊗B) = (I ⊗B) (A⊗ I)

in B[H⊗K], where the same notation I is used for the identity on H and on K. Also recall that
tensor product is unitarily equivalent commutative; that is, there exists a unitary transformation
Π: H⊗K → K⊗H such that

Π (A⊗B) = (B ⊗A) Π

for every A in B[H] and every B in B[K], and so H⊗K ∼= K ⊗H with ∼= denoting unitary
equivalence. Now, since H and K are separable, the tensor products I ⊗A on K ⊗H and I ⊗B
on H⊗K are unitarily equivalent to the (countable) direct sums

⊕
k A on

⊕
kH and

⊕
k B on⊕

k K,

I ⊗A ∼=
⊕

k
A and I ⊗B ∼=

⊕
k
B,
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through unitary transformations ΦH and ΦK that do not depend on A and B: There are uni-
tary transformations ΦH :

⊕
kH → K⊗H and ΦK :

⊕
k K → H⊗K such that (see e.g., [12, Re-

mark 5])
ΦH(

⊕
k
A) = (I ⊗A) ΦH and ΦK(

⊕
k
B) = (I ⊗B) ΦK

for every A in B[H] and every B in B[K], and so K ⊗H ∼=
⊕

kH and H⊗K ∼=
⊕

k K. (Note that if
H is infinite-dimensional, then H ∼= `2+ and

⊕
k K = `2+(K); similarly, if K is infinite-dimensional,

then K ∼= `2+ and
⊕

kH = `2+(H).) Therefore,

A⊗B = Π∗(I ⊗A) Π (I ⊗B) = Π∗
[
ΦH
(⊕

kA
)
Φ∗H
]

Π ΦK
(⊕

kB
)
Φ∗K

= (I ⊗B) Π∗(I ⊗A) Π = ΦK
(⊕

kB
)
Φ∗K Π∗

[
ΦH
(⊕

kA
)
Φ∗H
]

Π

and, by (2),

A�B = (A⊗ I) + (I ⊗B) = Π∗(I ⊗A) Π + (I ⊗B)

= Π∗
[
ΦH
(⊕

kA
)
Φ∗H
]

Π + ΦK
(⊕

kB
)
Φ∗K.

Put
A′ = Π∗

[
ΦH
(⊕

kA
)
Φ∗H
]

Π and B′ = ΦK
(⊕

kB
)
Φ∗K

in H⊗K so that
A⊗B = A′B′ = B′A′ and A�B = A′ +B′.

Let C ′ and C be classes of operators satisfying assumptions (i) to (iii). Suppose A and B are in C.
If one of them is in C ′, then A′ = Π∗

[
ΦH
(⊕

kA
)
Φ∗H
]

Π and B′ = ΦK
(⊕

kB
)
Φ∗K are in C, with one

of them in C′. Since these operators (that act on the same space H⊗K) commute, we may infer
the following results.
(a) If both A and B are in C, with one of them in C ′, then A′ and B′ are in C, with one of them
in C ′. Since A′ and B′ commute and A⊗B = A′B′, it follows that A⊗B lies in C ′ whenever the
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classes C ′ and C are such that the product of commuting operators, one in C ′ and the other in C,
is an operator in C ′.
(b) If both A and B are in C, with one of them in C ′, then A′ and B′ are in C, with one of them in
C ′. Since A′ and B′ commute and A�B = A′ +B′, it follows that A�B lies in C ′ whenever the
classes C ′ and C are such that the sum of commuting operators one in C ′ and the other in C, is an
operator in C ′. �

5. Compact Case

The sufficient condition (iii) of Theorem 1 cannot be dismissed. However, If C stands for collection
of all (bounded linear) operators and C ′ stands for the collection of all compact operators, both
classes comprising operators acting on Hilbert spaces, then it is plain that the conditions (i) and
(ii) are satisfied, but not condition (iii) – the identity on infinite-dimensional spaces is not compact,
but is a countably infinite direct sum of compacts. Moreover, since the compact operators form
a two-sided deal in B[H], it follows that the hypothesis in both (a) and (b) of Theorem 1 are
also satisfied. In fact, as we shall see below, tensor product of compact operators is compact, but
tensor sum of compact operators on infinite-dimensional spaces is not compact . Recall that a
quasinilpotent operator is one with a null spectral radius (i.e., one whose spectrum is equal to
{0}), and a part of an operator is a restriction of it to an invariant subspace (by a subspace we
mean a closed linear manifold).

Theorem 2. If A ∈ B[H] and B ∈ B[K] are compact, then A⊗B ∈ B[H⊗K] is compact.
Conversely, if A⊗B ∈ B[H⊗K] is compact and one of A ∈ B[H] or B ∈ B[K] has a nonzero
eigenvalue, then the other is compact.

