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THE MAXIMAL OPERATORS OF LOGARITHMIC MEANS
OF ONE-DIMENSIONAL VILENKIN-FOURIER SERIES

GEORGE TEPHNADZE

ABSTRACT. The main aim of this paper is to investigate (H,,L,)-type
inequalities for maximal operators of logarithmic means of one-dimensional
bounded Vilenkin-Fourier series.

1. INTRODUCTION

In one-dimensional case the weak type inequality
. c
plof >N < SIl (>0)

can be found in Zygmund [20] for the trigonometric series, in Schipp [11] for
Walsh series and in Pél, Simon [10] for bounded Vilenkin series. Again in
one-dimensional, Fujji [3] and Simon [12] verified that ¢* is bounded from H;
to Ly. Weisz [17] generalized this result and proved the boundedness of o*
from the martingale space H, to the space L, for p > 1/2. Simon [13] gave a
counterexample, which shows that boundedness does not hold for 0 < p < 1/2.
The counterexample for p = 1/2 due to Goginava ([7], see also [2]).

Riesz’s logarithmic means with respect to the trigonometric system was
studied by a lot of authors. We mention, for instance, the paper by Szasz [14]
and Yabuta [19]. This means with respect to the Walsh and Vilenkin systems
was discussed by Simon[13] and Gat[4].

Moéricz and Siddiqi[9] investigated the approximation properties of some
special Norlund means of Walsh-Fourier series of L, function in norm. The
case when ¢, = 1/k is excluded, since the methods of Méricz and Siddiqi are
not applicable to Norlund logarithmic means. In [5] Gét and Goginava proved
some convergence and divergence properties of the Norlund logarithmic means
of functions in the class of continuous functions and in the Lebesgue space
Ly. Among there, they gave a negative answer to the question of Méricz and
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Siddiqi [9]. Gét and Goginava [6] proved that for each measurable function
¢ (u) = o (uy/log u) there exists an integrable function f, such that

/@uf@mdu@><m

and there exist a set with positive measure, such that the Walsh-logarithmic
means of the function diverge on this set.

The main aim of this paper is to investigate (H,, L,)-type inequalities for the
maximal operators of Riesz and Norlund logarithmic means of one-dimensional
Vilenkin-Fourier series. We prove that the maximal operator R* is bounded
from the Hardy space H, to the space L, when p > 1/2. We also shows that
when 0 < p < 1/2 there exists a martingale f € H, for which

17 fl, = oo

For the Norlund logarithmic means we prove that when 0 < p < 1 there
exists a martingale f € H), for which

IL* ], = +oo
Analogical theorems for Walsh-Paley system is proved in [8].

2. DEFINITIONS AND NOTATION

Let N, denote the set of the positive integers, N := N, U {0}. Let m :=
(mg, mq, . ..) denote a sequence of positive integers not less than 2. Denote by
Zm,, ={0,1,...,my — 1} the addition group of integers modulo my.

Define the group G,, as the complete direct product of the groups Z,,, with
the product of the discrete topologies of the groups Z,,, .

The direct product p of the measures

pe ({7}) = 1/my (5 € Zimy)

is the Haar measure on G,,, with u(G,,) = 1.

If the sequence m is bounded then G, is called a bounded Vilenkin group,
else it is called an unbounded one. In this paper we discuss bounded Vilenkin
groups only. The elements of G,, are represented by sequences

T = (To,T1,. 0, Tjy-.-) (a:l € ij) )
It is easy to give a base for the neighborhood of G,,
Iy(z) : =G,y
Li(x):={y€Gnly =20, Yn-1 =2n_1} (z€Gy,n€EN)
Denote I,, := I,, (0) for n € N;.
If we define the so-called generalized number system based on m in the

following way:
MO = 1, MkJrl = mkMk (k € N),
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then every n € N can be uniquely expressed as n = Z;’io n;M; where n; € Z,,
(7 € Ni) and only a finite number of n;s differ from zero.

Next, we introduce on G, an orthonormal system which is called the
Vilenkin system. At first, define the complex valued function ry (z) : G, — C,
the generalized Rademacher functions as

r (z) = exp (2mixy/my) (i2 =—-1lxeG,kec N) .
Now, define the Vilenkin system 1 := (¢, : n € N) on G, as:

o0

() = HTZk (x) (neN).

k=0

Specifically, we call this system the Walsh-Paley one if m = 2. The Vilenkin
system is orthonormal and complete in Ly (G,,) [1, 15].

Now, we introduce analogues of the usual definitions in Fourier-analysis.
If f € L (G,,) we can establish the Fourier coefficients, the partial sums of
the Fourier series, the Fejér means, the Dirichlet kernels with respect to the
Vilenkin system ¢ in the usual manner:

k) = | Thdu (ReN).
n—1
Suf 1= F(R)¢x (n€ N, Sof:=0),
e
onf == Sif (€N,
k=0

n—1
Dy:=> iy (n € Ny).
k=0

Recall that
M,, ifxel,
Da, (z) = {0, ifedl,

The norm (or quasinorm) of the space L,(G,,) is defined by

If1,= ([ m !f(w)lpdu(fc)); (0<p<oo).

