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SOME COMMENTS ON FACTORS OF CNS POLYNOMIALS

HORST BRUNOTTE

Abstract. It is proved that certain monic integer Hurwitz polynomials
are factors of CNS polynomial.

1. Introduction

A monic integer polynomial f is a CNS polynomial if for every p ∈ Z[X]
there exists a polynomial q ∈ {0, . . . , |f(0)| − 1} [X] such that p ≡ q (mod f).
The concept of a CNS polynomial1) and the general notion of a canonical
number system (CNS) were introduced by Pethő [19] and extended in the
sequel (see for example [2, 5, 22]). Detailed background information on the
historical development and relations of CNS polynomials to other areas such
as shift radix systems, finite automata or fractal tilings can be found in the
survey by Kirschenhofer and Thuswaldner [15] and the literature cited
there.

The CNS property of a given polynomial can be decided algorithmically
[6, 10, 23], and it is known that CNS polynomials are expansive and do not have
positive real roots ([1, Theorem 2.1] or [13, Section 2]). Some characterization
results on these polynomials are known (for instance, see [11, 14] for quadratic
polynomials, [3, 4, 7, 16] for some other classes of polynomials and [13, 17] for
more general results). However, the complete description of these polynomials
has remained an open problem even for small degrees.

The set C of CNS polynomials seems to have poor algebraic properties:
For instance, C is not closed under multiplication (e.g., (X + 2)2 ∈ C, but
(X+2)4 /∈ C), and there exist CNS polynomials none of whose factors belongs
to C (see [9, Example 13]). On the other hand, it is known that the product
of up to five pairwise different linear CNS polynomials is a CNS polynomial;
this was proved independently in [20, Theorem 5] and [13, Theorem 10] for
at most four factors and in [10, Theorem 8] for five factors. Moreover, in [13,
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Section 5] an example of a non-CNS polynomial is given which is the product
of nine linear CNS polynomials with strictly increasing constant terms.

Some years ago, Pethő [18] put forward the following interesting question:
If f ∈ Z[X] is a monic polynomial all of whose roots lie outside the closed unit
disk and are non-positive is it true that f is a factor of a CNS polynomial?
To the best knowledge of the author, the answer to this question is still open,
but it is affirmative if f has at most one pair of complex conjugate roots
[9, Theorem 12]. The aim of this note is to prove that every monic integer
expansive Hurwitz polynomial is a factor of a CNS polynomial.

2. Expansive integer Hurwitz polynomials as factors of CNS
polynomials

Recall that a Hurwitz polynomial is a non-constant real polynomial all of
whose roots have a negative real part. We show that every monic expansive
integer Hurwitz polynomial is a factor of a CNS polynomial. In other words,
for certain Hurwitz polynomials we give an affirmative answer to the above
mentioned question raised by Pethő. To achieve this aim for such a poly-
nomial f we show the existence of a multiple of f which satisfies a sufficient
condition for a CNS polynomial.

Let us start with several auxiliary results and fix some notation. Here our
main interest lies in the set E of real monic expansive polynomials of positive
degree which do not have a real positive root.

Let f ∈ E . We observe that f(0) > 1 and denote by Z(f) the multiset of
zeros of f . Further, we let

Z−(f) := Z(f) ∩ R and Zc(f) := {α ∈ Z(f) : ℑα > 0} .
Thus we have the factorization

f =
∏

α∈Z−(f)∪Zc(f)

fα

with

fα :=

{
X − α (α ∈ Z−(f)),

(X − α)(X − ᾱ) (α ∈ Zc(f)).

As usual, we denote by N the set of positive rational integers.

Lemma 2.1. If σ ∈ R>0 then there exists N ∈ N such that for all n ≥ N we
have

(1) σ |α|n > 1, if α ∈ Z−(f)),
(2)

(
σ |α|2n − 1

)
/
(
2 |α|n

)
> 1, if α ∈ Zc(f)).

Proof. Since |α| > 1 for every α ∈ Z(f), the existence of N with property (i)
is trivial. Now, the proof can be concluded by Lemma 2.2 below. □
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Lemma 2.2. Let a, b, ρ ∈ R>0 such that a, b > 1. Then there exists N ∈ N
such that

ρa2n − 1

2an
≥ b

for all n ≥ N .

Proof. This is a straightforward exercise in calculus and left to the reader. □

For convenience, given ρ ∈ R>0 we abbreviate by Nρ(f) the minimal integer
which satisfies the properties of Lemma 2.1 for

(1) σ := (1 + ρ)1/(r+s) − 1,

where we set r := Card Z−(f) and s := Card Zc(f). Our next statements
suggest that it is easy to find a multiple of f with small coefficients compared
to f(0), but that it might be not so easy to construct such a multiple with
nonnegative coefficients. To this end, we put

Gn(f) :=
∏

α∈Z(f)

(
Xn − αn

)
(n ∈ N).

Finally, we denote by L(f) the length of f , i.e., the sum of the absolute values
of the coefficients of f , and we let

Dρ := {f ∈ R[X] : f monic and L(f) < (1 + ρ) |f(0)|} .

Lemma 2.3. For ρ ∈ R>0 and n ≥ Nρ(f) the following statements hold.

(1) Gn(f) ∈ Dρ.
(2) If ℜ(αn) ≤ 0 for all α ∈ Zc(f), then

∏
α∈Zc(f)

Gn(fα) ∈ R≥0[X].

