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ON A CLASS OF RICCI-RECURRENT MANIFOLDS

STANIS LAW EWERT-KRZEMIENIEWSKI

Abstract. Properties of Ricci-recurrent manifolds with some conditions im-

posed on the Weyl conformal curvature tensor are investigated. The main the-

orem states: a conformally quasi-recurrent and Ricci-recurrent but not Ricci-
parallel manifold of dimension n > 4 with nowhere vanishing Weyl conformal

curvature tensor and Ricci tensor which is non-conformally related to a con-

formally symmetric one must be necessary Ricci-generalized pseudosymmetric
manifold.

1. Introduction

Let (M, g) be a n-dimensional semi-Riemannian manifold with metric g. A tensor
field T of type (0, q) is said to be recurrent ([Rot82a]) if the relation

(1) ∇XT (Y1, . . . , Yq) T (Z1, . . . , Zq)− T (Y1, . . . , Yq)∇XT (Z1, . . . , Zq) = 0

holds on (M, g). From the definition it follows that if at a point x ∈ M, T (x) 6= 0,
then on some neighbourhood of x there exists a unique covector field b satisfying

∇XT (Y1, . . . , Yq) = b(X)T (Y1, . . . , Yq) .

According to Adati and Miyazawa ([AM67]), a manifold (M, g) of dimension
n ≥ 4 is called conformally recurrent if its Weyl conformal curvature tensor C
satisfies (1). It is obvious that the class of conformally recurrent manifolds contains
all conformally symmetric one, i.e. all manifolds satisfying ∇C = 0.

Investigating conformally flat hypersurfaces immersed in an (n + 1)-dimensional
Euclidean space R. N. Sen and M. C. Chaki ([SC67]) found that if at least n − 1
principal curvatures are equal to one another and the remaining one is zero, then
the Riemann curvature tensor satisfies

∇ZR(X, Y, V, W ) = 2p(Z)R(X, Y, V, W )+
p(X)R(Z, Y, V, W ) + p(Y )R(X, Z, V,W )+
p(V )R(X, Y, Z,W ) + p(W )R(X, Y, V, Z)

for some 1-form p. Manifolds satisfying the above condition are called pseudosym-
metric (pseudo-symmetric in the sense of M. Chaki) ([Cha87]). We shall call such
manifold quasi-recurrent rather than pseudosymmetric since the last notion is used
in a different context (see below).

A (0, 4) tensor B is said to be generalized curvature one if it satisfies

B(X, Y, V, W ) = −B(Y, X, V, W ) = B(V,W,X, Y ),
B(X, Y, V, W ) + B(X, V,W, Y ) + B(X, W, Y, V ) = 0.
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If, moreover, the second Bianchi identity

∇ZB(X, Y, V, W ) +∇V B(X, Y,W,Z) +∇W B(X, Y, Z, V ) = 0

holds, then B is said to be a proper generalized curvature tensor.
From the results of ([EK93], Proposition 2) it follows

Proposition 1. Let (M, g) be a semi-Riemannian manifold and B be a generalized
curvature tensor on M satisfying

∇X5B(X1, X2, X3, X4) =
∑

σ

σ
p

(
Xσ(5)

)
B

(
Xσ(1), Xσ(2), Xσ(3), Xσ(4)

)
,

for some 1-forms
σ
p, where the sum includes all permutations σ of the set {1, 2, 3, 4, 5}.

Then there exist 1-forms w, p such that

∇ZB(X, Y, V, W ) = w(Z)B(X, Y, V, W )+
p(X)B(Z, Y, V, W ) + p(Y )B(X, Z, V,W )+
p(V )B(X, Y, Z,W ) + p(W )B(X, Y, V, Z)

holds on M . Moreover, w = 2p if and only if B is a proper generalized curvature
tensor.

Thus the weakly symmetric manifolds ([TB92]) as well as the generalized pseu-
dosymmetric one ([Cha94]) are simply quasi-recurrent.

