HIGGS BUNDLES AND REPRESENTATION SPACES ASSOCIATED TO MORPHISMS

INDRANIL BISWAS AND CARLOS FLORENTINO

ABSTRACT. Let G be a connected reductive affine algebraic group defined over the complex numbers, and $K \subset G$ be a maximal compact subgroup. Let X, Y be irreducible smooth complex projective varieties and $f: X \to Y$ an algebraic morphism, such that $\pi_1(Y)$ is virtually nilpotent and the homomorphism $f_*: \pi_1(X) \to \pi_1(Y)$ is surjective. Define

$$\mathcal{R}^{f}(\pi_{1}(X), G) = \{ \rho \in \operatorname{Hom}(\pi_{1}(X), G) \mid A \circ \rho \text{ factors through } f_{*} \},\$$

$$\mathcal{R}^{f}(\pi_{1}(X), K) = \{ \rho \in \operatorname{Hom}(\pi_{1}(X), K) \mid A \circ \rho \text{ factors through } f_{*} \},\$$

where $A: G \to \operatorname{GL}(\operatorname{Lie}(G))$ is the adjoint action. We prove that the geometric invariant theoretic quotient $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G$ admits a deformation retraction to $\mathcal{R}^f(\pi_1(X, x_0), K)/K$. We also show that the space of conjugacy classes of *n* almost commuting elements in *G* admits a deformation retraction to the space of conjugacy classes of *n* almost commuting elements in *K*.

1. INTRODUCTION

Let G be a connected reductive affine algebraic group defined over the complex numbers. Consider an algebraic morphism

$$f: X \to Y$$

where X and Y are irreducible smooth complex projective varieties, and let

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

be the induced morphism of fundamental groups, where $x_0 \in X$ is a base point. In certain situations, the representations

$$\rho \colon \pi_1(X, x_0) \to G$$

²⁰¹⁰ Mathematics Subject Classification: primary 14J60.

 $K\!ey$ words and phrases: Higgs bundle, flat connection, representation space, deformation retraction.

The first author is supported by a J.C. Bose Fellowship. The second author is partially supported by FCT (Portugal) through the projects EXCL/MAT-GEO/0222/2012, PTDC/MAT/120411/2010 and PTDC/MAT-GEO/0675/2012.

Received July 20, 2015. Editor J. Slovák.

DOI: 10.5817/AM2015-4-191

that factor through f_* have special geometric properties. See [9], where necessary and sufficient conditions for such a factorization are given in terms of the spectral curve of the *G*-Higgs bundle associated to ρ .

In this article, we are interested in the whole moduli space of representations that factor in a similar way, and in its topological properties. Under some assumptions on f and Y, we provide a natural deformation retraction between two such representation spaces, described as follows.

The Lie algebra of G will be denoted by \mathfrak{g} . Let $A: G \to \operatorname{GL}(\mathfrak{g})$ be the homomorphism given by the adjoint action of G on \mathfrak{g} . Fix a maximal compact subgroup $K \subset G$ and define:

$$\mathcal{R}^{f}(\pi_{1}(X, x_{0}), G) = \{\rho \in \operatorname{Hom}(\pi_{1}(X, x_{0}), G) \mid A \circ \rho \text{ factors through } f_{*}\},\$$
$$\mathcal{R}^{f}(\pi_{1}(X, x_{0}), K) = \{\rho \in \operatorname{Hom}(\pi_{1}(X, x_{0}), K) \mid A \circ \rho \text{ factors through } f_{*}\}.$$

We note that the group G (respectively, K) acts on $\mathcal{R}^f(\pi_1(X, x_0), G)$ (respectively, on $\mathcal{R}^f(\pi_1(X, x_0), K)$) via the conjugation action of G (respectively, K) on itself. The quotient $\mathcal{R}^f(\pi_1(X, x_0), K)/K$ is contained in the geometric invariant theoretic quotient $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G$.

