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EXPLODED AND COMPRESSED SPACES

1. SZALAY

ABSTRACT. Continuing the theory of exploded and compressed numbers the
paper contains five parts. Part 1.: Introduction which contains the most im-
portant rules of computation with exploded and compressed numbers. Part 2.:
This part contains the concept of explosion and compression of k-dimensional
Euclidean space RF extending the concepts of traditional linear %rations,

inner product, norm and metric. The elements of exploded space RF (super-
line, super-plane) are introduced. The concepts of super- and sub-functions
were introduced in [1]. Here we extend them for the case of several variables.
Part 3.: Descriptions of lux phenomena which show the visible parts of objects
in the exploded spaces. Part 4.: The beginning of analysis of functions with
several variables defined on the exploded space. Part 5.: A few words on the
geometry of the exploded three dimensional space with an interesting open
problem for the traditional three dimensional space.

1. INTRODUCTION

In [1] we introduced the set of exploded real numbers R with same equality and
ordering relations, familiar on the set of real numbers R such that R is a real subset
of R. Any real number was considered as an exploded real number by the explosion

(1.1) T =areathz, =z € (—1,1),

that is they are the explodeds of real numbers with an absolute value less than 1.
The exploded real numbers u = T with 2 € (—1, 1) were called visible exploded real
numbers while in the case z € R\(—1,1), the exploded real numbers were called
invisible exploded real numbers. The invisible "—1 and 1 were called negative and
positive discriminators, respectively. For any exploded real number u = T, where
x € R, the number = was called the compressed of u denoted by u, that is

[— L

(1.2) u=(u), ue€R.
On the other hand, the identity
(1.3) z=(T), z€R

can be used, too. The set of the compresseds of real numbers was denoted by R.
Clearly, R = (—1,1). (1.1) and (1.3) yield

(1.4) z=thz, z€R.

The concept of neighbourhood together with the concept of convergence was ex-
tended for the set R. (See [1], Definition 1.9 and Definition 1.17 with Theorem
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20 I. SZALAY

2.47.) Moreover, the set R is a field with the super-addition defined by
(1.5) ?—é—é—ﬁ:m+y, z,y €R
and the super-multiplication defined by

(1.6) ?—Q—ﬁzw, T,y €R

such that the field (R, +,-) is isomorphic with the field (ﬁ, —;—[—é—, —Q—). (See [1]
Theorem 1.38.) The operations super-subtraction
(1.7 f—g—ﬁ:x—y, z,y €R

and super-division

[E—

o o x
(1.8) x—Q—y: (;) , T,y€ERy#0
were introduced, too. Moreover, we can use
(1.9) u ggé— v="u+u, u,v€R, (Seel[l], (1.27).)
(1.10) u %??— v="w=wu, u,v€R, (See[1], (1.30).)
and
(1.11) u —Q— V=T-0, uU,VE€E R.(See [1],(1.33).)

The convergence lim,, o Uy, = ug (Un,ug € T%) means that for any positive e(> 0)
there exists a real number v such that if n > v then |u, —i}é— ug| < € holds. (See

[1], Theorem 2.46.) If up,uo € R, then we get back to the familiar definition of
convergence. (See [1], Theorem 2.47.) If u,, € R then the traditional lim,,_, . u, =
o0 is equivalent with lim,,_,o u, = 1. Generally, the latter limit has a meaning
for the sequences of invisible exploded real numbers, too. By (1.1) and (1.4) the
identity (1.9) yields

Theorem 1.12. Ifu,v € R and |thu+thv| < 1 thenu —g—]—é— vE€Randu AQ— v =
areath(thu + thv).

By (1.1) and (1.4) the identity (1.11) yields

Theorem 1.13. Ifu,v € R thenu —Q— vE R andu —;7\5— v = areath(thwu-thv).

Theorem 3.7 in [1] says that the field (R, ®,®) with

£+
1.14 =
(1.14) Eon= 1 ENER
and
(1.15) £ ®n =th(areath& - areathn), §&ne R
is isomorphic with the field (R, +,-). Hence
£—n
1.16 Eon= , &neR.
(1.16) U nen

The set R has the same ordering which is usual in R. Namely, for any z,y € R

(1.17) <7y if andonlyif =z<y.
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The concepts of super- and sub-functions were also introduced in [1]. (See Part 4.)
Namely, if f is a traditional (one-variable) function then

(1.18) spr f(u) = F(@), weD;CR
and if F is an (one-variable) function with definition-domain D C R then
(1.19) sub F(z) = F(Z), T € Dp.

2. EXPLODED AND COMPRESSED k-DIMENSIONAL SPACES

Considering the familiar k-dimensional Euclidean space R¥ with its traditional
linear operations, inner product, norm and metric, we define the exploded k-
dimensional space as follows:

(2.1) R = {U = (u1,u2,us, ..., ug) : u; €R, i= 1,2,3,...k}.

IfV = (vy,vs,vs,...,0;) € RF, wesay that U = V ifand only if u; = v;,i = 1,...k.
Denoting z; = u;, (i = 1,...,k), the point

(2.2) U= (z1,22,%3,...,2), z €R, i=1,2,3,...,k

is called the compressed of U. On the other hand, if X = (1,22, 23,...,2;) € R*
then

(23) X = (ﬁ;w:lﬁa"'alﬁ)

is called the exploded of X. By (1.2) and (2.2) we have

(2.4) U="0), UceRF
Similarly, (1.3) and (2.3) yield
(2.5) X =(X), XeR'

Clearly, U = V if and only if U = V. By (1.1), (2.3) shows that X € R* if and
only if z; € R,1=1,2,3,...,k. Hence,

(2.6) chﬁ, k=1,2,3,....