In ([EK93]) it is also proved that conformally flat quasi-recurrent manifold is
of quasi-constant curvature and is subprojective in the sense of Kagan ([Kru61]).
Finally, the local form of the metric of conformally flat quasi-recurrent manifold
was found ([EK93]). Similar results were obtained later by others authors (cf. for
example [De00] and [CM97]).

Following Prvanović ([Prv88]), a semi-Riemannian manifold (M, g), dim M ≥ 4,
will be called conformally quasi-recurrent if its Weyl conformal curvature tensor C
satisfies

(2)
∇ZC(X, Y, V, W ) = w(Z)C(X, Y, V, W )+

p(X)C(Z, Y, V, W ) + p(Y )C(X, Z, V,W )+
p(V )C(X, Y, Z,W ) + p(W )C(X, Y, V, Z)

for some 1-forms w, p. The forms w, p will be referred to as fundamental forms
or fundamental vectors. In condition considered originally by Prvanović w = 2p.
However, the last relation together with (2) implies that for the tensor C the second
Bianchi identity must hold and, consequently, the manifold is of harmonic conformal
curvature.

The aim of this paper is to investigate properties of conformally quasi-recurrent
manifolds in the sense of (2) which are simultaneously Ricci-recurrent, i.e. those
the Ricci tensor S satisfies

∇S = b⊗ S

for some 1-form b.
For a generalized curvature tensor B define endomorphism B̃(X, Y ) by

g
(
B̃ (X, Y ) V,W

)
= B (X, Y, V, W ) .

Then for a (0, k) tensor field T, k ≥ 1, and (0, 2) tensor field S we define the tensor
fields B · T and Q(S, T ) by the formulas

(B · T ) (X1, . . . Xk;X, Y ) =
−T

(
B̃ (X, Y ) X1, X2, . . . , Xk

)
− · · · − T

(
X1, . . . , Xk−1, B̃ (X, Y ) Xk

)
,

Q (S, T ) (X1, . . . Xk;X, Y ) =
−T ((X ∧S Y )X1, X2, . . . , Xk)− · · · − T (X1, . . . , Xk−1, (X ∧S Y ) Xk) ,
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where
(X ∧S Y ) Z = S(Y, Z)X − S(X, Z)Y.

If the tensors R · R and Q(S, R) are linearly dependent then the manifold is
said to be Ricci-generalized pseudosymmetric one ([DD91a]). It is obvious that any
semisymmetric as well as any Ricci flat manifold is Ricci generalized pseudosym-
metric. The manifold (M, g) is Ricci-generalized pseudosymmetric iff the relation

(3) R ·R = LQ(S, R)

holds on the set {x ∈ M,Q(S, R) (x) 6= 0} , L being a function on M . Note that (3)
with L = 1 is of particular importance.

All manifolds under consideration are assumed to be smooth Hausdorff connected
and their metrics are not assumed to be definite.

2. Preliminary results

Components of the Weyl conformal curvature tensor C are given by

(4)
Chijk = Rhijk−

1
n−2 (gijShk − gikShj + ghkSij − ghjSik) + r

(n−1)(n−2) (gijghk − gikghj)

In the sequel we shall often need the following lemmas:

Lemma 2. The Weyl conformal curvature tensor satisfies the following well-known
relations:

Chijk = −Cihjk = Cjkhi, Cr
rjk = Cr

irk = Cr
rjk,

Chijk + Chjki + Chkij = 0,

(5) Cr
ijk,r =

n− 3
n− 2

[
Sij,k − Sik,j −

1
2(n− 1)

(gijr,k − gikr,j)
]

,

(6) Chijk,l + Chikl,j + Chilj,k =
1

n−3 (ghjC
r
ikl,r + ghkCr

ilj,r + ghlC
r
ijk,r−

gijC
r
hkl,r − gikCr

hlj,r − gilC
r
hjk,r),

where the comma denotes covariant differentiation with respect to the coordinate
vector field.

Lemma 3 ([Wal50], p.26). On every semi-Riemannian manifold the curvature
tensor fulfills the relation

Rhijk,[lm] + Rjklm,[hi] + Rlmhi,[jk] = 0.

