Proceedings of ALGORITMY 2000
Conference on Scientific Computing, pp. 399-405

GRID GENERATION AND GEOMETRY DESCRIPTIOM WITH COG

ILJA SCHMELZER*

Abstract.

The aim of this paper is to describe the basic concepts of the grid generator COG. The most
interesting aspects of this grid generation concept are the geometry description and the combination
of anisotropic local refinement with an isotropic grid quality criterion — the Delaunay property.

1. Introduction. The grid generator COG [1] is a general purpose grid gen-
erator. It allows to create two- and three-dimensional simplicial grids for complex
geometries.

The geometry description interface allows to define geometries of arbitrary com-
plexity in a simple way. Implicit definitions of regions by conditions like f(z) < 0 for
arbitrary functions f(x), boolean operations, pixmaps, grids from previous steps and
so on are possible and may be combined, other ideas can be easily implemented.

A necessary consequence is that the geometry description is weak in the sense
that information which is often part of a geometry description is not available to the
grid generator in this interface. This includes information like the number of regions
and boundaries or any explicit description of the boundaries. This restricts possible
grid generation algorithms.

COG uses octree-based techniques to solve this problem. These techniques allow
local and anisotropic grids. This is important for the reduction of the number of
grid nodes, which is a critical problem in 3D grid generation. The resulting grids are
Delaunay grids.

At first, we give an introduction into the principles and concepts of the geometry
description named “cogeometry”. Then, we consider the grid generation algorithms
and some concepts related with anisotropic refinement.

2. Cogeometry. The abbreviation COG stands for “cogeometry”, which is itself
an abbreviation for “contravariant geometry description”. The reason is that the
geometry description is the most innovative part of COG, a part which makes the
whole package different from many other grid generators.

If we want to use grid generation so model some real objects, we have, at first,
only the object in reality. But the grid generator needs a description of this object
— its geometry, its parts, their materials, boundary conditions and so on — given
in a well-defined interface. We have designed such an interface, and we think that
this interface has a lot of advantages with usual interfaces for geometry description.
Especially it is easy to describe complex geometries in this inface.

2.1. Co- and contravariant objects. To explain our concept for the descrip-
tion of geometries let’s consider at first the terminus “contravariant”. It has been
taken from a domain of pure mathematics — category theory. The basic idea of cat-
egory theory is to formalize the notion of “natural”. Mathematicians like beautiful,
natural objects, and they have observed that many of these natural objects have
common formal properties, properties related with maps. This observation allows to
define two classes of natural things — covariant and contravariant objects. Assume we

*WIAS Berlin
399



400 I. SCHMELZER

have a map f : X — Y between two objects (sets, spaces, manifolds or whatever else).
Then there may be objects on X which have a natural image. That means, for every
object 0 on X we have a well-defined image f(0) on Y. Such objects are called covari-
ant. Examples are points z € X, curves v : R — X, densities du, homology groups
H;(z). For other objects, there may be a natural preimage. That means, for every
object 0 on Y there exists a unique preimage f~'(0) on X. These objects are called
contravariant. Examples are functions g : X — IR, differential forms, cohomology
groups H(X).

These images and preimages have to fulfill some natural axioms we don’t want
to list here. What we need in the following is only a general, philosophical idea —
it is always useful to look if such natural image and preimage operations exist. And
it is always better to prefer objects which have such image or preimage operations —
because these are the “natural” objects.

2.2. Contravariant nature of geometry. Now, we want to apply this philos-
ophy to geometry description. A geometry is, roughly speaking, a subdivision of some
space X into different parts — regions. But this rough definition is already sufficient
to understand that the natural operation is not the image, but the preimage. Indeed,
if we have a subdivision of Y into parts and a rather general map f : X — Y there is
a natural way to define such a similar subdivision of X: z € X is part of the preimage
region f 1(A) if f(z) € Y is part of the region A. But there is no similar image
operation. If we have a subdivision of X, there is no natural way to define such a
subdivision of Y. There may be points in Y which are not part of the image of X, and
other points may be part of the image of different regions. Thus, we conclude that a
geometry is a contravariant object.

Now, let’s consider the usual way to define a geometry. We start with vertices,
then we have edges between them and surfaces. All these objects are described as
maps into the space. For polygons and splines we have the same general scheme —
edges are functions f : I — X, faces are functions f : I ® I — X. But these objects
are not contravariant — instead, they are covariant. Thus, they are not natural for
the description of a geometry, which is contravariant.

2.3. Contravariant geometry description. This consideration justifies the
search for a contravariant geometry description — a possibility to describe a geometry
with contravariant objects. Now, a simple way to describe a geometry in a covariant
way is a “region function” r : X — D where D is the discrete set of different regions.
For every point € X the function r(x) returns the (identifier of the) region containing
x.

