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MODELLING OF HEAT AND MOISTURE TRANFER
IN POROUS MATERIALS

JOSEF DALIK AND JIRf VALA *

Abstract. The aim of this paper is to demonstrate the mathematical problems of modelling the
physical process of heat and moisture transfer in porous materials. The method of discretization in
time is applied to derive a discretized (generally non—potential) system of PDEs of elliptic type from
the original variational problem of evolution. The convergence of corresponding Rothe sequences is
studied.
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1. Introduction. Porous structure is typical for all ceramic materials and for
the most building materials. The amount of moisture (including the solid, liquid and
gas phases of water) in the porous structure of building materials is one of the essential
factors influencing the durability of building constructions. As there exists a strong
relation between moisture and heat in porous materials, every reasonable model of
moisture transfer has to take into account the heat transfer, too. From the known
models, especially [14], [15], [17], we have devoted most attention to the generally
acknowledged Kiessl model [14], see [21] and others, in the papers [2], [3].

On the basis of a critical assessment of the above-mentioned models, J. Svoboda
[4] proposed an original, physically well-founded model of the moisture and heat
transfer in porous media. In this paper we present mathematical tools for the proof
of existence of a weak solution of this model.

2. Physical background. State variables of the model are the effective stress
P(z,t) = h(z)g — o/o(z,t) [m?s™?] and (absolute) temperature T(z,t) [K]. Here
€ QC R%t € (0,tmax) = I for some fixed positive number #m.x and h [m] is
the relative height, g [ms™2] is the gravitational constant, o [kgm™2] is the density
of condensed water (liquid and ice) in the porous structure and o [Nm~? is the
hydrostatic stress in the condensed water.

The differential equations express the laws of conservation of moisture M and of
heat H

M dH

— =V (aHVP + a12VT) =0, E

i -V (a21VP + CIQQVT) =0

for z € Q, t € I. If we denote by u = u(P,T) [kgm™3] the sorption isotherme
expressing the amount of condensed water in 1 m?3 of the porous material, ¢ [-] the
open porosity, V(u) = u/g [-] the part of 1 m? of the porous material occupied by
condensed water and ¢ co [kgm ™3] the amount of vapour in 1 m? of air with relative
humidity ¢, then the amount of moisture in 1 m? of the porous structure is

M=u+ (¢ — V(u)) pco [kgm™?].
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Further, if there are 7 = T—273.15 [°C], x [] the relative amount of liquid in condensed
water (x(7) is a smooth function increasing between -5°C' and 0°C'), g, [kgm~3] the
density of dry porous material, ¢, s, c;, ¢, [Jkg™t K=1] the heat capacity of porous
material, ice, liquid, vapour, respectively, 7, [°C] the temperature of boiling water
and Ly, Ly, [Jkg™!] the latent heat of melting of ice at T = 0°C', of evaporation at
7 =1,°C, respectively and if we put

hm:CmTa hs:CsTa hl:le+ClT, hu:le+ClTb+le+Cv(7—_Tb)a
then
H = hmom + hsu(l — x) + hyux + hy (€6 — V(1)) ¢co [Jm_S]

is the amount of heat in 1 m? of the porous material. Finally, if we denote by
¢ [kgm™3s] the convectivity of liquid, D [kgm™3s] the diffusivity of vapour and \
[Jm=3K~1s71] the heat conductivity, then

DLl’U
T bl

a1 =&+ D, an= as1 = €+ hy D, ass = A+ hyaia.

Initial conditions
P(z,0) = Py(z) and T(z,0) = To(z) for any z € Q

and boundary conditions

P T .
Ctn&a—ﬁ-i-amg—ﬁ:gz(m,t,P,T) for any z € 9Q, t € I and i € {1,2}

make the model complete.

3. General formulation of the problem. In the whole paper we shall apply
the standard notation. All classes of special mappings applied here are introduced in
[8] or [5], the notation of Lebesgue and Sobolev spaces is compatible with [18], the
symbol * is reserved for adjoint spaces, the dot symbol (rarely) for time derivatives
and Ryg is used instead of Ry U {0}, too.

Following [23], we shall formulate the abstract problem in a reflexive and separable
Banach space V' (u will be considered in general as an abstract function mapping every
time from 7 into V, although V' can be identified with some Sobolev or similar space of
functions in most available applications). Using the method of discretization in time,
we shall then consider linear splines u” instead of u. This enables us to decompose
the problem of evolution into particular problems for discrete times. Finally, the
limit passage for n — oo, making use of certain a priori estimates, will verify the
existence of a variational solution. Unfortunately, the arguments from [23] cannot
be applied directly to realistic problems with more than one unknown fields (unlike
simple examples with one field in [23], pp.490,495) that are not generated by the
weak differentiation of certain potentials (no other case is studied in [11], [12] [13], [9]
or [10]) which is generally not true in our model, derived in [4].