For any subset S C ﬁ, the set

(2.7) S={UeRF:UEeS}

is called the compressed set of S. Hence, (1.4), (2.2) and (2.7) yield
(2.8) RF={X€eR":|z;| <1, i=1,2,3,...,k}.
For any subset S C R*, the set

(2.9) S={XecR:XeSs)

is called the exploded set of S. Hence (2.7) with (2.4) and (2.9) with (2.5) yield
(2.10) S=(9), ScERF

and

(2.11) S=(S), ScR*

respectively. The most important exploded and compressed sets are mentioned in
the following
Definition 2.12.

o The exploded set of a line of the space RF is called a super-line. Its com-
pressed set is called a sub-line.
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o The exploded set of a plane of the space R* is called a super-plane. Its
compressed set is called a sub-plane.

e The exploded set of a sphere of the space RF is called a super-sphere. Its
compressed set is called a sub-sphere.

Definition 2.13. The set S C R* is called bounded if there exists a positive

exploded real number b such that for any U = (uy,us,us, ..., ur) belonging to S,
the inequalities —b < u; < b, 4 = 1,2,3,...,k hold. (The concept of a positive
exploded number and the sign “-” for exploded real numbers was introduced in

Definitions 1.8 and 2.32 of [1], respectively. We mention that Definition 1.22 in [1]
is special case of the present Definition 2.13.)

Remark 2.14. With respect to (2.6) we have that R* is bounded with b = T.
Moreover, by Theorem 1.11 of [1] we have that the set S is bounded if and only if
the set S is bounded with a bound b € R*. Consequently, every super-sphere is
bounded.

Now we extend the concepts of super- and sub-functions.
First of all we say that a function given by the equation

(215) y:f(X); X=(.’E1,.'L'2,.Z'3,...,Z'k),
is a traditional function if its domain Dy C R* and range Ry C R where
(2.16) Ry={yeR:y=f(X) with X € Ds}.

For any traditional function f we define its super-function denoted by spr f as
follows:

(2.17) Dy ={U € R¥: U € Dy}

and

(2.18) spr f(U) = f(D).

Hence,

(2.19) Ry ={ve R:v=sprf(U) with Ue Dgpr ¢}

For any function F with Dp C R*¥ and Rr C R we define its sub-function, denoted
by sub F' as follows:

(2.20) Dyunr = {X € R* : X € Dy}

and

(2.21) sub F(X) = F(X).

Hence,

(2.22) Rywr={y€R:y=subF(X) with X € Dypr}.
Clearly,

(2.23) Dswor = DF, and Rsubr = Rp.

Theorems 4.11 and 4.14 in [1] can easily be extended for the functions of several
variables so, without any proof, we use that

(2.24) F =spr(sub F)
and for any traditional function
(2.25) f =sub(spr f)

holds. Moreover, we remark on the basis of (2.24) that every traditional function
is a super-function, too.
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Considering the inner product of
X = (.'13'1,56'2,(173, s 73;/6) and Y = (y17y25y37 s 7yk)

k
(2.26) X-Y=) zw, XYeR

i=1
as a traditional function f of X with parameter Y and using x; = wi, yi = vi,
i=1,2,3,...,k, by (2.18), (2.26), (1.5) and (1.6) we obtain

spr f(U) = (w —Q— 1) —?é— (us %;é_ v2) _Q_
(u3 —Q— ’U3) —g—i:—é— R —i—}:‘—é— (fu,k —Q_ ’Uk)-

Moreover, if X =Y, (2.26) gives the traditional norm of X

(2.27)

(2.28) 1 X | re =

can be considered as a traditional function f of X with Dy = R*¥ and Ry = R{
(where R{ denotes the set of non-negative real numbers). Applying the traditional
power-function p, (see (4.16) in [1]) we have the one variable square root function
p1 that is
p%(m) =+z with D,, =R,, =R{.
2

So, the super-square root function is

[N

(2.29) sprpi(u) = (y@) with u€ Ry.
Now, we introduce the following operations based on (1.5) and (1.6). Having
the elements of R¥, U = (uy,uz,us,...,u), V. = (v1,v2,03,...,0;) and W =

(w1, w2, ws, ..., wy) the super-addition U —;-T{S— V is an element of R* such that

(2.30) U —g—é— V= (u _%;é_ U1, U —g—}é— Vg, U3 —;—;Ié— U3, ..., UL —;—j—é— Vk)-

Considering number ¢ € R the super-multiplication ¢ —Q— U is an element of RF

such that

(2.31) c—iﬁé— U=(c —&é— ul,c—Q— uz,c—gzé— us, - - .,C—Q— U)-

By the identities (1.9) and (1.11) the following theorems are obvious.