The problem of this simple interface is that it does not allow to describe important
information which should be part of a complete geometry description — boundary
conditions. It also does not allow to find exact boundary positions — the only way to
detect boundaries would be iteration. Thus, we want a better interface which allows
to describe different boundary conditions. And, once we have started to consider such
boundary conditions and positions of boundary faces, it would be also interesting to
describe boundary lines and vertices, or, in the general n-dimensional case, boundary
parts of every dimension k with 0 < k < n.

The basic idea of the generalization to arbitrary dimension k is the following: as
in the case of the region function, we use a function. The input is, instead of the
point, a simplex of dimension k. The function returns an intersection of a boundary
of codimension k with this simplex. But the design of the interface is not as simple
as it looks now. We have to take into account some important problems:



GRID GENERATION AND GEOM. DESCRIPTION WITH COG 401

e How do we want to use the interface for grid generation?

e Assume we have an interface definition for the first ¥ — 1 codimensions. Is it
possible to obtain an approximation of the boundary of codimension k using
some generalization of the binary intersection algorithm?

In some sense, the interface was designed together with this approximation algo-
rithm. The advantage of such a default algorithm is obvious: we obtain the possibility
to implement a geometry having only the region function.

The resulting interface differs from our first guess in some interesting points:

e The idea of continuation. Assume an intersection of the border of a k-simplex
with a boundary of codimension & — 1 is given. In general, the intersection
of this boundary (codimension k — 1) with the whole simplex (dimension k)
is a curve — the continuation of the intersection inside the simplex. We have
given one of the ends. The other end of this continuation may be another
intersection with the border of the simplex. The other possibility is that it
ends inside the simplex, at the boundary of the boundary of codimension
k — 1 — which is a boundary of codimension k.

e The symmetry of this call. Partially, this call is already symmetric — if the
continuation ends on the border of the simplex, we may call it again with
this intersection and should obtain the original intersection. Now, we want
to have it fully symmetric, so that we can start from the intersection inside
and find the continuation on the border. But there are different codimension
k — 1 boundaries which end in the given codimension k& boundary. Therefore,
we have to remember also the direction of a k¥ — 1 boundary.

e The concept of a flag. Now, to remember one direction is not sufficient. If
we start continuation inside the k-simplex and reach the border, we have to
define not only the & — 1 boundary intersection, but also a direction of a
codimension k — 2 boundary for further continuation. And so on for lower
dimensions. Therefore we need a more complex data structure known in
differential geometry as a flag. A k-flag is defined by a point and a sequence
of k tangential vectors which should be non-degenerate. And the intersection
k-flag has the properties that the point lies on a boundary of codimension
k and the k vectors are tangential vectors for boundaries of codimension
0,...,k—1.

This leads to a beautiful geometry interface with one call in each dimension:
Input is a k-simplex and or a k-flag inside the simplex, or a k — 1-flag on its border.
Output is, again, or a k-flag inside the simplex, or a k — 1-flag on its border. The call
fulfills the symmetry property: if we use the output intersection as input with the
same simplex, we obtain the input intersection as output.

2.4. Default implementation. Now, for this geometry interface we can now
define a default implementation for all interface functions except the first — the original
region function. This default implementation generalizes the bisection algorithm for
a line into arbitrary dimension. Thus, we have given a simplex and a boundary
intersection flag on its border, and have to find its continuation. Let’s subdivide this
algorithm into two parts: subdivision into smaller simplices and what to do with the
smallest simplex.

The subdivision algorithm is easy. We subdivide the simplex in a regular way, find
the small simplex which contains the starting flag on its boundary. Then we search
for continuation through this small simplex, using a recursive call, or, if the simplex
is already small enough, the default implementation described below. If we find the



402 1. SCHMELZER

continuation on an inner border, we have to continue the search in the neighbour
simplex. If we find a continuation on an outer border or an intersection of higher
codimension inside the small simplex, we have found what we need.

Now let’s consider the smallest simplex, where the recursion breaks. We can no
longer use the continuation call for dimension k, but we have all continuation calls
for lower dimensions. Now, instead of looking for continuation inside, we try to find
the continuation on the border of the simplex, using the continuation calls for lower
dimension. And, in the case that there is no such continuation, we take the center of
the simplex as the approximation of an inner intersection.

2.5. Geometry-based functions. The definition of various functions (initial
values, solutions and so on) is sometimes considered as separate from the geometry
description. Sometimes this may be appropriate. But there is also a very interesting
class of function which may be named geometry-based. Especially these are functions
which are defined only on boundaries: surface densities, variable boundary conditions.
Another important class are functions which are continuous inside the regions but have
discontinuities on the boundary. A typical example is segregation: concentrations on
different sides of the boundary are different.