In addition to a reflexive and separable Banach space V (especially for p € Ry
symbol V), is reserved for the set of all v € V such that ||v||;, < p and symbol V] for
the set of all v € V such that |[v||;, > p), let us consider an other Banach space H
and some mappings A: I — V and B : I — H. The symbol {.,.) will be used for
the duality between V and V* and the symbol (.,.) for the duality between H and
H*. Let these spaces and mappings preserve the following properties:
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(a) There exists a strongly continuous imbedding of V into H.
(b) A is weakly continuous.

(c) B is demicontinuous.

(d) The estimate

v)

sup (¢ ([[v[ly)[[v

’UEVPI

V)_l/o (Alw+€&(v —w)) — Aw,w) dé < oo

is true for some p € R4 and arbitrary fixed w € V; the function ¢(||v|,)
comes from (i).
(€) The estimate

[lly) ™" (Bv, w) < o0

v)

sup (p([[v
’UEVPI
is true for some p € R4 and arbitrary fixed w € V; the function ¢(||v|)
comes from (i).
(f) There exists an increasing continuous function v : Rg — Rg such that

(Bv— Bw,v—w) > (|[v — wl|y)

for any v,w € V.
(g) For the function 3 from (f) the estimate

J J
v (Z ) < ph) Y elei)
i=1 i=1
is valid for every positive integer j, ¢; € Ry with i € {1, ...,j} and certain
increasing function g mapping all positive integer into Ry.
(h) The function g from (g) has the limit behaviour

lim M

< 00

(i) There exist an increasing continuous function ¢ : Ry — R and av € Ry such
that

v

/0 (A(€v),v) A€ + v (Bv,v) > o(|lo]ly v

for any v € V.
(j) There exists a ¥ € Ry such that

0 < (Bv,v) < v([|vll)

for any v € V.
(k) There exist w, k € Ry such that

| ooy —wyae > [ (aten ) de- [ (agew).w) ae
—eJe (el ) el + el el +o /e = wll,)

for any v,w € V.




160 J. DALIK AND J. VALA

Let us study the existence of u : I — V satisfying the equation of evolution
t
(1) (Bu(t) — Bug,v) + / (Au(t'),v) dt' =0
0

for all v € V and arbitrary ¢ € I where the initial value u(0) = ug € V' is prescribed.
Let us choose an integer n and a h; € Ry fori € {1, ...,n} such that hy + Ao+ ...+
h, = T. Later we will write only & instead of the largest and hq instead of the smallest
h; and apply the notation ¥ = h/hg. Fori € {1, ...,n} let us also consider the partial
time intervals I; = {t € I : t;_1 <t <t;} where tc = 0 and ¢; = hq + ...+ h;; for the
sake of brevity let us define J = {t € Ry : t < 1}, too. Instead of u(¢) let us consider
a linear spline

t—ti_q
h;

u™(t) = ui—q1 + (ui — ui—1)

for each I; with ¢ € {1, ..., n} (evidently, uy,...,u, as well as hy,..., hy, depend on
the choice of n, but we will not emphasize this fact explicitly) Thi simplifies (1) to
the form

J ti ! i
(2) (Buj — Bug,v) + Z/ <A <Ui—1 + %(m — Ui—l)) ,v> dt’
i=17ti-1 i
for arbitrary ¢ = t; with j € {1, ...,n} and for any v € V. We set u”(0) = ug
formally.

In the following lemmas, theorems and sketches of proofs we verify the existence
of u; satisfying (2) with ¢ € {1, ...,n} in the first place; then we shall prove that
some subsequence of {u"}22; has a limit u which is identical with a solution of (1).
In the more exact form the first result will be presented in Theorem 1, the second one
in Theorem 2. Later we will study more regular solutions.

Lemma 1. For every integer n and ¢ € {1, ...,n}, (2) can be converted into the
discretized form

(3) (Bu; — Bu;—1,v) + hi/o (A(ui—1 + &(u; —ui—1)),v) dE =0

with arbitrary v € V.
Proof is based only on simple algebraic manipulations and on the linear trans-
formation & = (t' —t;_1)/h;.

Lemma 2. For somei € {1, ...,n}, let T; be the operator mapping each w € V
into V* using the definition

1
(Trw,v) = (Bw — Bui_1,v) + hi/o (Aluir + E(w = ui_1)), v) de

for all v € V. Then, for a fixed u;_1 € V, the operator T; is weakly continuous.