We prove the following in Theorem 2.6:

Suppose that the fundamental group of Y is virtually nilpotent, and the homomorphism f_* is surjective. Then $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G$ admits a deformation retraction to the subset $\mathcal{R}^f(\pi_1(X, x_0), K)/K$.

In Section 3, we consider spaces of almost commuting elements in K and in G. Define:

$$AC^{n}(K) = \{(g_{1}, \dots, g_{n}) \in K^{n} \mid g_{i}g_{j}g_{i}^{-1}g_{j}^{-1} \in Z_{K} \quad \forall i, j\}$$

where Z_K denotes the center of K. The moduli space of conjugacy classes:

$$\operatorname{AC}^{n}(K) / K$$
,

where K acts by simultaneous conjugation, was studied in [6], [8], and plenty of information is known in the cases n = 2 and n = 3. For instance, the number of components of $AC^{3}(K) / K$ has been related in [6] to the Chern-Simons invariants associated to flat connections on a 3-torus.

In a similar fashion, we define $\operatorname{AC}^n(G)/\!\!/G$, the moduli space of conjugacy classes of *n* almost commuting elements in *G*. For example, if *G* has trivial center, then $\operatorname{AC}^{2n}(G)/\!\!/G$ coincides with

$$Hom(\pi_1(X, x_0), G) / \!\!/ G$$
,

where X is an abelian variety of complex dimension n. In Proposition 3.1, we show that $AC^{n}(G) / G$ admits a deformation retraction to $AC^{n}(K) / K$, and that the same holds for $AC^{n}(G)$ and $AC^{n}(K)$, extending one of the main results in [7] and [4].

2. Representation spaces associated to a morphism

Let X be an irreducible smooth complex projective variety. Fix a point $x_0 \in X$. Let

$$f: X \to Y$$

be an algebraic morphism, where Y is also an irreducible smooth complex projective variety, such that:

- (1) the fundamental group $\pi_1(Y, f(x_0))$ is virtually nilpotent, and
- (2) the homomorphism of fundamental groups induced by f

(2.1)
$$f_*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$$

is surjective.

Using the homomorphism f_* in (2.1), we will consider $\pi_1(Y, f(x_0))$ as a quotient of the group $\pi_1(X, x_0)$.

Let G be a connected reductive affine algebraic group defined over \mathbb{C} . The Lie algebra of G will be denoted by \mathfrak{g} . Let

be the homomorphism given by the adjoint action of G on \mathfrak{g} . The affine algebraic variety (not necessarily irreducible) of representations

$$\rho \colon \pi_1(X, x_0) \to G$$

will be denoted by $\operatorname{Hom}(\pi_1(X, x_0), G)$.

Definition 2.1. Let $\rho \in \text{Hom}(\pi_1(X, x_0), G)$. We sat that $A \circ \rho$ factors through f_* in (2.1) (or that $A \circ \rho$ factors geometrically through $f : X \to Y$, see [9]) if there exists a homomorphism $\rho' \in \text{Hom}(\pi_1(Y, f(x_0)), \text{GL}(\mathfrak{g}))$ such that

(2.3)
$$\rho' \circ f_* = A \circ \rho.$$

Remark 2.2. (1) Clearly, if ρ itself factorizes as $\rho = \tilde{\rho} \circ f_*$ for some $\tilde{\rho} \in \text{Hom}(\pi_1(X, x_0), G)$, then $A \circ \rho$ factorizes through f_* as in the definition; the converse is not always true.

(2) It is clear that $A \circ \rho \in \operatorname{Hom}(\pi_1(X, x_0), \operatorname{GL}(\mathfrak{g}))$ factors through f_* as in (2.3), if and only if $A \circ \rho$ is trivial on the kernel of f_* . Moreover, when $A \circ \rho$ factors through f_* , a homomorphism $\rho' \in \operatorname{Hom}(\pi_1(Y, f(x_0)), \operatorname{GL}(\mathfrak{g}))$ satisfying equation (2.3) is unique, because f_* is surjective.