Theorem 2.32. For any U,V,W € R* the identities

(2.33) U _;{é_ V=V —gé— U

(2.34) U —Q— V) —gé— W=U —i{é— % —Q— W)

(2.35) U-8-0=U with 0=(0,0,0,...,0) € RF

and

(2.36) U—Q—(—U) =0 with —U = (—u1,—us, —us,...,—ug)

hold.
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Theorem 2.37. For any c,c1 and ¢z € R and U,V e ﬁ the identities
(2.38) T—Q— U=U

(2-39) (a1 —Q— c2) —Q— U=c —;Zé— (c2 —Q— U)
(2.40) -3 U B~ V) = (¢ <3-U) & (c=3F- V)

and

(2.41) (c1 —gi-s— ) —Q— U=(c1 —Q— U) —gé— (e —Q— U)

hold.

Considering Theorems 2.32 and 2.37 we say that ﬁ is a super-linear space over
the field R. Applying (2.2), (2.3), (1.9) and (1.11), (2.30) and (2.31) yield the
identities

(2.42) UV =T+Y, U,V € RF,
where “+” is the familiar addition of vectors in R* and
(2.43) C—Q—Uzg-gp ceR and UEF

where is “-” the familiar multiplication of vectors by a number.
Assuming that U,V € RF, by (2.30) Theorem 1.12 shows that under certain

conditions U %{}—é— V € RF while the identities (1.9) and (2.42) show that U —;é— \%4

may be outside R*¥. On the other hand, if ¢ € R and U € R* then (2.31), (2.43)
and Theorem 1.13 show that c —Q— U € Rk,

Definition 2.44. The super-sum of exploded real numbers aq, . .., a, will be signed

by
sprz a; =a; —O— ... D an.
> a=on R R
Refering back to (2.26) and (2.27) we give

Definition 2.45. For any pair U,V € RF, their super-inner product is defined by

the super-sum
k
U-(C)-V=s (u; —()— v;)-
GV =) (3

Hence, the identity (1.11) and Definition 2.44 by (1.5), (2.2) and (2.26) yield the
identity

(2.46) U3V =TV, UVeE-

Theorem 2.47. For any U,V,W € R* and c € R the properties

(2.48) U —Q— V=V —Q— U

(2.49) U —Q— V) —Q— W= (U —gzé— W) %{é— % —ggé— w)
(2.50) (c~-0) -V = (U - V)
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(2.51) U—Q—Uzo, U—Q—U:O if and only if U =0

are valid.

Proof. Applying Definition 2.45 with (2.46) and having the familiar properties of
inner product of vectors in R¥, properties (2.48) - (2.51) are obtained. In detail:
(2.48) is an immediate consequence of (2.46); (2.49) is obtained by (2.42), (1.5) and
(2.46); (2.50) is obtained by (2.43), (1.6) and (2.46); and finally (2.51) is obtained
by (2.3), (2.4), (1.1) and (2.46). O

After Theorem 2.47 we can say that R* is a super-Euclidean space. With respect
to (2.29) and (2.51) we can give the following

Definition 2.52. For any U € ﬁ, its super-norm is
U]l = sprpy (U =3 U).
Hence, (2.46) with (1.3) yields the identity
(2.53) U= TUJlx, U e R
Remark 2.54. Considering F(U) = ||U||—with Dg = RF and Rp = ?j applying
(2.20) and (2.21) by (2.53), (2.5) and (24) we obtain that sub F(X) = || X|| .
Theorem 2.55. For any U,V € ﬁ the Cauchy-type inequality
(2.56) U~ VI < WUl 1V Il
holds.

Proof. Starting from (2.46), after (2.36) in [1], we apply the well-known Cauchy-
inequality with Definition 1.7 in [1], by (1.6) we have

ju~55— ol =TT 7] < T00Te - W1 = 00T - TV

Hence, (2.53) gives (2.56). O

Theorem 2.57. For any U,V € R* and c € R the properties

(2.58) ”U”lR—k‘Z 0 and ||U||F= 0 if and only if U =0,
(2.59) lle == Ullg= lel 3= Ul

and

(2.60) I BVl < Ul [V

are valid.

Proof. Applying Definition 2.52 with (2.53) and (2.2) as well as having the familiar
properties of norm (2.28), properties (2.58) - (2.60) are obtained. In detail: (2.58)
is a consequence of (2.3) and (1.1); (2.59) is obtained by (2.43), (1.2) and (1.6);
(2.60) is obtained by (2.42) and (1.5). O

After Theorem 2.57 we can say that R* is a super-normed space. The inequality
(2.60) is called a Minkowski-type inequality.
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Definition 2.61. For any pair U,V € ﬁ their super-distance is
d (U,V) = IU =8 Vi
where the super-difference of U and V is based on (2.30) and (2.31) such that
(2.62) U Q V=U Q (Tlﬁ—v

Hence, (2.42), (2.43) with (1.3) yield the identity

(2.63) Uv-B-v=U-V, UVeF,

where “-” is the familiar difference of vectors in R*. The identity (2.63) with (2.5)
gives

(2.64) |G- Vo= T = Vg
Having the familiar
(2.65) dps (U, V) = |1, = VI

by (2.64) Definition 2.61 gives
(2.66) d—(U,V) = dpe (U, V), U,V e R

Theorem 2.67. For any U,V and W € ﬁ the properties
dRT(U,V) = dRT(V,U)
d}Tkn(U,V) >0 anddRT(U,V) =0if and only if U =V
and
A (U,V) < d (U, W) ;;é—dg W,V)
are valid.