At a first look it seems that during grid generation, we don’t need functions. But
some functions we need — refinement criteria. And the refinement criteria are a good
example of a geometry-based function — different refinement in different regions is a
reasonable choice. Thus, we have to include some management for these functions
into the interface.

Fortunately, functions are contravariant too. As a consequence, these functions fit
in a natural way into a contravariant geometry description. The idea of the extension
of the interface is very simple — we extend only the functionality of the existing calls:
all interface function have to compute the values of geometry-based functions for their
output parameters. All what is necessary is to organize the storage for the function
values. This allows fast prototyping: as long as we do not need such functions we do
not have to implement anything. If we later implement functions, we do not have to
change anything in the grid generator.

Especially interesting is the nice fit between boundary limits of discontinuous
functions and flags. For discontinuous functions we do not have unique function
values on the boundary points. There will be two values on boundary faces, but an
unknown number on boundary edges. Instead, a boundary flag contains not only
the boundary point, but also a direction into a region. This allows to define unique
function values for boundary flags. This observation may be generalized for functions
defined on boundary faces of codimension k with discontinuities on boundary faces of
codimension (k + 1).

Another interesting point is the compatibility of this scheme, inclusive the defini-
tion of function values on a flag, with the default implementation algorithm. The calls
of the region function in the approximation algorithm compute the function values
close enough to the boundary and therefore approximate the boundary limit.

2.6. Applications. Now, once we have a default implementation for all higher
order calls, all we need to define a cogeometry is the region function. This allows a fast
implementation of almost every real geometry: solid modeling, boolean operations,
CT pictures, pixmaps, geological profiles — to implement the region function is usually
very easy. The “worst case” for the implementation is a classical geometry description
by a boundary grid: in this case, we need a rather complex algorithm to define the
region function.



GRID GENERATION AND GEOM. DESCRIPTION WITH COG 403

For grid generation, another algorithm is much more important — the region
function for a complete grid, for example the grid of the previous time step. For this
purpose, we can use a neighbourhood search algorithm.

But, of course, the region function is not all. Often enough we have to handle
boundary conditions and functions defined on the boundary. These things cannot be
managed with the region function alone. We have to implement the second interface
function too. This second function usually requires much more time for implemen-
tation. Nonetheless, it is usually not very hard to understand what has to be done.
This is in some sense a philosophical thesis which seems impossible to prove in a
strong way: once the interface itself is natural, there will be also natural algorithms
to implement it at least for natural geometries.

For the higher order functions there is usually no necessity for a special imple-
mentation, because there is seldom a need for boundary conditions or functions on
boundary edges and vertices.

2.7. Summary. As we have seen, for the description of a geometry and geometry
-based functions the contravariant interface is a natural possibility. It allows fast
prototyping strategies: for a simple prototype we have to implement only a single
region function.

The interface has to be characterized as weak. Almost every imaginable geometry
may be described in this way — even geometries with infinite complexity like Julia sets.
A lot of information usually available (lists of regions, boundary faces and so on) is
not available.

This makes it easy to define geometries, but hard to use the interface in grid
generation.

3. Grid Generation. Now let’s consider the algorithms used in COG for grid
generation. But, at first, we have to make some remarks about our quality measures.
Last not least, to create a grid is easy — the complicate thing is to create a good
grid. Some grid generation techniques cannot be used simply because the information
they need as input is not available. Once we have no surface grid in our geometry
description, we cannot use the advancing front method to create the grid.

The basic idea is the classical octree method: we start with a cube, subdivide if
necessary and define the regions containing the octree nodes. Then, we find inter-
sections with boundary faces. For this purpose, we use the second interface function
(face function) for grid lines with ends in different regions. Then we find inconsisten-
cies on some rectangle we use the third interface function (edge function) to find the
intersection of this rectangle with a boundary edge, and, last not least, use the last
interface function (vertex function) to find boundary vertices in cubes.

3.1. Topology detection and convexity. The main problem is, of course, to
obtain a grid with the correct topology using our weak interface. And we have to
start with the remark that in principle, in the general case, it is unsolvable. Indeed,
there may be an arbitrary small region inside another region. The only way to detect
it would be to test a point inside this region. But we have no list of points we have to
test for this purpose to find all regions. And this is not only a problem of our interface,
but an intended property of the interface, because it allows to define geometries with
methods where no such list is available.

A similar problem appears for other thin objects like thin channels or thin layers.

