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VISUALIZATION OF VALUE FUNCTION IN TIME-OPTIMAL

DIFFERENTIAL GAMES �
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Abstract. An e�ective method for numerical solution of time-optimal di�erential games is

the computation of fronts of level sets of the value function in reverse time. The paper describes

a specialized computer algorithm developed by the authors for the visualization of graphs of the

value function. The computer program based on this algorithm is compatible with the numerical

procedures for the computation of fronts. Graphs of the value function of the \homicidal chau�eur"

di�erential game are given.
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1. Introduction. Typical problems in the theory of di�erential games [7]{[9] are
those with the payo� be the time of attaining a given terminal set M: The �rst player
minimizes the attaining time but the second player maximizes it. If the game has a
stationary dynamics, the value function V is a function of the state vector x and does
not depend on the time t: The value function x! V (x) is \usual" scalar function of
two variables, if x is a two-dimensional vector. The plots of such a function can be
useful in many cases.

Nowadays, numerical methods for solving di�erential games are developed inten-
sively [1], [2], [5], [6], [13], [15]. Many works are devoted to time-optimal problems.
The authors of this paper have an experience in the development of algorithms for
solving time-optimal problems in the plane [11], [12], [14].

The basis of our method for solving time-optimal problems in the plane is the
computation of level sets of the value function or, more precisely, the computation of
fronts of the value function. The level set W (T ) is a collection of all points x such
that V (x) � T: The front F (T ) contains all points on the boundary of the set W (T )
such that V (x) = T:

In this paper, a method for the visualization of graphs of the value function
developed by the authors is described. Some examples of such graphs for a well-
known in the theory of di�erential games \homicidal chau�eur" game are given.
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2. Di�erential game dynamics. We consider di�erential games in the plane
with the following dynamics

_x = f(x; u; v); x 2 R2; u 2 P; v 2 Q:(2.1)

Here x = (x1; x2)
0 is the two-dimensional state vector and u and v are control

variables of the �rst and second player chosen from compact sets P and Q; respec-
tively. The vector function f satis�es the standard conditions [8], [9] for the existence,
uniqueness and continuation to the in�nite time interval of solutions to the equation
(1) where u(t) and v(t) with the values in P and Q are substituted instead of u and
v: The �rst player strives to bring the state vector to a closed terminal set M for the
minimal time, the objective of the second player is opposite.

The best guaranteed result of the �rst player for a given initial state x0 is de�ned
as the shortest time that the �rst player can guarantee using feedback controls. Sim-
ilarly, the best guaranteed result of the second player is de�ned as the longest time
that the second player can guarantee using feedback controls. The best guaranteed
results of the players coincide [7]{[9] for a wide class of di�erential games. The com-
mon value is called the meaning of the value function for the state x0. On the whole,
the function x ! V (x) is considered. The computation of the value function is one
of the most important steps in solving di�erential games.

As an example of di�erential game dynamics, we consider the dynamics of the
homicidal chau�eur [7] game in reduced coordinates

_x1 = �w(1)x2 u=R+ v1

_x2 = w(1)x1 u=R+ v2 � w(1); juj � 1; jvj � �:
(2.2)

Here (x1; x2)
0 is the state vector which gives the relative position of the evader

with respect to the pursuer, and w(1) and R are constants which de�ne the pursuer's
velocity and the minimal radius of turn, respectively. The �rst player' control is the
scalar parameter u. The second player steers with the vector control v that is chosen
from the circle of radius �.

Usually, a circle with the center at the origin is used as a terminal set M: Some-
times, problem statements with other terminal sets can be of interest.

The homicidal chau�eur game is one of the most popular and also one of the
most diÆcult problem in the theory of di�erential games. It was proposed by Isaacs
and studied by many authors [4], [5], [6], [10], [12]. Using this problem, we will
demonstrate our visualization tools.

3. Backward procedure for the computation of fronts. Let T � 0: The

level set (the Lebesgue set) of the value function is denoted by W (T ): This is the set
of all points in the plane such that the minimizing player using feedback strategies
can guarantee the transition of trajectories of the system (2) to the terminal set M
within time T:

The set W (T ) is formed via a step-by-step backward procedure giving a sequence
of embedded sets

W (�) �W (2�) �W (3�) � ::: �W (i�) � ::: �W (T ):

Here � is the step of the backward procedure. Each set W (i�) consists of all initial
points from which the minimizing player guarantees the attainment of W ((i � 1)�)
within time �: We put W (0) =M .
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Let us explain the idea behind the algorithm for the construction of sets W (T ):

This is a dynamic programming method. In the theory of di�erential games, the
fundamental ideas of the backward construction of level sets were considered in works
of Isaacs, Fleming, Pontryagin, Krasovskii and Pschenichnyi.