Proof. Applying Definition 2.61 with (2.66) and having the familiar properties of
traditional distance (2.65), the first two properties are trivial. For the last by (2.66),
Definition 1.7 in [1], (1.5) and (2.66) again, we can write

do (U, V) = dpx (U, V) < dpe (U, W) + dpe (W, , V) =

= dpe (U, W) 8~ due (W, V) = d- (U, W) =B di- (W, V).
O

After Theorem 2.67 we can say that R* is a super-metrical space. The third
property in Theorem 2.67 may be called a super-triangle inequality. (See [1], (2.38).)

Returning back to Definition 2.12 we characterize some sets mentioned there by
equations or inequalities.

Example 2.68. Tt is known that a line of the space R* is characterized by the
equation

(2.69) X=Xo+t-E, teR

where Xo, E € R* are given such that ||E||gx = 1. Denoting by S the set of X
given by the equation (2.69) and considering (2.9), by (1.5) and (1.6) we have

(2.70) X=X —gé_ (% _Q_ E)
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So, denoting X=U , To =Up,t=7andV = E we have the equation of super-line

(2.71) U=U~&-(~3-V), r€R
where by (2.53) we have

(2.72) IV llge= 1.

Moreover, by Definition 2.61, (2.59), (2.72) and (1.6)
(2.73) d-—(U,Uo) = Ir].

Similarly to (2.70) the equation of sub-line which is the compressed of the line given
by (2.69) is

(2.74) X=X ((OE), tekh,

where the sub-addition and sub-multiplication are mentioned under (1.14) and
(1.15).

Example 2.75. Tt is known that a plane of the space R* is characterized by the
equation

(2.76) (X = Xo) N =0

where Xy, N € R* such that | N||gx = 1. Denoting by S the set of X given by
the equation (2.76) and considering (2.9) by (2.62), (1.5), (1.6), (2.46) and (1.1) we

[

have for the points of super-plane S

(2.77) (X —ggé— Xo) %;é_ N =o.

So, denoting X=U , Tg = Up and N = M we have the equation of super-plane
(2.78) U —Q— Uo) —Q— M=0

where by (2.53) we have that

(2.79) M| e=T.

Similarly to (2.77) the equation of sub-plane S which is the compressed of the plane
S given by (2.76) is

(2.80) (X0 X)) ©N =0. (See (2.2), (1.15) and (1.16).)

Ezample 2.81. If Xo € R* and r € R, then the sphere and open ball with centre
Xo and radius r can be described by the equation

(2.82) dpe (X, Xo) =7
and the inequality
(2.83) dpe (X, Xo)) <y

respectively. Considering (2.9) we denote the super-sphere and the super-ball with
Uy = Xo and p =7 by Sy, (p) and Gy, (p), respectively. Using (2.82) and (2.83) by
(2.66) we obtain

(2.84) Sunp) ={U € B¥:d_(U,Uo) =p, peRT}
k
and

(2.85) Guy(p) ={U € R :d_(U,Up) <p, pe R
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Remark 2.86. Referring back (2.10) the familiar lines, planes spheres and balls can
be considered as exploded sets of their compressed sets. Moreover, (2.11) shows that
they behave as “super-lines”, “super-planes”, “super-spheres” and “super-balls”
with respect to the compressed k-dimensional space RF mentioned under (2.8). On
the other hand, the sub-line given by (2.74), the sub-plane given by (2.80), sub-

sphere SU9 (p), and the sub-ball SU9 (p), behave as “line”, “plane”, “sphere” and

“pball” in R*. So, R is a model of R¥ while R* is a model of RF.

Closing part 2 for any 1 < £ < k we identify the element (uy,us,...,u;) € R
with (u1,us,...,us0,...,0) € RF so, R* C R*. Clearly, R¢ is a subspace of RF.

3. THE LUX AND SUB-LUX PHENOMENA

Definition 3.1. If S is a subset of RF then the segments S}, = SN R* and

Ssublux = S N R" are called lux phenomenon and sub-lux phenomenon of the set

S, respectively. In the case ¥ = 1,2 and 3 the lux (and sub-lux) phenomena are
called road, window and box phenomena, respectively.

Clearly, if S C R then Sp,,, = S. Especially, R{cux = R*. Moreover, R is the

road phenomenon of F The subsets of R, R? and R® are their own road, window
and box phenomena, respectivelL By Definition 2.12 the elemﬂts of R form a
super-line which c&hlcides with R%2. Moreover, the points of R? form a super-
plane in the space R3. These relationships can be studied on the compressed three
dimensional space &3 which is the cube model of the traditional three dimensional
space R3: By Fig.3.2 the space R can be considered as the compressed of the real

FIGURE 3.2.
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axis identified by R. Similarly, space R can be considered the exploded of the real
axis. Shortly, we can speak of compressed and exploded real axes, respectively.

Ezxample 3.3. The elements of sequence

un:(li&iL) . n=1,2,3,...

n

form a subset of R. Its road phenomenon is the set of elements of sub-sequence

20 -2 1
Ugg—1 = (2§—_1> = areath(1 — m), 1=1,2,...(see (1.1)).

Clearly, limp—o0 ttn = 1, (if n > 2o then |uy, —;%é— 1| < ¢) and, consequently,

limp oo uge_1 = T, (traditionally, limg_,oo usg_1 = 00). The elements of subse-
quence {ug}32, are invisible exploded real numbers and they do not belong to the
road phenomenon although lim,_, o, ugy = T, of course.