In the framework of non-abelian Hodge theory, there is a correspondence between semistable G-Higgs bundles over X and representations in $\text{Hom}(\pi_1(X, x_0), G)$, [11], [5]. Denote by $(E_{\rho}, \theta_{\rho})$ the semistable G-Higgs bundle on X associated to ρ under this correspondence. We note that $(E_{\rho}, \theta_{\rho})$ is semistable with respect to every polarization on X.

Lemma 2.3. Let $\rho \in \text{Hom}(\pi_1(X, x_0), G)$ be such that $A \circ \rho$ factors through f_* . Then, the above principal G-bundle E_{ρ} on X is semistable. **Proof.** Let

$$\operatorname{ad}(E_{\rho}) := E_{\rho} \times^{A} \mathfrak{g} \to X$$

be the adjoint vector bundle of E_{ρ} . The Higgs field on $\operatorname{ad}(E_{\rho})$ induced by θ_{ρ} will be denoted by $\operatorname{ad}(\theta_{\rho})$.

Let $\rho': \pi_1(Y, f(x_0)) \to \operatorname{GL}(\mathfrak{g})$ be the unique homomorphism satisfying equation (2.3); the uniqueness of ρ' is a consequence of the surjectivity of f_* as remarked above. Let (E', θ') be the semistable Higgs vector bundle on Y associated to this homomorphism ρ' . Since the fundamental group of Y is virtually nilpotent, we know that the vector bundle E' is semistable [3, Proposition 3.1]. Let $c_i(E'), i \geq 0$, be the sequence of Chern classes of the bundle E'. Then, $c_i(E') = 0$ for all i > 0 because the C^{∞} complex vector bundle underlying E' admits a flat connection (it is isomorphic to the C^{∞} complex vector bundle underlying the flat vector bundle associated to ρ'). Therefore, by [2, p. 39, Theorem 5.1], the vector bundle E' admits a filtration

 $0 = V_0 \subset V_1 \subset \cdots \subset V_{\ell-1} \subset V_\ell = E'$

of holomorphic subbundles such that each successive quotient V_i/V_{i-1} , $1 \le i \le \ell$, admits a flat unitary connection. Consider the pulled back filtration

(2.4)
$$0 = f^* V_0 \subset f^* V_1 \subset \dots \subset f^* V_{\ell-1} \subset f^* V_{\ell} = f^* E'$$

A flat unitary connection on V_i/V_{i-1} pulls back to a flat unitary connection on

$$f^*V_i/(f^*V_{i-1}) = f^*(V_i/V_{i-1}).$$

Since each successive quotient for the filtration of f^*E' in (2.4) admits a flat unitary connection, we conclude that the holomorphic vector bundle f^*E' is semistable.

From (2.3) it follows that

(2.5)
$$\left(\operatorname{ad}(E_{\rho}), \operatorname{ad}(\theta_{\rho})\right) = \left(f^* E', f^* \theta'\right).$$

Since f^*E' is semistable, from (2.5) it follows that $\operatorname{ad}(E_{\rho})$ is semistable. This implies that the principal *G*-bundle E_{ρ} is semistable [1, p. 214, Proposition 2.10].

Lemma 2.3 has the following corollary:

Corollary 2.4. For any Higgs field θ , the G-Higgs bundle (E_{ρ}, θ) is semistable.

Let

(2.6)
$$\rho^{\lambda} \colon \pi_1(X, x_0) \to G$$

be a homomorphism corresponding to the Higgs *G*-bundle $(E_{\rho}, \lambda \cdot \theta_{\rho})$, which is semistable by Corollary 2.4. We note that although ρ^{λ} is not uniquely determined by $(E_{\rho}, \lambda \cdot \theta_{\rho})$, the point in the quotient space

$$\operatorname{Hom}(\pi_1(X, x_0), G)/G$$

given by ρ^{λ} does not depend on the choice of ρ^{λ} . In other words, any two different choices of ρ^{λ} differ by an inner automorphism of the group G.