Proof. (i) Define σ as in (1). For α ∈ Z−(f) Lemma 2.1 yields

L(Gn(fα)) = 1 + |α|n < (1 + σ) |α|n = (1 + σ) |Gn(fα)(0)| ,
and analogously for α ∈ Zc(f):

L(Gn(fα)) ≤ 1 + 2 |α|n + |α|2n < 1 + σ |α|2n − 1 + |α|2n = (1+ σ) |Gn(fα)(0)| .
Using [9, Lemma 2 and Lemma 3] we conclude

L(Gn(f)) ≤
∏

α∈Z−(f)∪Zc(f)

L(Gn(fα))

< (1 + σ)r
( ∏
α∈Z−(f)

|Gn(fα)(0)|
)
(1 + σ)s

( ∏
α∈Zc(f)

|Gn(fα)(0)|
)

= (1 + σ)r+s
∏

α∈Z−(f)∪Zc(f)

|Gn(fα)(0)|

= (1 + ρ) |Gn(f(0))| .
(ii) This is clear by the definitions. □
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In the following we need the set A := E ∩ Z[X] of integer polynomials in E .
Certainly, we know that C is contained in A.

Remark 2.4. Note that for every positive ρ and every d ≥ 2 there is a poly-
nomial f ∈ A \ C of degree d such that L(f) < (1 + ρ)f(0). Indeed, pick an
integer c > max {3, 3/ρ} and put f := Xd − 2X + c. Then f does not have a
root inside the closed unit disk because otherwise f(z) = 0 and |z| ≤ 1 imply
the contradiction

|z|d ≥ c− 2 |z| > 1.

Further, we immediately check that f does not have a real positive root. Thus
f ∈ A, and by [3, Lemma 2] or [7, Theorem 3] the polynomial f is not a CNS
polynomial. Clearly, we have

L(f) = 1 + 2 + c < (1 + ρ)c = (1 + ρ) f(0) .

An application of Dirichlet’s approximation theorem yields a real multiple
of f with relatively small nonnegative coefficients.

Lemma 2.5. Let f be a monic Hurwitz polynomial, ρ ∈ R>0 and N ∈ N.
Then there exists an n > N such that Gn(f) ∈ Dρ ∩ R≥0[X].

Proof. By [21, Lemma 3] there exists some n > max {N,Nρ(f)} such that for
all α ∈ Z(f) we have

ℜ(αn) ≤ 1

2
|α|n−1 ℜα < 0,

thus

Gn(fα) ∈ R≥0[X],

and therefore by Lemma 2.3

Gn(f) ∈ Dρ ∩ R≥0[X]. □

By [9, Theorem 12] we know that f ∈ A is a factor of a CNS polynomial pro-
vided that every integer factor of f has at most one pair of complex conjugate
roots. Now we are in a position to extend this statement.

Theorem 2.6. Let f1, . . . , fm ∈ A and assume that for each i = 1 . . . ,m one
of the following two statements holds:

(1) fi has at most one pair of complex conjugate roots,
(2) fi is a Hurwitz polynomial.

Then the product f1 · · · fm is a factor of a CNS polynomial.

Proof. Let

σ := 21/m − 1

and i ∈ {1, . . . ,m}.
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First, let fi have at most one pair of complex conjugate roots. Then we infer
from [9, Theorem 9 and Lemma 3] that there is some ni ∈ N such that

(2) Gni
(fi) ∈ Dσ ∩ R≥0[X] .

Second, let fi be a Hurwitz polynomial. Then Lemma 2.5 yields some ni ∈ N
such that (2) holds.

Now, setting

gi := Gni
(fi)/fi ∈ Z[X] (i = 1, . . . ,m)

and using [9, Lemma 4] we deduce

(g1 · · · gm)(f1 · · · fm) = Gn1(f1) · · ·Gnm(fm) ∈ D1 ∩ (N ∪ {0})[X] .

By [4, Theorem 3.2] or [13, Theorem 11] we know that every monic polynomial
in D1 with nonnegative integer coefficients is a CNS polynomial. □

Let us briefly comment on the prerequisites and the method of proof of our
theorem.

(1) Certainly, a polynomial in A which does not satisfy the prerequisites
of our theorem may be a factor of a CNS polynomials. For instance,
the irreducible polynomial

X4 −X3 + 31X2 + 99X + 121 ∈ A
has two pairs of complex conjugate roots and is not a Hurwitz poly-
nomial, but it is a factor of a CNS polynomial of degree 5 (see [9,
Example 13]).

(2) Observe that the proof of Lemma 2.5 is not constructive. Therefore,
our method does not allow to exhibit a bound for the degree of the
CNS polynomial involved in Theorem 2.6.

Speculating on further progress in the vein of our result above we formu-
late the following conjecture; obviously, it would be implied by an affirmative
answer to the above mentioned question of Pethő.

Conjecture 2.7. The set {f ∈ A : f factor of a CNS polynomial} is multi-
plicatively closed.

Remark 2.8. For an affirmative answer to Pethő’s question and for a proof
of the conjecture above it suffices to consider polynomials with only positive
coefficients. Indeed, let f ∈ A. By Handelman’s theorem on real polynomials
without positive real roots [12, Theorem A] there is some n ∈ N such that

g := (X + 2)n · f ∈ A ∩ N[X];

for the sake of completeness we mention that by [8, Lemma 3] n can be bounded
by an effectively computable constant depending on f . Trivially, if g divides
some CNS polynomial, then so does f .
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[23] A. Tátrai. Parallel implementations of brunotte’s algorithm. J. Parallel Distrib. Com-
put., 71:565–572, 2011.



FACTORS OF CNS POLYNOMIALS 21

Received July 8, 2015.

Haus-Endt-Straße 88,
D-40593 Düsseldorf, GERMANY
E-mail address: brunoth@web.de