The o—algebra generated by the intervals {I,, (x) : z € G,,} is denoted by
Fn(néeN). Denote by f = (f(”),n € N) a martingale with respect to
Fn(n € N) (for details see e.g. [16]).

The maximal function of a martingale f is defined by

= sup | /0]
neN



248 GEORGE TEPHNADZE

In case f € Ly (G,,), the maximal functions are also be given by

f* (@) = sup ——— / £ () dpi (u

neN /1’

For 0 < p < oo the Hardy martingale spaces H, (G,,) consist of all martin-
gale for which
1 g, o= "M, < oo

If f e L (G,), then it is easy to show that the sequence (Sy, (f) :n € N)
is a martingale

If f= ( f™M neN ) is martingale then the Vilenkin-Fourier coefficients
must be deﬁned in a slightly different manner:

k—o0 Gm

The Vilenkin-Fourier coefficients of f € L; (G,,) are the same as those of
the martingale (S, (f) : m € N) obtained from f.

In the literature, there is the notion of Riesz’s logarithmic means of the
Fourier series. The n-th Riesz’s logarithmic means of the Fourier series of an
integrable function f is defined by

Raf (0) = 3 20,
" k=1

where
n

= (1/k).

k=1
Let {qx : kK > 0} be a sequence of nonnegative numbers. The n-th N6 rlund
means for the Fourier series of f is defined by

1 n
Q_ZQn—kSkfa
" k=1
where

k=1

If g, = 1/k, then we get Norlund logarithmic means

Sif (x
Lof (z): ZZ’“

It is a kind of "reverse” Riesz’s logarithmic mean. In this paper we call these
means logarithmic means.
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For the martingale f we consider the following maximal operators of

R f(x) == sup R, f ()],
neN

L*f(x) := sup [Lnf (2)],
neN

o f () = sup |0, f(x)].
neN

A bounded measurable function a is a p-atom, if there exists a dyadic interval
I, such that

a) [;adp =0,
b) llall, < p(1)~7,
¢) supp (a) C I.

3. FORMULATION OF MAIN RESULTS

Theorem 1. Let p > 1/2. Then the mazximal operator R* is bounded from the
Hardy space H), to the space L.

Theorem 2. Let 0 < p < 1/2. Then there exists a martingale f € H, such
that

17 fl,, = +oo.

Corollary 1. Let 0 < p < 1/2. Then there exists a martingale f € H, such
that

lo™ fl, = +oo.
Theorem 3. Let 0 < p < 1. Then there exists a martingale f € L, such that

IL* £, = +o0.
4. AUXILIARY PROPOSITIONS

Lemma 1. [18] A martingale [ = (f("),ne N) is in H,(0<p<1) if
and only if there exists a sequence (ax,k € N) of p-atoms and a sequence
(1, k € N) of a real numbers such that for everyn € N

(1) > miSuar = f™
k=0

oo
2]%P<%~
k=0

Moreover,

0 1/p
£l o i (z w) |
K=0
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where the infimum is taken over all decomposition of f of the form (1).

5. PROOF OF THE THEOREMS
Proof of Theorem 1: Using Abel transformation we obtain

1503 (1) | ouf ()
= j+1 L,

Rnf (x) =

Consequently,
(2) L*f <co'f.

On the other hand Weisz[17] proved that ¢* is bounded from the Hardy
space H,, to the space L, when p > 1/2. Hence, from (2) we conclude that R*
is bounded from the martingale Hardy space H,, to the space L, when p > 1/2.
O

Proof of Theorem 2: Let {ay : k € N} be an increasing sequence of the
positive integers such that

(3) > o

k—1 ]./
Z (Mag,) " _ (Maq,)"”
par SRRV NG

1/
(M2ak 1) P < Mak
V-1 Z/Z

We note that such an increasing sequence {ay : k € N} which satisfies con-
ditions (3)-(5) can be constructed.

(4)

()

Let
A (z) = Z N,
{k; 2ak<A}
where
)\k _ mQak
VO
and
1/p—1
o 2a
@ (2) = = 2 (Dat ) (0) = Day, (2))
It is easy to show that
1/p—1
2c _
sl oo < =2 Mo, 1 < (Mao, )7 = (u(supp ax)) ™7,

2cvp

ag (), 20 < A,
(6) Sarar () = {Ofc( ) S
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f(A) (z) = Z NG = Z)\kSMAak (),
{k;2ak<A} k=0

supp(ag) = loa,,

/ apdp = 0.
I

2ay,

From (3) and Lemma 1 we conclude that f = (f(”), n e N) € H,.
Let

Q= Moy + My, —1, A>S.