Proof. If A and B are compact on Hilbert spaces (and so on Banach spaces with Schauder bases),
then they are uniform limits of sequences of finite-rank operators {An} and {Bn} (i.e., An

u−→ A
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and Bn
u−→ B), and therefore An ⊗Bn u−→ A⊗B [17]. Since each An and each Bn is finite-rank,

then so is each An ⊗Bn (because range (An ⊗Bn) = range (An)⊗ range (Bn)). Hence A⊗B is
the uniform limit of a sequence of finite-rank operators, thus compact. Conversely, suppose A⊗B
is compact and one of A or B, say B, has a nonzero eigenvalue λ. Take an arbitrary eigenvector
e in the eigenspace kernel (λI −B), and consider the 1-dimensional subspace [e] of K spanned by
the eigenvector e, which is clearly B-invariant. Thus the regular subspace H⊗ [e] of H⊗K is
(A⊗B)-invariant and so (cf. [14] or [15]),

(A⊗B)|H⊗ [e] = A⊗ λ ∼= A,

where the unitary equivalence happens because λ 6= 0. Therefore A is compact since (A⊗B)|H⊗ [e]

is compact (restriction of a compact to a subspace is compact). �
However, if A and B are compact operators on infinite-dimensional spaces, then

A�B = (A⊗ I) + (I ⊗B)

may not be compact because both (A⊗ I) and (I ⊗B) are not compact if the identities act on
infinite-dimensional spaces. For instance, A = B = D = diag({ 1

j }
∞
j=1) on `2+ is compact, but

I ⊗D ∼=
⊕

kD is not compact, and so D ⊗ I ∼= I ⊗D is not compact, and therefore A�B =
(D ⊗ I) + (I ⊗D) is not compact.

Remark 1. If A⊗B ∈ B[H⊗K] is compact and one of A ∈ B[H] or B ∈ B[K] has a non-
quasinilpotent compact part, then the other is compact.

This in fact is a corollary of the converse of Theorem 2. Indeed, if B has a nonquasinilpotent
compact part, then there exists a nonzero subspace M of K, which is B-invariant, such that
K = B|M in B[M] is not quasinilpotent and compact. SinceM is B-invariant, we get (see [14] or
[15])

(A⊗B)|H⊗M = A⊗K,
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which is compact because the restriction of a compact operator to a subspace is compact. Since
K is compact but not quasinilpotent, it has a nonzero eigenvalue (Fredholm Alternative). Hence,
by the converse of Theorem 2, A must be compact.

Also note that Theorem 2 is not a consequence of Theorem 1 since condition (iii) in Theorem 1
is not satisfied by compact operators.

6. Applications

A first application of Theorem 1 deals with tensor product of proper contractions. Recall that an
operator T is a contraction if ‖T‖ ≤ 1 (i.e., ‖Tx‖ ≤ ‖x‖ for every x). It is a proper contraction if
‖Tx‖ < ‖x‖ for every nonzero x, and a strict contraction if ‖T‖ < 1 (i.e., supx 6=0(‖Tx‖/‖x‖) < 1).
It is clear that every strict contraction is a proper contraction, every proper contraction is a
contraction, and that these are proper inclusions in a infinite-dimensional space.

According to Proposition 1(e), the tensor product A⊗B is a contraction (or a strict contraction)
if and only if ‖A‖ ‖B‖ ≤ 1 (or ‖A‖ ‖B‖ < 1). Thus it is trivially verified that if A in B[H] and B
in B[K] are contractions, then so is A⊗B in B[H⊗K] and, if in addition one of A or B is a strict
contraction, then so is A⊗B. However, a similar result for proper contractions does not follow at
once from the norm identity in Proposition 1(e). Indeed, it can be verified that the tensor product
of proper contractions is a proper contraction if and only if, for every nonzero finite sum of single
tensors

∑N
i=1 xi ⊗ yi,

N∑
i=1

N∑
j=1

〈Axi ;Axj〉 〈Byi ;Byj〉 <
N∑
i=1

N∑
j=1

〈xi ;xj〉 〈yi ; yj〉
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whenever ‖Ax‖ < ‖x‖ and ‖By‖ < ‖y‖ for every nonzero x and y in H and K [13]. Actually, the
tensor product of proper contractions in fact is a proper contraction, which can be verified as a
corollary of Theorem 1(a).

Corollary 1. Let A and B be operators acting on separable Hilbert spaces. If one of them is
a contraction and the other is a proper contraction, then the tensor product A⊗B is a proper
contraction.