The following lemma seems to be well-known:

Lemma 4 ([Ols87]). Let M be a Ricci-recurrent manifold such that the set U =
{x ∈ M, b(x) 6= 0} is non-empty, b being the recurrence covector of the Ricci tensor.
Then the Ricci tensor satisfies

(7) ShrS
r
k =

r

2
Shk.

Lemma 5 ([EK98]). Let Alm, Blm, Rhijk be numbers satisfying

Alm = −Aml, Blm = −Bml, Rhijk = −Rihjk = Rjkhi,

Rhijk + Rhjki + Rhkij = 0,
AlmRhijk + AhiRjklm + AjkRlmhi + BhlRmijk + BilRhmjk+

BjlRhimk + BklRhijm −BhmRlijk −BimRhljk −BjmRhilk −BkmRhijl+
BijRhklm −BikRhjlm + BhkRijlm −BhjRiklm = 0.

Then either Alm − 2Blm = 0 or Rhijk = 0.
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Lemma 6 ([Rot82b]). If wi, pi, Rhijk are numbers satisfying

wlRhijk + phRlijk + piRhljk + pjRhilk + pkRhijl = 0,

Rhijk = −Rihjk = Rjkhi, Rhijk + Rhjki + Rhkij = 0,
then either each wl + 2pl = 0 or each Rhijk = 0.

Lemma 7 ([Pat81]). On every 4-dimensional semi-Riemannian manifold (M, g)
the Weyl conformal curvature tensor satisfies

(8)
ghmClijk + glmCihjk + gimChljk + ghjClikm + gljCihkm+

gijChlkm + ghkClimj + glkCihmj + gikChlmj = 0.

The next lemma shows the difference between 1-forms p and w. Let pl and wl

be the local components of the 1-forms. Then the local form of (2) is

(9) Chijk,l = wlChijk + phClijk + piChljk + pjChilk + pkChijl.

Lemma 8. Suppose that at a point of the manifold M relation (9) holds. Then

(10) prC
r
ijk = 0,

(11) wrC
r
ijk = Cr

ijk,r.

Moreover

(12)
Chijk,[lm] = ∆wlmChijk + phmClijk + pimChljk + pjmChilk + pkmChijl−

phlCmijk − pilChmjk − pjlChimk − pklChijm,

where ∆wlm = wl,m − wm,l, phm = ph,m − phpm.

Proof. Contracting (9) with gij and making use of Lemma 2 we obtain (10). Sum-
ming (9) cyclically in (j, k, l), by contraction with ghl and the use of (10), we get
(11). Relation (12) is obvious.

Proposition 9. Let M be a 4-dimensional manifold with nowhere vanishing Weyl
conformal curvature tensor C. If C satisfies (9), then M is conformally recurrent
manifold.

Proof. We can suppose p 6= 0. Transvecting (8) with ph and making use of (10) we
get pmClijk +pjClikm +pkClimj = 0, which reduce (9) to ∇C = (w+2p)⊗C. This
completes the proof.

In the sequel we shall often assume the following hypothesis:

(H). M is a Ricci-recurrent manifold with nowhere vanishing Weyl conformal
curvature tensor and Ricci tensor. Moreover, the Weyl conformal curvature tensor
satisfies (9), p does not vanishes on a dense subset and the Ricci tensor is not
parallel.

By hypothesis, M admits a covector field b satisfying

(13) Sij,k = bkSij , Sij,kl = (bk,l + bkbl)Sij , Sij,[kl] = ∆bklSij ,

where ∆bkl = bk,l − bl,k.

Remark. In what follows we can always assume p(x) 6= 0 whenever it is necessary,
because if p(x) = 0, then, in virtue of (H), in each neighbourhood of x we can
choose a point, say y, such that p(y) 6= 0 and by usual procedure extend our results
to the point x.