Proof follows by the properties (a), (b), (¢), (d), by the boundedness of any
weakly continuous sequence (cf.[7], p. 193) and by the Lebesgue dominated conver-
gence theorem (see [19], p. 110).

Lemma 3. For every ¢ € {1, ...,n}, h; small enough and a fixed u;_; the
operator T; from Lemma 2 is coercive.
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Proof starts by putting v = w in the definition of 7; in Lemma 2. Estimates
based on the properties (d), (e), (f), (i) and (k) guarantee the coerciveness of V for
h; small enough.

Theorem 1. For every ¢ € {1, ...,n}, h; small enough and for a fixed u;_q
there exists some u; satisfying (3).

Proof applies the result from [6], p. 46, saying that every weakly continuous and
coercive mapping of V' into V* maps V onto V*, Lemma 2 and Lemma 3.

Lemma 4. The sequence of piecewise linear abstract functions {u”}5.; mapping

I into V is equibounded.

Proof uses more precise a priori estimates than the Proof of Lemma 3. The
choice v = (u; —u;—1)/h; in (3) and the application of the properties (f), (g), (h), (i),
(3) and (k) together with the discrete version of the Gronwall lemma (see [11], p. 29,
and [24], p.370) yield the required equiboundedness after long computations.

Lemma 5. The sequence {u"}2, from Lemma 4 is equicontinuous as a sequence
of abstract functions mapping [ into H.

Proof is based on the estimates making use of Lemma 4 and (3) again.

Lemma 6. There exists an u: I — V such that, up to a subsequence, u(t) is a
weak limit of {u”(t)}5%, for every ¢t € I and u is a strong limit of {u”}2%; in C(I, H).

Proof . The statement is a consequence of certain version of the Arzela-Ascoli
theorem (see [16], p.36 and [11], p.24) whose assumptions are satisfied thanks to
Lemma 4 and Lemma 5.

Theorem 2. There exists an abstract function u : I — V satisfying (1) such
that v € C(I, H).

Proof verifies the correctness of the limit passage from (2) to (1) (the relation
between (3) and (2) is evident from Lemma 1), making use of Lemma 4, Lemma 5
and Lemma 6.

Lemma 7. Let the following assumption be added to the property (f):

(f’) There exists a 19 € Ry such that () > 1oc? for any ¢ € Ry.
Then there exists also a § € Ry such that the estimate for the sequence {u"}32; (of
time derivatives of the sequence {u”}2% ;) from Lemma 4

(4) /Inu“(t)nif dt < 0

is valid independently of the choice of an integer n.

Proof repeats the approach from Lemma 4 in a slightly modified form, using
the property (7).

Theorem 3. Let H be reflexive and the property (f’) from Lemma 7 be satis-
fied. Then every solution u of (1) in the sense of Theorem 2 belongs to L= (I,V) N
WbL2(I, H).

Proof comes from the general convergence theorem for Rothe sequences from

[11], p.25.

Now let us introduce a mapping P : I — V with the properties analogous to A:
(b’) P is weakly continuous.
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(d’) The estimate

1
sup [ofv* [ (Po,w) < oc
’UEVPI 0

is true for some p € Ry and arbitrary fixed w € V.
(1) There exist an ¢ € R4 and A € Rg such that

(Pv,v) dé > e|[o]l}, — A

for any v € V.
(k’) In the original property (k) the square root of ¥ (||v — wl|,) is allowed to be

substituted by the square root of the sum of ¥(||v — wl|,) + ||[v — w||%, only
(this makes (k) less strict).
In the following lemmas and theorems we will study the analogue of (2)

J
(Bu]' — Bug, U) + th <P <%> ,U>
i=1

K3

+ EJ " Al u; +ﬂ(u._u. ) vYdt' =0
\ i—1 hz 7 i—1 ) — Yy
i=1 i—1

for any v € V (clearly the argument of P is equal to 4" everywhere)

Lemma 8. For every integer n and ¢ € {1, ..., n}, the analogue of (2) can be
converted into the form similar to (3)

(BUZ' — Bu;_q, U) + h; <P <%) ,U>
) 2
(5) +hi/ (A(ui—1 + &(u; —ui—1)),v) d€ =0
0

with arbitrary v € V. Moreover, the operator 7] mapping each w € V into V* and

defined by means of the operator 7; from Lemma 3 by the formula

(T{w,v) = (Tiw, v) + hy <p <h‘ “’) >

(3

for all v € V is weakly continuous and coercive.

Proof repeats the arguments of the proofs of Lemma 1, Lemma 2 and Lemma
3, taking into account the new operator P and the properties (b’), (d’) and (k’).

Theorem 4. Theorem 1 holds with (5) instead of (3), too.