Then we can write

&

1 =S f(x

0 Byl =y

% =1 I

M2o¢k*1 quk
L N AL o AL R S
leg, = J @y, i J
k=1 k j=Maa,

It is easy to show that

1/p—1

- \2/(;% ) iij{MQOéka"'uM2ak+1_1},k2071,2...7

@)  fU)= U

07 J ¢ U {M2ak7"'7 MQOck—‘rl_l}-
k=1

Let j < Ma,,. Then from (4) and (8) we have

©  ISif@l< Flw)
77:0 U:M2ocn
k—1 M2a,+1—1 M;ép—l k-1 leép CMQIép
< —— < =
W0 v=Mye, VI =0 VI At
Consequently,
Moy, —1 Mo, —1
10)  |I| < 1 25: 15;f @) iM%f,1 < 1_ CMZZ,l
N ngtk j=1 ] - 677 vV A1 =1 j - A1
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Let Ms,, <j < 0 Then we have the following

k—1 MZOénJrl_l

(11) Sif@=>""3" fwe.@)+ > f), (@)

da k=1 7 s1/p—1
1 | M,
(12) II= - "(M ()—M()>

Maq ]
To discuss I1;, we use (4). Thus, we can write that

1/p

a CMQa
(13) 11| < c§ Mo, =

Since,

(14) DjJerak (SL’) = DMzak (.T}) + wMQ% <x> Dj (x) )

when j < Ma,,,
for 11, we have,

1/p—1 M2s - D T
(15) I, = 20% Z ]+M2a MZak( )
ng ]+M204k
1 Ml/p 1 M25_1

Dj(x)
. QOék J
B lgz, v/ ¢M2“’“ Z j '

=0 J+M2ak
We write
ngkf(l') =1 + I]l + IIQ,
Then by (5 ), (7), (10) and (12)-(15) we have

M,
R, f (@) 2 11B] = 1| = |Th) 2 || - =535

NG
1/p—1 |Mas—1

> MQOzk 22: D](m) . Mak

a A V =0 j+M2ak 0[2/2
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Let 0 < p <1/2, x € Iy;\ Iz for s = [ay/2], ..., . Then it is evident
o My | Mooy

Hence, we can write

Ml/pfl M2 M
‘Rqs f@)‘ = — 2/_% = 3a;
L ak Mzak ak/

MM ML, MM,

204/9 (77 204/9
= 3/2 3/2 = 3/2
O, O, O,

Then we have

[ims@ramz > [ |k @] we)

Gm s=lak/2 \l2s41
& MyLP M3,
> Z (kf/g dp ()
QO

5:[0%/2][2 \J2s11

ag Ml 2pM2p 1

2ak
zc Z 3p/2

s=[ay /2] A
9o (1—2p)
T/27 When0<p<1/2
> i — 00 , when k£ — o0.
cay! when p = 1/2
which completes the proof of the Theorem 2. O

Proof of Theorem 3: We write

s
Aoy,

(16) Ly, f()= 3 2D

day,,s ]:1 (:Zak ]

Moy, —1 q;

3 Sif(x) 1 Sif @) v
g, =

S
93y, Qe J=Maa, qoék ]

Since (see 9)

For I11 we can write

Mooy, 1/p 1/p
M. M.
(17) 11| < < § L B L
Qg iso Qo — J /-1 V-1
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Using (11) we have

(18) 1V = ll 5 - (kz: 215; 1 ( My, () = Dag,, (@))

qgk j:MQ Gay,s

LMt <D ) —

2ak 2

My, (37)) B
: =IVi + IV,

qak ] MQak qak ]
Applying (4) in IV} we have
1/p
(19) IVy| < o—eet
-1
From (14) we obtain
1 Ml/p 1

(20) v, =

20,
MQ E ,
lQak ,8 V “k -0 Mas —

Let 2 € Iy\Is41. Then D, (z) = j, j < M,. Consequently,

Mos—1 Mos—1 . Mos—1
J - = - = - — 1) > esM,,.
2 Mz, — j 2 Mo, — j 2 My, — j ’

J=0 J=0 J=0

Then
1/p—1
(21) 1IVa| > ¢ 2§/k2 LMy, @ € Ing\Ipsi1.
Q
Combining (5), (16)-(21) for x € Ios\ o541, = [ /2],...,p,and 0 < p < 1
we have
1/p—1 1/p—1
201 Ma 2051
ankf( )‘ c 3;2 sMys — ¢ Oékk >c 3;2 sMoy,
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Then

/\Lmv’ p)2 /I\I L (@) dpt (a)

my /2]
mi p
> 2 / Log, £ ()] i ()
s=[mx /2] Ios\I2s+1
my Ml/p 1 p
2c
2o 3 [ (e du
s=[my,/2] Ios\I2s41 o
QOlk 1
2C Z p/2 MQS
s=[myg /2] QO
oo (1—p)
=0 when 0 < p <1,
> al/? W b — 00, when k — oo0.
ar, when p=1,
Theorem 3 is proved. 0J
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