Ezample 3.4. The points (u,v) € R? satisfying equation v = 2-u form a line in R?

and their set is the window phenomenon of the set S of points (u,v) € R? satisfying
the equation

(3.5) v=(2 —Q— ) —gé—(T _&é_ sprpz(u)), (see Example 4.51 in [1]).

Moreover, if u € lR\R the points (u,v) are invisible. On the other hand, the points
(z,y) € R? satisfying the equation y = 2 - z form the compressed set of the set L

of points (T,7) € R satisfying the equation

(3.6) y:i—Q—ﬁ

because denoting u = T and v = 7, by (2.2), (1.3), (3.6) and (1.6) we can write
(u,v) = (=, (¥)) = (:1:,5—%)— Z) = (2,2 - z) for any z € R. Hence, (2.10) and

Definition 2.12 say that the points (u,v) € R form a super-line. (We can check
that by the equation (2.70) with Xo = (0,0), E = (¢, %) and t = z.) Of course,
the line £ = {(u,v) € R? : v = 2-u} is not the window phenomenon of super-line L
given by (3.6) because the equation of window phenomenon of super-line is

1 1
(3.7 v =areath(2thu), |u|< areath§ <= <§> ) i

(See Theorem 1.12 where the identity 5—;Eé—u = u—@é— u is used.) If |u| >

a,reath% then the points of super-line L are invisible in R2. Using Theorem 4.50

in [1] we have that super-linear function v = 2 —Q— u is continuous on R. Hence,

lim viu)= —land lim  o(u) =1,
u—— areath % u—rarea th %

see Definition 4.48 in [1]. (The right-hand-side limit of the first and the left-hand-
side limit of the second can be checked by (3.7).)

If we compress the line £ given by the equation y = 2-z, (z € R) we have a sub-
line with the equation n = %, (€ € R). (See (3.4) in [1]). Moreover, y = % is
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the subfunction of the function v = F'(u) given by (3.5) because (2.21) shows that

sub F(r) = F(@) = (355 7) G- (1 - sprpm(z)) = 1.

7X 7N 7N +x
In the square model R? (see Fig.3.2) the following figure shows the relationship of
set S given by (3.5) to its window phenomenon which is the line £ by the relationship
of the set {(z,y) € R? : y = li“; 5} to its sub-window phenomenon which is a sub-
line compressed of £. Moreover, we can show the window phenomenon Swindow

which is the compressed of super-line L such that Lyindow 7 £-

NV
LWndo
| _|—_L|_:3Nndow
1
St
th
—1 1 u
sub-1ine
R
-1
super-1ije
FIGURE 3.8.

Ezample 3.9. Applying (2.76) with X = (0,0,0) and N = (
have the plane

1 1 1
~VE VR Vs) e

(3.10) S={X=(z,y,2) ER®*:z,y €R and z=2x+y}.
Using (2.3) with u ='Z, v ="y, w = 7 and applying (1.9), Definition 2.12 say that
(3.11) S ={U=(u,v,w) € R:u,v € R and w:u—g-é—v}

is a super-plane. Moreover, with respect to (2.80) and (1.14), we have the sub-plane

£+
12 = 3 = i
(3.12) S={EmnOem:&neR and (=1 75
Easy to see that the line £ given by the equation
1 1 2
X=t-F (FE=(—f%,—=,—=) and —o00o<t<®
E=(Z% % % )

coincides with S. Hence, (2.70) and (2.71) yield that the super-line 7 having the
equation

(3.13) U=T—§3§—V (V=FE and 7€R)
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coincides with the super-plane 'S. The sub-line

L={(¢n)eR:t=n€eR and (=

coincides with sub-plane S.

2¢
1+&2

}

It is obvious that line e given by the equation-system
r=s, y=-s, 2=0, s€ER
coincides with plane S. Moreover, the super-line E(where s € ﬁ) and sub-line e
(where s € R) coincide with super- and sub-plane S and S, respectively. Let
T = {(u,v) € R* : |thu + thv| < 1}

which is shown in the following figure.

th(u)+th(v)=-1 rl

By (3 11) Theorem 1.12 says that (u,v,w) € Spox if and only if (u,v) € T.
Hence, Shox is a surface in R® with the equation w = = areath(thu + thv). By

(3.13) and (2.31) we have that (u,v,w) € lhox if || < (y/3). (We can see that

the parameter 7 has to be an exploded real number.) Of course, 7box C ?box If
(u,v) € R2\T then the pomts of super-plane S are invisible. Clearly, window = €
ande=5nN Sbox, soe=SnS. Moreover, e = SN SN 5. All relationship will be
introduced in the Figure 3.14.

We remark that an open hexagon is the sub-box phenomenon of the plane S.

Example 3.15. The form of a traditional sphere is characterized by its radius,
merely. It is not true for the super-sphere introduced in Example 2.81. To show that
we consider super-spheres So(1) and Sy, (1) where O = (0,0,0) and Uy = (3,3, 1)

having the equations d——(U,0) = 1 and d—(U,Uy) = 1, respectively. Applying
R3 R3
(2.84), (2.66) we obtain

(316)  So(1)={U = (w,v,w) € B*: \/(w? + (1)* + (w)? =1}

and

SUO(I) = {U: (u, v, w) elﬁ:

(3.17)

1 1 1
—_th =)2 —_th 2)2 —_th2)2 —
\/(y‘ th2) +(y th2) + (w th2) 1},

respectively.
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FIGURE 3.14.