Lemma 10. Let M, dim M ≥ 4, be a Ricci-recurrent manifold with non-parallel
Ricci tensor and suppose that (10) is satisfied for some non-zero covector p at a
point y. Then the scalar curvature of M vanishes at y.
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Proof. The Ricci identity together with (13) and (4) gives

(14)
∆blmShk = ShrC

r
klm + SkrC

r
hlm+

n−3
2(n−1)(n−2)r(gklShm − gkmShl + ghlSkm − ghmSkl),

which, by contraction with ghk, yields ∆blmr = 0. Suppose r(y) 6= 0. By transvect-
ing (14) with Sk

x , applying (7) and symmetrizing the resulting equation in (h, x),
we obtain

(15)
ShrC

r
xlm + SxrC

r
hlm+

n−3
2(n−1)(n−2)r(gxlShm − gxmShl + ghlSxm − ghmSxl) = 0

whence, by contracting with gxl and transvecting with ph, by the use of (10), we
get prS

r
m = r

npm at y. Next, transvecting (15) with px, we find

(Shm − r

n
ghm)pl = (Shl −

r

n
ghl)pm.

Hence, in virtue of (10), (ShrC
r
pqt − r

nChpqt)pm = 0 at y results. Applying the last
equality to (15) we have

r(gxlShm − gxmShl + ghlSxm − ghmSxl) = 0,

which, by transvecting with Sxlghm, yields r = 0 at y, a contradiction. This
completes the proof.

Lemma 10 results in

Proposition 11. Let M, dim M ≥ 4, be a Ricci-recurrent manifold with non-
parallel Ricci tensor and suppose that M admits a covector field p with properties:

i) p does not vanish on a dense subset of M ;
ii) prC

r
ijk = 0 on M .

Then the scalar curvature of M vanishes.

As a consequence of the above Proposition under hypothesis H we have the
following frequently used formulas:

ShrS
r
k = 0, Sr

k,r = Sr
kbr = 0

Lemma 12. Under hypothesis (H) relation

(16) 2SmrC
r
ijk − Smi∆bjk = 0

holds on M .

Proof. By Proposition 11 and (14) we have

(17) ∆blmShk = ShrC
r
klm + SkrC

r
hlm

on M . Differentiating covariantly with respect to ∂z, by the use of (13), (9) and
(17), we obtain

(18)
wz∆blmShk + prS

r
hCzklm + prS

r
kCzhlm + pkShrC

r
zlm + phSkrC

r
zlm+

pl∆bzmShk + pm∆blzShk = Shk∆blm,z.

Summing cyclically the last equation in (h, k, z) and again making use of (17) we
get

ShkWlmz + SkzWlmh + SzhWlmk = 0,
where Wlmz = −∆blm,z + (wz + pz)∆blm + pl∆bzm − pm∆bzl, which, in virtue of
Lemma 3, results in

(19) ∆blm,z = (wz + pz)∆blm + pl∆bzm − pm∆bzl.

Now, the last result together with (18) yields

(20) prS
r
hCzklm + prS

r
kCzhlm + pkShrC

r
zlm + phSkrC

r
zlm = Shkpz∆blm,
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whence, by transvection with Sk
v, we obtain

(21) prS
r
hSvsC

s
zlm = psS

s
vShrC

r
zlm.

On the other side, applying to the left hand side of (12) in turn the Ricci identity,
(4) and transvecting with ph we find

(22)
plSmrC

r
ijk − pmSlrC

r
ijk + prS

r
l Cmijk − prS

r
mClijk =

(n− 2)(prmprClijk − prlp
rCmijk).

Moreover, transvecting (22) with Sl
v, making use of (21) and symmetrizing the

resulting equation in (m, i), we get prmprSvsC
s
ijk = 0. Suppose prmpr = 0. Then

(22) gives

(23) plSmrC
r
ijk − pmSlrC

r
ijk + prS

r
l Cmijk − prS

r
mClijk = 0.

Changing in (20) indices (h, k, z, l,m) into (l,m, i, j, k) respectively, then adding to
(23) and symmetrizing in (l, i), we get pl(2SmrC

r
ijk − Smi∆bjk) = 0. On the other

side, if SvrC
r
ijk = 0, then (17) implies Svi∆bjk = 0. Thus the Lemma is proved.

Lemma 13. Under hypothesis (H) relations

prS
r
h = 0,

∆b = 0,

SmrC
r
ijk = 0

hold on M .