Proof isthe same as the proof of Theorem 1; Lemma 8 instead of Lemma 2 and
Lemma 3 is applied.

Lemma 9. Under the assumptions of Lemma 8 the inequality (4) from Lemma
7 holds even with the norm of V instead of the norm of H.

Proof of Lemma 4 can be repeated; the property (i’) is substantial here.

Lemma 10. There exists an abstract function v : T = V such that Lemma 6 is
valid and (up to a subsequence) also u is a weak limit of {%"}°%, in L?(I,V).



Modelling of heat and moisture transfer in porous materials 163

Proof can apply Lemma 9 (similar to Lemma 7), and the Eberlein - Shmul’yan
theorem (see [25], p.201); this implies the existence of some weak limit u of {u”}%,
in L?(I,V) and consequently the weak convergence of {u™(t)}5, to fgﬂ(t/) dt’ in V
which can be identified with u(¢) for arbitrary ¢ € I.

Theorem 5. Theorem 2 holds with
¢ ¢
(6) (Bu(t) — Bug,v) —1—/ (Pu(t'),v) dt’ —1—/ (Au(t'),v) dt' =0
0 0

instead of (1), too. Moreover, let the mapping P have the property (additional to
().

(i”) If w € V, for some p € Ry then (Pw,v) = 0 for every v € V.
Then Theorem 2 holds with (1) directly provided that 4(t) € V, (p € Ry comes from
the property (i”)) for arbitrary t € 1.

Proof makes use of the compactness of the imbedding of W2 into L%(I, H)
and studies the limit passage from (5) to (6) in the same way as the proof of Theorem
2 (the relation between (5) and (5) is evident from Lemma 8). The last assertion
follows from the property (i”) applied to (6) directly.

Theorem 6. Let the assumptions of Theorem 5 (except the property (i”)) be
satisfied and, moreover, let H be reflexive and the property (f’) from Lemma 7 and
Theorem 3 be valid. Then (6) can be differentiated with the result

(7) ((Bu(t)),v) + {(Pu(t),v) + (Au(t),v) = 0

for every v € V' and arbitrary ¢ € I.

Proof applies the Eberlein - Shmul’yan theorem which yields the existence of a
strong limit & of {4"}22; (up to a subsequence). The limit passage is similar to that
from Theorem 2 and Theorem 5; moreover, the differentiation of (5) is well-defined
and its result is (7).

We have demonstrated that for a rather large class of problems of evolution, in-
cluding the problem of moisture and heat transfer in porous media in the formulation
of [4] (which initiated this study), some reasonable existence and convergence results
can be derived using the properties of Rothe sequences. The formulation in spaces
of abstract functions avoids the discretization in RV ; in practical computation this
can be done using the finite element or similar techniques. We have not discussed the
case of weakly continuous operators B because this seems to be very strong assump-
tion which may be physically non-realistic. From [1], pp.63,103, and [23], p. 360, we
know that in the Lebesgue space H = L%(Q, RY), where Q is an open set in RV,
every weakly continuous mapping is linear. This is not true for weakly continuous
operators A (and P, if necessary) in the Sobolev spaces: e.g.if V is some subspace
of W12(Q, RN) involving Wol’z(Q, RN) (to include prescribed boundary conditions of
Dirichlet type) then many nonlinear weakly continuous mappings (as in examples from
[6], pp- 52,53) exist and the weak continuity can be tested efficiently using the theorem
on Nemytskii operators (cf.[7], p. 75, [5], p. 288, and [22], p. 36). The demicontinuity
of B is easy to be verified in practice because the property (f) forces the monotony
of B and (by [8], p.66) for monotone operators demicontinuity and radial continuity
coincide. One possible easy choice of ¢, ¥ and p is ¢(c) = ¢ — cq, ¥(c) = 2, u(j) = j
for every ¢ € Ry, each positive integer j and some fixed ¢y € R. Function spaces dif-
ferent from the Sobolev spaces can be also applied; e.g.in [2] the regularity questions
are analyzed in the Morrey - Campanato spaces (cf. [20], p. 35).
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For the concrete choice of spaces V and H (as the spaces of integrable functions

defined on Q) some additional assumptions on € must be accepted to ensure the
validity of usual imbedding and trace theorems;. their geometrical interpretation is
discussed in great details in [18], pp.62,220. From this point of view, the general-
ization of the access of [23], p.490, brings no substantial difficulties. Let us notice
that in our assumed properties no potentiality of A or B is required; nevertheless,
by [8], p.90, the demicontinuity of A implies that A is a potential operator iff the
property (k) with x = 0 is satisfied. In practical problems the property (k’) is often
more realistic than (k).
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