The crucial point of our algorithm is the computation of \fronts". The front
Fi (Fig. 1) is the set of all points of @W (i�) with the property that the minimal
guaranteed time of attaining the previous set W ((i� 1)�) is equal to �: For other
points of @W (i�); the optimal time is less than �: The line @W (i�)nFi possesses the
properties of the barrier (see [7] for the de�nition). The front Fi is computed using
the previous front Fi�1: For the �rst step of the backward procedure, F0 coincides
with the usable part (see [7] for the de�nition) �0 of the boundary of M: It may be
one or several usable parts. The computations are carried out separately from each
usable part. One should take into account that the obtaining parts of the level set
can collide with each other.

M

�0

Fi�1

Fi

W (i�)

Fig. 3.1. Construction of the sets W (i�):

In the computation, each front is stored as an ordered collection of points, so fronts
are polygonal lines. More details about the numerical procedure for the computation
of fronts are given in [11], [12].

The collections of fronts ordered in the ascending reverse time are utilized for
plotting the graphs of the value function. Any other information related to the game
considered is not used. Therefore the visualization procedures developed for plotting
the graphs of the value function can be applied to other interesting problems related
to the propagation of fronts (for instance, the propagation of �re).

4. Visualization of the graphs of the value function. Since we use the
representation of the value function as a collection of fronts Fi, a procedure for the
reconstruction of the surface between two neighbor fronts in the three dimensional
space is required for plotting the graph of the value function. To implement that, an
algorithm for the reconstruction of the surface based on the triangulation of the gap
between two neighbor fronts was developed.

The idea of this algorithm is as follows. The points of the fronts where the
sharp bending occurs are found. These points divide each front into parts such that
each part is smooth enough. Then the correspondence between the parts of the
neighbor fronts is obtained. The parts of two neighbor fronts are considered to be
correspondent, if they are close to each other in a geometric sense. This is the most
diÆcult step of the algorithm because one should choose some threshold values. Also,
heuristic arguments should be used in some cases. The �nal step of the algorithm is
the triangulation between the corresponding parts.
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The algorithm allows to localize regions where the smoothness and continuity
of the function are violated. The surface constructed with this procedure is then
plotted using photo-realistic computer graphics algorithms. To obtain plane pictures
from three-dimensional plots, the perspective projection is utilized. The object is
illumined with a point source of light that can be located either in a �xed point or be
in�nitely distant. The method of Gouraud is applied for the triangle coloring. The
system allows to change the points of view, the properties of the surface \material"
and the location of a light source. A special coloring mode is available, when the color
for each point of the surface constructed is de�ned by the function value at this point.

The triangulation algorithm that we use presently is not based on a speci�c char-
acter of the location of fronts in the problem considered. This allows to apply the
algorithm for other problems and, therefore, extend its application range. On the
other hand, attempts to cover a general case makes the algorithm more complicated
and does not provide an adequate result in some cases because of the presence of
a heuristic component. For this reason, more close interface between triangulation
and computation algorithms will be realized in the future. To this end, an additional
information about the structure and mutual disposition of fronts that is available due
to the program for the computation of fronts can be used e�ectively. This will help
to develop more reliable triangulation algorithm.

Additionally, a program that allows to study the propagation of fronts of the
value function in the plane was developed. An animation method is used to realize
the movement of fronts. A special procedure that allows to examine some fronts more
precisely and to detect some peculiarities is available. The program has convenient
interface and allows to control the speed of the animation.

5. Examples. We begin the demonstration of examples for the homicidal chauf-
feur game with the examples corresponding to the classical statement of Isaacs.

In these examples, the set Q is a 25-polygon inscribed into the circle of radius �
with the center at (0; 0):

In Figure 2, the computation results for the following values of parameters are
presented: w(1) = 3; � = 1 and R = 3: The terminal set M is a 15-polygon approxi-
mating the unit circle with the center at the origin. The step � is 0:01: Every 10th
front is plotted. The fronts are symmetric with respect to the x2-axis. The left and
right barrier lines terminate on the lower boundary of the sets A and B; respectively.
After that, the left and right ends of the front begin to bend round the left and right
barrier lines, and two symmetric corner points arise on the front. These corner points
become more and more close, and at � = 8:42, a self-intersection of the front occurs.
As a result, the front is divided into two parts: the internal part and the external one.
The computations are carried out from each part separately. The internal part of the
front propagates upwards sliding with its ends along the corresponding barriers. At
� = 10:6; it collides with the terminal set, and two symmetric gaps which are �lled
out at � = 11:3 arise. The external part of the front propagates outwards and can �ll
out the whole plane with the time (the last external front in the picture corresponds
to � = 9). Therefore, for each point of the plane, the minimal guaranteed time of
approaching the set M is �nite.