Proof. Observe that assumptions (i), (ii) and (iii) of Theorem 1 hold for contractions and proper
contractions acting on separable Hilbert spaces. That is, it is readily verified that if C stands for the
class of all contractions on separable Hilbert spaces and C ′ for the class of all proper contractions
on separable Hilbert spaces, then assumptions (i), (ii) and (iii) hold true. Since the product (either
left or right) of a contraction with a proper contraction (not necessarily commuting contractions)
always is a proper contraction [16], it follows by Theorem 1(a) that A⊗B is a proper contraction
whenever one of A or B is a contraction and the other is a proper contraction. �

A second application of Theorem 1 deals with tensor sum of strictly positive operators. Recall
that a Hilbert space operator T is nonnegative if 0 ≤ 〈Tx ;x〉 for every vector x (notation: T ≥ O),
positive if 0 < 〈Tx ;x〉 for every nonzero vector x (notation: T > O), and strictly positive if it is
an invertible (with a bounded inverse) nonnegative operator (notation: T � O). Again, it is clear
that every strictly positive operator is positive, every positive operator is nonnegative, and that
these are proper inclusions in a infinite-dimensional space.



JJ J I II

Go back

Full Screen

Close

Quit

Consider a tensor sum A�B in B[H⊗K]. Observe from (2) that〈
(A�B)

N∑
i=1

xi ⊗ yi;
N∑
i=1

xi ⊗ yi

〉

=

〈
(A⊗ I)

N∑
i=1

xi ⊗ yi;
N∑
i=1

xi ⊗ yi

〉
+

〈
(I ⊗B)

N∑
i=1

xi ⊗ yi;
N∑
i=1

xi ⊗ yi

〉

=
N∑
i=1

N∑
j=1

〈Axi ;xj〉 〈yi ; yj〉+
N∑
i=1

N∑
j=1

〈xi ;xj〉 〈Byi ; yj〉

for every nonzero finite sum of single tensors
∑N
i=1 xi ⊗ yi. Thus it can be verified that A�B is

nonnegative, positive or strictly positive if and only if
N∑
i=1

N∑
j=1

〈Axi ;xj〉 〈yi ; yj〉+
N∑
i=1

N∑
j=1

〈xi ;xj〉 〈Byi ; yj〉

is nonnegative, positive or positive and bounded away from zero, respectively, for every nonzero
finite sum of single tensors

∑N
i=1 xi ⊗ yi. We apply Theorem 1(b) to show that a tensor sum is

nonnegative, positive or strictly positive if one of the summands is nonnegative and the other is
nonnegative, positive, or strictly positive.

Corollary 2. Let A and B be operators acting on separable Hilbert spaces. The tensor sum
A�B is nonnegative, positive or strictly positive if one of A or B is nonnegative and the other is
nonnegative, positive or strictly positive, respectively.

Proof. Let C, C′ and C′′ denote the classes of all nonnegative, positive and strictly positive oper-
ators acting on separable Hilbert spaces, respectively. Assumptions (i), (ii) and (iii) of Theorem 1
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hold for the pairs (C′, C), (C′′, C) and (C′′, C′) of these three classes, where C ′′ ⊂ C′ ⊂ C. It is read-
ily verified that the sum of nonnegative operators is again nonnegative, the sum of a nonnegative
with a positive is a positive operator, and the sum of a nonnegative with a strictly positive is a
strictly positive operator (see, e.g., [11, p. 430]). Thus, by Theorem 1(b), A�B ≥ O, A�B > O
or A�B � O if one of A or B is nonnegative (say A ≥ O) and the other is nonnegative, positive
or strictly positive (say B ≥ O, B > O, or B � O) respectively. �

7. Final Remarks

Another application of Theorem 1 involves both tensor product and tensor sum of normal operators.
Recall that a Hilbert space operator T is normal if it commutes with its adjoint (i.e., if T ∗T = T T ∗).
Theorem 1 ensures that normality is preserved by both tensor product and tensor sum. Indeed, If
C = C′ stands for the collection of all normal operators on separable Hilbert spaces, then it is clear
that assumptions (i), (ii) and (iii) of Theorem 1 hold true. A corollary of the Fuglede–Putnam
Theorem ensures that (ordinary) product and (ordinary) sum of commuting normal operators is
again a normal operator (see, e.g., [11, p.508]). Therefore, both A⊗B and A�B are normal
operators on H⊗K whenever A and B are normal operators on H and K, respectively, according
to Theorem 1(a,b). However, this can be directly verified (without applying Theorem 1) as follows.
By Proposition 1(c,d),

(A⊗B)∗(A⊗B) = (A∗ ⊗B∗) (A⊗B) = A∗A⊗B∗B,

(A⊗B) (A⊗B)∗ = (A⊗B) (A∗ ⊗B∗) = AA∗ ⊗BB∗.
Moreover, by Proposition 2(c,d),

(A�B)∗(A�B) = (A∗ �B∗) (A�B) = (A∗ ⊗B) + (A⊗B∗) + (A∗A�B∗B),

(A�B) (A�B)∗ = (A�B) (A∗ �B∗) = (A⊗B∗) + (A∗ ⊗B) + (AA∗ �BB∗).
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Therefore, if A∗A = AA∗ and B∗B = BB∗, then

(A⊗B)∗(A⊗B) = (A⊗B) (A⊗B)∗ and (A�B)∗(A�B) = (A�B) (A�B)∗.