Considering (3.16) by (1.2) and (1.17) we have that if (u,v,w) € So (1) then
0 < max(|ul,|v],|w|) < 1, so definition 2.13 says that So(1) is bounded in R®.
This means that

(3.18) So(Dbox = So(1).
On the other hand, the point Py = (1,1, th1+th1) € Sy, (1) but P, ¢ R®. Hence

SUo(l)box C SUO(]-)-
By (3.16) and (3.18) we have that So(1)pox is described by the equation

th®u + th* v + th® w = th* 1
while by (3.17) Sy, (1)box is described by the equation
1y2 132 S
(thu—th3) + (thv=ths) + (thw—th3) =em’1.

Both box phenomena are shown in Figures 3.19. and Figure 3.20.

w
4

, SO

=S \ 2

-2 2

-3 N 3 u

-2

FiGURE 3.19.



EXPLODED AND COMPRESSED SPACES 33

FiGUure 3.20.

If the radius is growing, the super-sphere So(r) has newer and newer forms,
which do not show a similarity in the usual sense. If the radius is less then 1 then
So(T)box = So(r). The super-sphere So (1) has six invisible points, namely (1,0, 0),
(0,1,0), (=1,0,0), (0, =1,0), (0,0, 1) and (0,0, —1). If # > 1 then So(r) has an
infinite number of invisible points. Some examples are shown in figures 3.21-3.24.

DAL/ R
A A
ASNASNASKANS
SNNINSD
SKNXNXN 5
NRRYY
RN

S,(3/2)

FiGUre 3.21.
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FIiGURE 3.23.

4. THE LIMIT AND CONTINUITY OF FUNCTIONS WITH SEVERAL VARIABLES
. . 1) (2
First of all we consider a sequence {U, }$° ; such that U, = (u(n ),u(n ), ... ,u%k)) €

RF, n=1,2,3,...whereul!) € R, £=1,2,3,...,k.

Definition 4.1. Having a Uy = (u(()l),u((f), .. .,u((]k)) € R* we say that

lim U, = U,
n—00

if

(4.2) T}LIIéO dR—k(Un, Up) = 0.

Definition 2.61, (2.64) with £ = 1, (1.10) and Theorem 2.46 in [1] show that Defi-
nition 4.1 is a generalization of Definition 1.17 in [1].
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FIGURE 3.24.

Theorem 4.3. Let us assume that U,, Uy € lﬁ, n =1,2,.... These sequence
{Un}S2; converges to Uy if and only if

. 4
(4.4) Jirréoug)zu(()), £=1,2,3,...,k,
holds.
Proof. Applying (2.66) the condition (4.2) is equivalent to the condition
(4.5) lim dgx(Un, Ug) = 0.

n—oo

Applying Theorem 1.19 in [1] and using (1.3) we get that (4.5) is equivalent to

(4.6) Jim dp (Ui, Uo) = 0.

Moreover, it is known that (4.6) is equivalent to

(4.7) Jim uf = u, (=1,2,3,.. .k

Using (1.2) and applying Theorem 1.19 in [1] again we obtain that (4.7) is equivalent
to (4.4). O

Extending Definition 4.32 in [1] we give

Definition 4.8. Let F' be a given function with Dp C R* and let Uy be a given

element of R*. Let us assume that there exists a sequence {U,}3>; such that
U, # Uy, U, € Dp and lim,,_,, U,, = Uyp. If there exists an exploded real number
vo such that for any {U,}22,; mentioned above

(4.9) lim F(U,) = v
n—oo
holds, then we say that limy_,y, F(U) = vy.

Theorem 4.10. The function F has the limit vy at the point Uy € R* if and only
if
li F(X) = vg.
dimsub F(X) = v
Proof. Denoting by X,, = Uy, and Xy = Uy, we repeat that lim, .., U, = Up is
equivalent to lim, ., X, = Xo. (See Definition 4.1 with (4.2), (4.5) and (4.6).) By
Theorem 1.19 in [1] the condition (4.9) is equivalent to the condition

lim F(X,)= Vg,
n—oo
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By (2.21) we have that sub F'(z,) = F(Tn), so our proof is complete. O
With respect to identities (2.66) and (1.3), Theorem 4.10 yields

Theorem 4.11. The function F has the limit vy at the point Uy € RF if and only
if for any e(> 0) there exists 5(> 0) such that the conditions U(# Uy) € Dr and

d—(U Uo) < & imply |F(U ié— vl < €.

Definition 4.12. We say that F' is continuous at the point Uy if Uy € Dp and
Ulgrlljo F(U) = F(Uy).

Example 4.13. The functions given by
(4.14)

flu,v) == —g—é— spr pz (spr pa(1 Q— spr p2(u —;é— = é— spr pa (v —Q— -

and
(4.15)

g(u,v) = = —;}é— SprpL (sprpa(1 ;%é— spr pa (u —Q— = ;%é— sprp2 (v —éé— =

describe the upper half and the lower half of super-sphere Sy, (1) with Uy =

(1,3, 1), respectively. Clearly,

(4.16) Dy =Dy = {(uv) € B+ (u— (5)) + (— (5))” < (1)

Moreover, the equations of box phenomena of half super-spheres are

1 1 1
(4.17) w = areath(th 3 + \/th2 1— (thu —th 5)2 — (thv — th 5)2)
and

1 ) 1 1
(4.18) w = areath(th 3 th®1 — (thu — th 5)2 — (thv —th 5)2),

respectively. (See Fig. 3.20.) The joint definition-domain is the window phenome-
non of the super-disc Dy:

1 1
(4.19) D window = {(u,v) € R?*: (thu — th 5)2 + (thv — th 5)2 < th®1}.