Lemma 2.5. For every $\lambda \in \mathbb{C}$, the homomorphism $A \circ \rho^{\lambda}$ factors through f_* , where ρ^{λ} is defined in (2.6).

Proof. Let $(\operatorname{ad}(E_{\rho})^{\lambda}, \operatorname{ad}(\theta_{\rho})^{\lambda})$ be the Higgs vector bundle associated to the homomorphism $A \circ \rho^{\lambda}$. We note that $(\operatorname{ad}(E_{\rho})^{\lambda}, \operatorname{ad}(\theta_{\rho})^{\lambda})$ is isomorphic to $(f^*E', f^*(\lambda \cdot \theta'))$, because the Higgs bundle (E', θ') corresponds to ρ' , and (2.3) holds. We saw in the proof of Lemma 2.3 that E' is semistable with $c_i(E') = 0$ for all i > 0. Since $(\operatorname{ad}(E_{\rho})^{\lambda}, \operatorname{ad}(\theta_{\rho})^{\lambda})$ is isomorphic to the pullback of a semistable Higgs vector bundle on Y such that all the Chern classes of positive degrees of the underlying vector bundle on Y vanish, it can be deduced that $A \circ \rho^{\lambda}$ factors through the quotient $\pi_1(Y, f(x_0))$. In fact, if

$$\delta \colon \pi_1(Y, f(x_0)) \to \operatorname{GL}(\mathfrak{g})$$

is a homomorphism corresponding to the Higgs vector bundle $(E', \lambda \cdot \theta')$, then

- the homomorphism $A \circ \rho^{\lambda}$ factors through the quotient $\pi_1(Y, f(x_0))$, and
- the homomorphism $\pi_1(Y, f(x_0)) \to \operatorname{GL}(\mathfrak{g})$ resulting from $A \circ \rho^{\lambda}$ differs from δ by an inner automorphism of $\operatorname{GL}(\mathfrak{g})$.

This completes the proof.

Fix a maximal compact subgroup

$$K \subset G$$
.

Define

$$\mathcal{R}^f(\pi_1(X, x_0), G) = \{ \rho \in \operatorname{Hom}(\pi_1(X, x_0), G) \mid A \circ \rho \text{ factors through } f_* \},\$$
$$\mathcal{R}^f(\pi_1(X, x_0), K) = \{ \rho \in \operatorname{Hom}(\pi_1(X, x_0), K) \mid A \circ \rho \text{ factors through } f_* \}$$

Since $\pi_1(X, x_0)$ is a finitely presented group, the affine algebraic structure of G produces an affine algebraic structure on $\mathcal{R}^f(\pi_1(X, x_0), G)$. The group G acts on $\mathcal{R}^f(\pi_1(X, x_0), G)$ via the conjugation action of G on itself. Let

$$\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G$$

be the corresponding geometric invariant theoretic quotient. We note that this geometric invariant theoretic quotient $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/ G$ is a complex affine algebraic variety. Let

$$\mathcal{R}^f(\pi_1(X, x_0), K)/K$$

be the quotient of $\mathcal{R}^f(\pi_1(X, x_0), K)$ for the adjoint action of K on itself.

The inclusion of K in G produces an inclusion of $\mathcal{R}^f(\pi_1(X, x_0), K)$ in $\mathcal{R}^f(\pi_1(X, x_0), G)$, which, in turn, gives an inclusion

(2.7)
$$\mathcal{R}^f(\pi_1(X, x_0), K)/K \hookrightarrow \mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G.$$

Instead of working with the Zariski topology on $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/G$, we consider on it the Euclidean topology which is induced from an embedding of this space in a complex affine space. Indeed, such an embedding can always be obtained by considering a finite set of generators of the algebra of *G*-invariant regular functions on $\mathcal{R}^f(\pi_1(X, x_0), G)$. Moreover, this topology is independent of the choice of such embedding, and compatible with the inclusion (2.7).