Proof. Transvecting (16) with pi, by the use of (10), we have

(24) prS
r
m∆bjk = 0.

Differentiating covariantly (16), in view of (13), (9) and (19), we find

(25) 2prS
r
mClijk + (piSml − plSmi)∆bjk = 0.

Hence, if ∆bjk = 0, then prS
r
m = 0 holds. On the other hand, if ∆bjk 6= 0, then (24)

yields prS
r
m = 0 again. Then, by the use of (25), we have (piSml−plSmi)∆bjk = 0.

Transvecting the last result with Cl
abc, in virtue of (16) and (10), we get ∆bjk = 0.

This completes the proof.

Corollary 14. Under hypothesis (H)

d(w + 2p) = 0

holds on M .

Proof. This results from (12) by the use of Lemmas 3, 13 and 5.

Proposition 15. Assume that on a manifold (M, g) hypothesis (H) is satisfied.
If t = w − 2p = 0 on (M, g), then the manifold is conformally related to a non-
conformally flat conformally symmetric one (M, exp (2f) g). Conversely, if (M, g)
is conformally related to a non-conformally flat conformally symmetric one, then
w − 2p = 0.

Proof. It is well known that the Christoffel symbols and the Weyl conformal cur-
vature tensor of the conformally related manifolds (M, g) = (M, exp (2f) g) and
(M, g) are related by{

i
jk

}
=

{
i

jk

}
+ δi

jfk + δi
kfj − f igjk, Chijk = e2fChijk.
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By the above formulas and (H) covariant derivatives of C and C with respect to
the appropriate metrics satisfy

(26)

e−2fChijk;l =
(wl − 2fl)Chijk+
(ph − fh)Clijk + (pi − fi)Chljk + (pj − fj)Chilk + (pk − fk)Chijl+
ghlf

rCrijk + gilf
rChrjk + gjlf

rChirk + gklf
rChijr,

where fl = ∂lf, f l = glrfr.
Suppose t = w − 2p = 0. By Corollary 14 we have dw = dp = 0. Hence on a

neighbourhood of each point there exists a function, say f , such that fl = ∂lf = pl

which, in virtue of (10), gives ∇C = 0.
On the other hand, by transvecting (26) with ph, in view of (10) and ∇C = 0,

we obtain
pr (pr − fr) Clijk + plf

rCrijk = 0,

which by symmetrization in (l, i) yields frCrijk = 0. Then relation (26) and Lemma
6 imply wl + 2pl = 4fl. But frCrijk = 0, (10) and (11) result in Cr

ijk,r = 0 which,
together with (6), means that C satisfies the second Bianchi identity. The last
property is equivalent to w = 2p. This completes the proof.

Lemma 16. Suppose that hypothesis (H) is satisfied. Then on M relations

(27) trC
r
pqt =

n− 3
n− 2

(Spqbt − Sptbq)

and

(28)
tlChijk + tjChikl + tkChilj =

1
n−2 [ghj(Sikbl − Silbk) + ghk(Silbj − Sijbl) + ghl(Sijbk − Sikbj)−

gij(Shkbl − Shlbk)− gik(Shlbj − Shjbl)− gil(Shjbk − Shkbj)

hold, where tl = wl − 2pl.

Proof. The first equation is a consequence of (10), (11), (5), (13) and Proposition
11, while the second one results from (6), by the use of (9), (5), (13) and Proposition
11.

Lemma 17. Under hypothesis (H) we have

(29)

tp(CtqlrC
r
jih − CtqjrC

r
lih) = 3−n

n−2 [(Spqbt − Sptbq)Chilj−
(Sjibh − Sjhbi)Ctqlp + (Slibh − Slhbi)Ctqjp]+
1

n−2 [(−ghjSil + ghlSij + gijShl − gilShj)brC
r
pqt+

(gtpSql − gtlSqp − gqpStl + gqlStp)brC
r
jih−

(gtpSqj − gtjSqp − gqpStj + gqjStp)brC
r
lih+

Chpqt(Silbj − Sijbl)− Cipqt(Shlbj − Shjbl)−
Ctjih(Sqlbp − Sqpbl) + Cqjih(Stlbp − Stpbl)+
Ctlih(Sqjbp − Sqpbj)− Cqlih(Stjbp − Stpbj),

where tl = wl − 2pl.