Especially interesting is the window phenomenon of the level-curve T given by
f(u,v) = 1. The window phenomenon has the equation

1 1 1
(4.20) (thu —th §)2 + (thv —th §)2 =th®1— (1 —th 5)2, (u,v) € R?,
demonstrated by the following figure:
By (4.14), (2.21), (1.2), (1.5), (1.7), (1.3), (2.29) and (1.18) we obtain
(422)  subf(,y) = () +,/1? - - B - -3 (@) € R
which is a continuous function in its definition-domain given by the inequality

(- D)+ (y- ()" = >

(ARl

(We can see that this definition-domain is Dy where Dy is given by (4.16) with
respect to (2.23).) Applying (4.20) we have

2

T={@y) e R: (=~ () +-G) =0~ (1-3)"
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 —
level-curve 1

FIGURE 4.21.

Clearly, T' C Dy so sub f is continuous on T, too. Hence, Theorem 4.10 and
Definition 4.12 give that f is continuous at any point U = (u,v) of the level-
curve T. Consequently, it is continuous at any point of the level-curve Tyindow
demonstrated by Fig. 4.21. By (4.20) we can see that the point U* = (u*,u*)

where
N 1 th21—(1—th%)2
u* = areath(th§ — \/ 2 ),

is an element of Tyindow, SO

(4.23) dim f(u,0) =T(= F(U")).

On the other hand, (4.17) shows
(4.24) lim f(u,v) = oc.

U—U*
w,o<u*

We remark that (4.23) and (4.24) are not equivalent because if u,v > u* then
f(u,v) > T. Another interesting problem is the behavior of the function g in
the neighbourhood of the point U** = (1, 1). By (4.15), (1.18), (1.2), (1.7), (1.3),

(2.29), (1.4) and (1.1) we obtain that g(U**) = areath(th %—\/th2 1—(1—-th1)?).

As g is continuous at the point U**, we have that

. 1 ) 1
(4.25) UEI(I}** g(u,v) = areath(th 3 \/th 1-—(1-th 5)2)
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holds. On the other hand, (4.15) and (4.18) show that

1 1

(4.26) lim  g(u,v) = areath(th = — \/th2 1-(1-thz)?)
u—00,09— % 2 2

is also true. We remark that (4.25) and (4.26) are not equivalent because in the case

of (4.26) the point (u,v) € R2, while in the case of (4.25) u may be greater than

the positive discriminator. (Using (4.16) we can see that for v = 1, the inequality

I<u< 1+ (1) is allowed.)

In general, we can say that if U = (u1,us,us,...,u;) € R* and at least one of
uj (j =1,2,3,...,k) tends to co (or —oco) then
lim FU) =g
UL UT U2 —PUS 5.0, Bl —> U,
where one ore more of u},u3,us,...,u;, v may be co or —oo, is a restricted case
of
lim U)=wvy, U"=(uj,us,u3,...,u;
UsU* f( ) ) ( 1> %2> %3 ’ k)

such that U € R* and if uj is equal to oo (or —oo) then we write uj = T (or

ui= —1)and v = 1 (or vg = — 1), respectively.

[N}
5. ON THE GEOMETRY OF SPACE R3.
The points of R? were introduced under (2.1) while the super-lines and super-
planes were defined in Definition 2.12. Considering the Euclidean geometry of space

R? we can say that space R® has a super-Euclidean geometry with the following
(Hilbert-type) properties:

Property 5.1. If U and V are distinct points of R® then there exists a super-line
L that contains both U and V.

Property 5.2. There is only one L such that U € L and V € L.

Property 5.3. Any super-line has at least two points. There exists at least three
points not all in one super-line.

Property 5.4. If U,V and W not are in the same super-line then there exists a
super-plane S such that U,V and W are in S. Any super-plane has a point at least.

Property 5.5. If U,V and W are different non super-collinear points there is
exactly one super-plane containing them.

Property 5.6. If two points lie in a super-line L and a super-plane S then every
point of L lie in S.

Property 5.7. If two super-planes have a joint point then they have another joint
point, too.

Property 5.8. There exist at least four points such that they are not on the same
super-plane.

We will say that the point W is between the points U and V' on super-line L if
W is between U and V. on line L. (See (2.1), (2.2), (2.7) and the first sentence of
Definition 2.12.) The concept of “between” has the following properties:

Property 5.9. If W is between U and V then U,V and W are three different
points of a super-line and W is between V and U.
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Property 5.10. For any arbitrary point U and V there exists at least one pont W
lying on the super-line determined by U and V' such that W is between U and V.

Property 5.11. For any three points of a super-line there is only one between the
other two.

Property 5.12 (Pasch-type property.). If U,V and W are not in the same super-
line and L is a super-line of the super-plane determined by the points U,V and W
such that L has not points U,V or W but is has a joint point with one of the super-
segment UV of the super-line determined by U and V' then L has a joint point with
the super-segments UW or VW of the super-lines determined by U and W or V
and W, respectively. (The super-segment UV means the set of points which are
between U and V' on the super-line determined by U and V.)