In Figure 3, a three-dimensional graph of the value function of Fig. 2 example
is presented. The axes in the horizontal plane are x1 and x2; and the vertical axis
measures the value function. The picture shows the value function for the region of
(x1; x2) where the fronts are computed.

Both Fig. 2 and Fig. 3 show the graph of the mathematical function (Fig. 2 via
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Fig. 5.1. Level sets of the homicidal chau�eur game for w(1) = 3; � = 1 and R = 3.

level sets). However, the advantage of the Fig. 3 graph is that one can easily see
the discontinuities, the form of nonsmooth parts and di�erent degrees of steepness
of various parts of the graph. Furthermore, the representation of functions as two-
dimensional surfaces in three-dimensional space is habitual for human perception.

For the next example shown in Figs. 4, 5 and 6, the following values of parameters
are used: w(1) = 2; � = 0:6; R = 0:2: The set M is a regular polygon inscribed into
the circle of radius 0:015: The center of the circle is (0:2; 0:3): The step � is 0:001:
The sets W (8k�;M); k = 1; 2; :::; are depicted.

Let us explain the constructions presented in Fig. 4. The right barrier line termi-
nates on the lower boundary of the auxiliary set B. The front begins to bend round
this barrier line. After some time, the left barrier line ends on the lower boundary of
the set A; and the left part of the front bends round the left barrier. The left and the
right parts of the front go towards one to other till the �rst self-intersection of the
front occurs at � = 0:725: The front is divided into two parts (internal and external).
For � > 0:725; only internal fronts that propagate into the \region of turn" are drawn.
Here, very complicated structure of fronts arises.

At � = 0:904; the second self-intersection of the front which is drawn with the
thick dash line produces two gaps that are �lled out afterwards separately. The next
front consists of three parts: an exterior part (which is not shown), and two interior
parts (two loops inside the dash contour). The greatest value of � in the region of
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Fig. 5.2. The graph of the value function for w(1) = 3; � = 1 and R = 3.

turn is 0:95: This corresponds to the time when the fronts complete �lling the gap on
the left hand side of the axis x2: As a result, the sets W (�;M) for 0:904 < � < 0:95
are triply connected.

Figures 5 and 6 show three-dimensional graphs of the value function corresponding
to the level sets of Fig. 4. Two di�erent points of view were used. In Figure 6, level
lines of the value function are additionally plotted onto the graph.

Next pictures are related to the case when the value function assumes in�nite val-
ues. We consider a modi�ed homicidal chau�eur dynamics comparing to (2). Namely,
we assume additionally that the radius � of the restriction Q on the control of the
second player depends on the state x : the radius � is constant and equal to we outside
the circle of radius s with center at the origin, but the radius is proportional to jx j in-
side this circle. Such a modi�cation of the homicidal chau�eur game was proposed in
[3], [6]. Following to [6], we consider the rectangle f(x1; x2)2 R2 : �3:5 � x1 � 3:5,
�0:2 � x2 � 0g as the terminal set M:

Figure 7 corresponds to w(1) = 1; R = 0:8; s = 0:75 and we = 0:4: Here, the
value function is �nite in the region where the solution was computed. However, it
increases very rapidly in the central part for small negative values of x2:

Figure 8 corresponds to an increased resource of the second player: we = 1:1; but
other parameters are the same as before. The value function is bounded for positive
values of x2; the graph has the form of a hill. For negative values of x2; two petals go
to the in�nity.

If we increase we up to we = 1:5; we obtain a hole for positive values of x2; the
value function being in�nite within this hole. The graph (Fig. 9) takes the form of a
tube.

Figure 10 is done for w(1) = 1; s = 0:75; we = 1:4 and R = 0:3: For small negative
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Fig. 5.3. Complicated structure of level sets in the \region of turn." The terminal set is a

small circle in the �rst quadrant, w(1) = 2; � = 0:6 and R = 0:2:

values of x2; the graph of the value function has the form of a half-tube (a \gutter")
extending to the in�nity.
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