Proof. Transvecting (28) with Ck
pqt, in virtue of Lemma 13, we obtain

(30)
tlChijrC

r
pqt − tjChilrC

r
pqt + trC

r
pqtChilj =

1
n−2 [Chpqt(Silbj − Sijbl)− Cipqt(Shlbj − Shjbl)+

(−ghjSil + ghlSij + gijShl − gilShj)brC
r
pqt].

Changing in (30) the indices (h, i, j, p, q, t) into (t, q, p, j, i, h) respectively, we
have

(31)
tlCtqprC

r
jih − tpCtqlrC

r
jih + trC

r
jihCtqlp =

1
n−2 [Ctjih(Sqlbp − Sqpbl)− Cqjih(Stlbp − Stpbl)+

(−gtpSql + gtlSqp + gqpStl − gqlStp)brC
r
jih],
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whence, changing the indices j and l,

(32)
tjCtqprC

r
lih − tpCtqjrC

r
lih + trC

r
lihCtqjp =

1
n−2 [Ctlih(Sqjbp − Sqpbj)− Cqlih(Stjbp − Stpbj)+

(−gtpSqj + gtjSqp + gqpStj − gqjStp)brC
r
lih].

Finally, adding (30) to (32) subtracting (31) and making use of (27) we get (29).
This completes the proof.

Lemma 18. Under hypothesis (H) suppose that bl 6= 0 at a point of M . If dim M >
4 then:

(33) trS
r
p = wrS

r
p = 0,

(34) rank[Sij ] = 1

at the point.

Proof. Transvecting (28) with Sl
p we obtain

(35) trS
r
pChijk =

1
n− 2

[Shp(Sijbk − Sikbj)− Sip(Shjbk − Shkbj)] ,

whence, by transvecting with th and the use of (27), we have

(36) (n− 4)trSr
p(Sijbk − Sikbj) = −(trSr

j bk − trS
r
kbj)Sip.

Transvecting (36) with ti we find

(37) (n− 3)trSr
p(trSr

j bk − trS
r
kbj) = 0.

If trS
r
p 6= 0, then (37) and (36) yield Sijbk − Sikbj = 0, which, in virtue of (35),

implies (33), a contradiction. Thus (33) holds good. Now (34) results from (35)
and (33). This completes the proof.

Proposition 19. Suppose that on a manifold M , dim M > 4, hypothesis (H) is
satisfied. If bl 6= 0 at a point x ∈ M, then on some neighbourhood of x there exists
null (i.e. isotropic) parallel vector field

(38) vi = exp[−1
2
b] ki, ∂ib = bi,

related to the Ricci tensor by

(39) Sij = ε kikj , |ε| = 1.

Proof. Relation (39) is equivalent to (34). Since the Ricci tensor is recurrent,
relations (13) and (39) yield (ki,l − 1

2blki)kj+(kj,l − 1
2blkj)ki = 0. Hence the vector

field k is recurrent. By Lemma 13 there exists a function, say b, such that ∂ib = bi.
Moreover k is isotropic by (10) and Proposition 11. Therefore the vector field
defined by (38) is isotropic and parallel. This completes the proof.

Lemma 20. Suppose that on a manifold M , dim M > 4, hypothesis (H) is satisfied.
Then

SijbrC
r
lqt − SilbrC

r
jqt = 0.

Proof. We can suppose bl 6= 0. Transvecting (30) with th by the use of (27) and
(33) we find

(n− 4)
[
(Sijtl − Siltj) brC

r
pqt −

n− 3
n− 2

(Sijbl − Silbj) (Spqbt − Sptbq)
]

= 0.