Nonetheless, in most applications this does not present a serious problem — if the
locations of the regions are known, precautions may be used so prevent this. There are



404 1. SCHMELZER

two prevention strategies: first, refinement. We can require sufficient local refinement
in the critical domain. For this purpose we have to know the domain where the thin
regions are located, and their size.

The other method is to avoid concave geometries by artificial subdivision of re-
gions and boundaries. Even a very thin layer may be found by our algorithm if it is
located on the boundary between two other regions: the face function will be called
because the ends are in different regions, and it returns the intersection of the first
region with our thin layer. We search for the continuation with another call of the
face function and find the other boundary of the thin layer.

In a similar way, but already for a thin channel which intersects a rectangle and
the edge function, we can detect thin channels if they are located between three
different regions or two different regions with different boundary conditions on the
two sides of the channel. This concept also works for small regions.

In principle, what we need for the algorithm to detect the geometry correctly is
that the regions, boundary faces and edges are approximately convex.

3.2. Delaunay property. Once we have clarified how to use the cogeometry in
the grid generator it is useful to consider some other questions: grid quality criteria.

Here we have to note that different applications possibly need different criteria.
For diffusion equations tetrahedral grids are fine, but in mechanics hexahedral grids
are preferred (tetrahedra are “too stiff”). The initial point for this grid generator
have been diffusion equations, and we create, therefore, tetrahedra.

But the ideal grid depends also on more subtle things, like the discretization
method. It is well-known (but not widely known) that the classical FEM and FVM
methods for standard diffusion which have the same quality criteria in 2D (no obtuse
angles — M-matrix property) give different criteria in 3D. FEM requires non-obtuse
planar angles for the tetrahedra for the M-matrix property. Instead, FVM requires
the Delaunay property. These criteria are different. The most important difference
are so-called slivers — very thin tetrahedra, which have a very small volume and give
very small terms with correct sign in the case of finite volumes, but very large terms
with wrong sign in the case of FEM.

We prefer the FVM method and, therefore, prefer the Delaunay criterion. One
advantage of the Delaunay criterion is that there are simple algorithms for Delaunay
grid generation for a given point set, while there are no such simple algorithms to
obtain FEM grids. We suggest to consider this as an argument in favour of the FVM
method.

3.3. Local and anisotropic refinement. The main purpose of local and aniso-
tropic refinement is node economy. We do not consider here anisotropic refinement
because we have in mind applications with anisotropic material coefficients. Instead,
the purpose is to have less points in the resulting grid. The problem itself is assumed
to be isotropic, the grid quality criterion — Delaunay — is isotropic. Nonetheless, in the
typical application we have directions where not much happens and other directions
— gradient directions — with fast changes. To approximate such configurations on a
grid with a given accuracy we do not need an isotropic grid. Instead, an anisotropic
grid can describe the same situation with the same accuracy with much less nodes.

In 3D point economy remains to be an essential point, because we need a lot of
nodes in 3D computations. Moreover, strategies for point economy are more effec-
tive in 3D: if we use local instead of global refinement in 3D which allows a much
greater reduction of node numbers. The same holds for anisotropic refinement: If we
have high refinement only in the gradient direction, we have node economy in two



GRID GENERATION AND GEOM. DESCRIPTION WITH COG 405

other directions (instead of one in 2D). Therefore, local anisotropic refinement is an
important way to reduce the number of nodes which is usually neglected.

The octree algorithm used in COG allows local anisotropic refinement in a natural
way — if the gradient direction approximately coinsides with one of the grid directions.

3.4. Local coordinates. But in may applications the gradient directions are
skew. The original octree algorithm in this case reduces to isotropic refinement, it
gives no serious advantage.

Now, for this purpose we have developed a variant of the algorithm which works
with several local coordinates. In this variant, we have to define local coordinates in
some subdomain so that the important gradient direction is approximately one of the
coordinate directions. The usual octree algorithm is used to compute a set of points
in these local coordinates. Then the point sets for the different local coordinates are
combined. Here we have to define which point set has to be used in the intersection of
different local coordinates. For the resulting point set we use the Delaunay algorithm
to obtain the Delaunay grid.

In the current implementations the coordinates should be orthogonal. Only in
this case we obtain optimal anisotropical refinement.

3.5. Summary. The grid generator COG allows to use geometry descriptions
defined in the “cogeometry” interface to create a grid. In the general case, no warranty
can be given that the topology is correctly described, but some reasonable methods
are available to solve these problems.

COG creates Delaunay grids, which gives good numerical properties if FVM dis-
cretization is used.

An important feature of COG is that local and anisotropic grid refinement allows
to reduce the number of nodes necessary to describe a given situation.

REFERENCES

[1] COG, http://www.wias-berlin.de/cog/index.html