More results on tensor products along this line can be found in [20] and [12].
It is also worth noticing on a possible attempt to generalize the results presented in this paper to-

wards multiple tensor products and multiple tensor sums in the following sense. The tensor product
of a pair of Hilbert spaces and of a pair of operators can be naturally extended to a finite collection
of complex Hilbert spaces and to a finite collection of operators as follows. For any integer m ≥ 2,
let {Hi}mi=1 be a finite collection of Hilbert spaces. The single tensor product of an m-tuple of vec-
tors (x1, . . . , xm) with each xi in Hi is the conjugate multilinear functional

⊗m
i=1 xi :

∏m
i=1Hi → C

defined by
(⊗m

i=1 xi
)
(u1, . . . , um) =

∏m
i=1 〈xi ;ui〉 for every (u1, . . . , um) ∈

∏m
i=1Hi. The tensor

product space
⊗m

i=1Hi is the completion of the inner product space of all (finite) sums of single
tensor products

⊗m
i=1 xi,k with xi,k ∈ Hi, which is again a Hilbert space with respect to the inner

product 〈∑
k

m⊗
i=1

xi,k ;
∑
`

m⊗
i=1

wi,`

〉
=
∑
k

∑
`

m∏
i=1

〈xi,k ;wi,`〉

for every
∑
k

⊗m
i=1 xi,k and

∑
`

⊗m
i=1 wi,` in

⊗m
i=1Hi. The tensor product

⊗m
i=1Mi of subspaces

Mi of Hi is a subspace of the tensor product space
⊗m

i=1Hi. This comes from the fact that if
{hi,γi

}γi∈Γi
is an orthonormal basis for each Hi, then

{⊗m
i=1 hi,γi

}
(γ1,...,γm)∈Πm

i=1Γi
is an orthonor-

mal basis for
⊗m

i=1Hi (see, e.g., [21, Theorem 3.12(b)]). The tensor product of a finite collection
{Ai}mi=1 of operators, each Ai acting on Hi, is given by(

m⊗
i=1

Ai

)∑
k

m⊗
i=1

xi,k =
∑
k

m⊗
i=1

Aixi,k for every
∑
k

m⊗
i=1

xi,k ∈
m⊗
i=1

Hi.
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This defines an operator in B[
⊗m

i=1Hi] with the following properties.(
m⊗
i=1

Ai

)∗
=

m⊗
i=1

A∗i , and

(
m⊗
i=1

Ai

)−1

=
m⊗
i=1

A−1
i

if each Ai is invertible. Also∥∥∥∥∥
m⊗
i=1

Ai

∥∥∥∥∥ =
m∏
i=1

‖Ai‖, and

(
m⊗
i=1

Ai

)(
m⊗
i=1

Bi

)
=

(
m⊗
i=1

AiBi

)
if {Bi}mi=1 is a collection of m operators with each Bi acting on each Hi. Moreover, the multiple
tensor product

⊗m
i=1Ai is promptly endowed with associativity, which means that⊗m

i=1
Ai =

⊗j−1

i=1
Ai ⊗Aj ⊗

⊗m

i=j+1
Ai

for every integer j ∈ [2,m− 1] if m > 2. Thus the tensor product results in Theorems 1 and 2
may undergo a natural extension to a finite number of operators along the lines developed in [14].
Similarly, an extension for the tensor sum of a finite collection {Ai}mi=1 of operators will also enjoy
associativity. Indeed, if each Ai acts on the same H for all i = 1, 2, 3, and if I denotes the identity
on H, then

(A1 �A2) �A3 = A1 ⊗ I ⊗ I + I ⊗A2 ⊗ I + I ⊗ I ⊗A3 = A1 � (A2 �A3).

Thus a trivial induction leads to the following generalization of (2)

�
m

i=1Ai =
m∑
i=1

 i−1⊗
j=1

Ij

⊗Ai ⊗
 m⊗
j=i+1

Ij

 ,
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where Ij is the identity on each Hj and the empty tensor sum (i.e.,
⊗`

j=k Ij for ` < k) is always
missing. So the multiple tensor product �m

i=1Ai is also entitled to be treated in light of Theorem 1.
This and its possible outgrowths might be a promising suggestion for a future research.
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