Alternating the last equation in (p, i), multiplying the result by km and taking into
consideration (39) we obtain

(tlkj − tjkl)
(
SimbrC

r
pqt − SpmbrC

r
iqt

)
= 0,
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whence, by transvecting with Cl
abc and the use of Lemma 13,

kjtsC
s
abc

(
SimbrC

r
pqt − SpmbrC

r
iqt

)
= 0.

But tsC
s
abc = 0, in virtue of (27) and Lemma 13, implies SabbcC

c
def = 0. Thus the

Lemma holds good.
The components Q(S, C)hiqtpj of the tensor field Q(S, C) are given by

Q(S, C)hiqtpj = ShpCjiqt − ShjCpiqt + SipChjqt − SijChpqt+
SqpChijt − SqjChipt + StpChiqj − StjChiqp.

It is well known that if the scalar curvature vanishes and the rank of the Ricci
tensor is one, then

Q(S, C) = Q(S, R).

Lemma 21. Suppose that on a manifold M , dim M > 4, hypothesis (H) is satisfied.
Then

(40) trb
r ·Q(S, C) = 0.

Proof. We can suppose bl 6= 0. Applying Lemma 20 to (29) we obtain

(41)

tp(CtqlrC
r
jih − CtqjrC

r
lih) = 3−n

n−2 [(Spqbt − Sptbq)Chilj−
(Sjibh − Sjhbi)Ctqlp + (Slibh − Slhbi)Ctqjp]+
1

n−2 [(−ghjSil + ghlSij + gijShl − gilShj)brC
r
pqt+

(−gtlSqp + gqlStp)brC
r
jih − (−gtjSqp + gqjStp)brC

r
lih+

Chpqt(Silbj − Sijbl)− Cipqt(Shlbj − Shjbl)−
Ctjih(Sqlbp − Sqpbl) + Cqjih(Stlbp − Stpbl)+
Ctlih(Sqjbp − Sqpbj)− Cqlih(Stjbp − Stpbj).

Transvecting (41) with tl, making use of (27), (33) and Lemma 13, then alternating
the obtained equation in (p, j) and making use of (39) we get (40). This completes
the proof.

Lemma 22. Suppose that on a manifold M , dim M > 4, hypothesis (H) is satisfied
and

(42) trb
r = 0.

Then

(43) (n− 4) brb
r = 0,

(44) tlChijk + tjChikl + tkChilj = 0,

and

(45) tp
(
CtqlrC

r
jih − CtqjrC

r
lih

)
= 0

are satisfied.

Proof. Assume trb
r = 0. Transvecting (41) with tt, then making use of (27), (33)

and Lemma 13 we obtain

(46)

n−3
n−2 [bh (Silbj − Sijbl)− bi (Shlbj − Shjbl)]+

1
n−3

(
tjbrC

r
lih − tlbrC

r
jih

)
+

1
n−2brb

r (−ghjSil + ghlSij + gijShl − gilShj) = 0,

whence, by transvecting with bjbi we find (43).
Transvecting (28) with bk we easily get

tlbrC
r
jih − tjbrC

r
lih =

1
n− 2

[bh (Silbj − Sijbl)− bi (Shlbj − Shjbl)]
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which, combined with (43), (46) and (39) yields

(n− 4) (Salbj − Sajbl) (Sbhbi − Sbibh) = 0.

But, in view of Lemma 13, the last relation gives brC
r
jih = 0. Now (44) and (45)

are simply consequences of (28) and (29) respectively. Thus the Lemma is proved.
We end this section with well-known.

Lemma 23 (cf. [Rot82a], [Rot74], Lemma 4 and [Wal50], p. 45). Suppose that at
a point of a manifold M , dim M ≥ 4, relations

(47) Q(S, C) = 0,

Sij = ε kikj , |ε| = 1,

and
r = 0

are satisfied. Then

(48) klChijk + kjChikl + kkChilj = 0

and

(49) Rhijk = kikjThk − kikkThj + khkkTij − khkjTik,

where Tij = zrzsRrijs, zrkr = 1.

3. Main results

Proposition 24. Suppose that on a manifold M, dim M > 4, hypothesis (H) is
satisfied. If at x ∈ M, trb

r (x) 6= 0 (hence bl(x) 6= 0), then on some neighbourhood
of x the Riemann-Christoffel curvature tensor has the form (49).