We will say that two sets of points are super-congruent if their compresseds are
congruent. (See (2.7)) Exploding a familiar convex angel <X ZY we have super-
angle spr <UWYV | where U = 7, V=Y and W = Z. The point W is called the
peak-point of super-angle. If the points X,Y and Z are not in the same super-line
then super-angle is in the super-plane determined by U,V and W. The concept of
“super-congruency” and super-angle have the following properties.

Property 5.13. On a given super-half-line L there always exists at least one super-
segment such that one of its end-points is the starting point of the super half-line L
and this super-segment is super-congruent with an earlier given super-segment.

Property 5.14. If both super-segments py and py are super-congruent with the
super-segment ps then p1 and p2 are super-congruent.

Property 5.15. If super-segment py is super-congruent with super-segment q; and
P2 s super-congruent with go then p; U ps is super-congruent with g1 U go.

Property 5.16. On a given side of a super half-line there exists only one super-
angle which is super-congruent with an earlier given super-angle. Each super-angle
is super-congruent with itself.

Property 5.17. Let us consider two super-triangles. If two sides and the super-
angles enclosed by these sides are super-congruent in the super-triangles mentioned
above then they have another super-congruent super-angle.

We say that the super-lines Ly and Lo are super-parallel if their compresseds Ly
and Ly are parallel. Now we have

Property 5.18. If super-line Ly and point U are given such that U is off L, then
there exists only one super-line Lo through U that is super-parallel to L.

Finally, we mention two properties for continuity.

Property 5.19 (Archimedes-type property.). If point Uy is between points U and
V on a super-line then there are points Us,Us, ..., U, such that super-segments
Uj_1, Uy, (0 =2,3,...,n) are super-congruent with he super-segment UU; and V
is between points U and U,.

Property 5.20 (Cantor-type property.). If {U,V,}32, is a sequence of super-
segments lying on a super-line L such that for anyn =1,2,3,... Upy1Vat1 C ULV,
then there exists at least one point W of L such that W belongs to each U,V,.

In the following we construct an extra-model for the familiar points of R3.

Definition 5.21. A point P € ﬁ is called an extra-point if P € R3. (Extra points
are the visible points of R3.)
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Definition 5.22. For any super-line L belonging to F the curve Ly is called an
extra-line if Lyox # 0.

Definition 5.23. For any super-plane S belonging to R3, the surface Spox is called
an extra-plane if Spox # 0. Considering that the compressed of box-phenomenon of
a super-plane may be an open triangle, quadrangle, pentagon or hexagon we speak
triangular, quadrangular, pentagonal and hexagonal extra-planes, respectively.

Remark 5.24. Clearly,
— P is extra-point if and only if P € R3.
~ Lpox is an extra-line if and only if Lpex N R® # 0.
— Shox is an extra-plane if and only if Spox N R # 0.

For the sake of simplicity we do not introduce new symbols for the extra-lines
and extra-planes instead of Lyox and Spox, respectively. On the other hand, (R®)°
denotes the set of limit-points of the open cube &3 .
Definition 5.25. We say that extra-lines LY and L

box box

LY N L e (R%)°

are extra-parallel if

If the super-lines L(!) and L(?) are not identical, then by Property 5.2 they may
have at most one joint point. So, if the extra-lines Ll()lo)x and LSO)X - are extra-
parallel then extra-parallelness point P(LSO)X, Lg)x) = LW N LA is unambiguously
determined. By this reason we say that extra-lines Ll()lo)x and LSO)X are extra-parallel
with respect to the extra-parallelness point P(LSO)X, LSO)X). It is important that the
extra-parallelness point is not an extra-point.

The extra-parallelness of extra-lines, lying on the quadrangular extra plane w = 0
is demonstrated by the following figure:

Fig. 5.26. shows that L") and L®) where L(!) and L(®) have the equations

box

v —Q— (3 —Q— u) —g—é— 28=0

(2 —Q— w) —;IRS— (3 —Q— v) —Q— 2.6 =0,
respectively are extra-parallel with P(L](Dlo)x, L](fo)x) = (1,0.2,0), but super-lines
LM and L® are not super-parallel. Moreover, considering the extra-point Py =

%,%, of the extra-line and the extra-line
(04,0.6,0) of th line L\?) and th line L),
LB is

(g—Q—u) —;—T\-S—U—Q—S_.S‘: 0

we have that Py € L,(j))x as well as L,(Jlo)x and L,(j))x are extra-parallel with

Q(Ligy: Line) = (06, (=1),0).
Definition 5.27. The extra-line Ly, and extra-plane Sy, are extra-parallel if
LnSe (R

and the point P(Lpox, Sbox) = LN S is called extra-parallelness point of Ly, and
Sbox-

Definition 5.28. The extra-planes St()t)x
respect to a super line S N 3 if

SN (R =52 (&) £0.

and

, where the equation of

and Slgi)x are called extra-parallel with
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\Y

FIGURE 5.26.

Returning back to Fig. 3.14 we can check that considering the extra-point
Q = (W,W, 0) and the hexagonal extra-plane Spox having the equation z =
areath(thz + thy), there are six extra-planes coinciding with @) such that they are
extra-parallel with Spox.

Finally, we raise the problem: What kind of properties does the geometry for R?
with extra-points, extra-lines and extra-planes have?
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