Proof. By (39), (40), (10) and Proposition 11 the assumption of Lemma 23 are
satisfied on some neighbourhood of x. This completes the proof.

Corollary 25. There do not exist quasi-recurrent manifolds which are Ricci-flat.

Proof. On arbitrary quasi-recurrent and Ricci-flat manifold M relation (9) holds.
Suppose that the curvature tensor of M does not vanish on an open subset U ⊂ M .
Let Vr, r = 1, . . . , n be a family of non-conformally flat manifolds with recurrent
curvature tensor and nowhere vanishing Ricci tensors indexed by r. Then the
product manifold U× (×n

r=1Vr), n > 1, would be a conformally quasi-recurrent and
Ricci-recurrent manifold and rank[Sij ] ≥ 2, a contradiction.

As a consequence of Propositions 11, 19 and 24 we obtain

Corollary 26. Suppose that on a manifold M , dim M > 4, hypothesis (H) and
Q (S, C) = 0 hold. If bl 6= 0 at a point x ∈ M, then on some neighbourhood of x the
metric g is of the Walker type. Moreover, M is semi-symmetric, i.e. R ·R = 0.

On the other hand, if Q (S, C) 6= 0, then (45), Lemma 13 and Proposition 11
result in

Corollary 27. Let on a manifold M , dim M > 4, hypothesis (H) be satisfied.
Suppose moreover that Q (S, C) 6= 0 and w − 2p 6= 0. Then

R ·R = Q(S, R).

In virtue of Proposition 15 we conclude with the following

Theorem 28. Let M, dim M > 4, be a manifold with nowhere vanishing Weyl
conformal curvature tensor and Ricci tensor.

Suppose that M is conformally quasi-recurrent with recurrent but non-parallel
Ricci tensor and, moreover, is non-conformally related to a conformally symmetric
manifold.

Then M must be necessary Ricci-generalized pseudosymmetric manifold.
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4. Remarks on the existence

There exist Ricci-generalized pseudosymmetric manifolds which are neither con-
formally quasi-recurrent nor Ricci-recurrent in an essential way.

Example. Let M , dim M > 4, be a Ricci-recurrent manifold which is simultaneously
conformally recurrent. Then from results of ([Rot82a], [Rot74], see also [EK91])
it follows that on a neighbourhood of a generic point relations (2) and R · R =
Q(S, R) = 0 are satisfied.

Example. The warped product M1×F M2 of a 2-dimensional manifold (M1, g) and
a manifold of constant curvature (M2, g̃), dim M2 ≥ 2, is a manifold satisfying R ·
R = Q(S, R) under some metric condition imposed on F ([DD91b], Corollary 5.1),
however it could not be a non-conformally recurrent conformally quasi-recurrent
and Ricci-recurrent one.

Example. Let (M, g̃) be a hypersurface of a semi-Riemannian manifold (N, g) of
constant curvature K, dim N = n + 1, n ≥ 3, g̃ being the metric tensor of M
induced from g. Then the condition

R̃ · R̃ = Q(S̃, R̃)− n− 2
n(n + 1)

KQ(g̃, C̃)

holds on (M, g̃) ([DV91]).
It is clear that R̃ · R̃ = Q(S̃, R̃) implies KQ(g̃, C̃) = 0, whence KC̃ = 0 results.

Thus K = 0 is the only case when hypersurfaces satisfying the required condition
can exist.

Example. The warped product M1 ×F M2, where M1 is an open interval in R, M2

is a locally symmetric Einstein space of non-constant curvature and F = p2(x1),
p′′(x1) 6= 0,

K̃ + (n− 1)(n− 2)(p′(x1))2 + (n− 1)p(x1)p′′(x1) = 0,

K̃ being the scalar curvature of M2, is a non-conformally recurrent (hence non-
conformally flat) conformally quasi-recurrent manifold. The fundamental forms w,
p satisfy w = 2p and dp 6= 0. Hence, in virtue of Corollary 14, the manifold is not
Ricci-recurrent.
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