Theorem 2.6. The topological space $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/ G$ admits a deformation retraction to the above subset $\mathcal{R}^f(\pi_1(X, x_0), K)/K$.

Proof. Two elements of $\operatorname{Hom}(\pi_1(X, x_0), G)$ are called equivalent if they differ by an inner automorphism of G. Points of $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/ G$ correspond to the equivalence classes of homomorphisms $\rho \in \operatorname{Hom}(\pi_1(X, x_0), G)$ such that the action of $\pi_1(X, x_0)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible, meaning that \mathfrak{g} is a direct sum of irreducible $\pi_1(X, x_0)$ -modules. Let (E_ρ, θ_ρ) be the semistable G-Higgs bundle corresponding to the above homomorphism ρ , and let $(\operatorname{ad}(E_\rho), \operatorname{ad}(\theta_\rho))$ be the semistable adjoint Higgs vector bundle associated to (E_ρ, θ_ρ) . The above condition that the action of $\pi_1(X, x_0)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible is equivalent to the condition that the semistable Higgs vector bundle $(\operatorname{ad}(E_\rho), \operatorname{ad}(\theta_\rho))$ is polystable.

Let

$$\phi \colon \left(\mathcal{R}^f(\pi_1(X, x_0), G) /\!\!/ G \right) \times [0, 1] \to \mathcal{R}^f(\pi_1(X, x_0), G) /\!\!/ G$$

be the map defined by $(\rho, \lambda) \mapsto \rho^{1-\lambda}$ (defined in (2.6)), where $\rho \in \text{Hom}(\pi_1(X, x_0), G)$ satisfies the condition that the action of $\pi_1(X, x_0)$ on \mathfrak{g} given by $A \circ \rho$ is completely reducible. It is easy to see that ϕ is well-defined. We note that the point in the geometric invariant theoretic quotient $\mathcal{R}^f(\pi_1(X, x_0), G)/\!\!/ G$ given by ρ lies in the subset $\mathcal{R}^f(\pi_1(X, x_0), K)/K$ if and only if the Higgs field θ_ρ on the principal G-bundle E_ρ vanishes identically (as before, (E_ρ, θ_ρ) is the Higgs G-bundle corresponding to ρ).

The following are straightforward to check:

- $\phi(z,0) = z$ for all $z \in \mathcal{R}^f(\pi_1(X,x_0),G)/\!\!/G$,
- $\phi(z,1) \in \mathcal{R}^{f}(\pi_{1}(X,x_{0}),K)/K$ for all $z \in \mathcal{R}^{f}(\pi_{1}(X,x_{0}),G)/\!\!/G$, and
- $\phi(z,\lambda) = z$ for all $z \in \mathcal{R}^f(\pi_1(X,x_0),K)/K$ and $\lambda \in [0,1]$.

Therefore, the above map ϕ produces a deformation retraction of $\mathcal{R}^f(\pi_1(X, x_0), G) /\!\!/ G$ to $\mathcal{R}^f(\pi_1(X, x_0), K) / K$.

Remark 2.7. Lemma 2.3 and Theorem 2.6 are also valid for morphisms $f: X \to Y$ in the category of compact Kähler manifolds, under the same assumptions on Y and f_* . The proofs of these results are analogous, by replacing semistability with the notion of *pseudostability* (see [5], [3]).

3. Deformation retraction of the space of almost commuting elements

Again, let G be a connected complex reductive group, and K be a maximal compact subgroup. Let

$$Z_G \subset G$$

be the center of G and let

$$PG := G/Z_G$$

be the quotient group. We note that the center of PG is trivial. Let

$$(3.1) q: G \to PG$$

be the quotient map. The image

$$PK := q(K) \subset PG$$

is a maximal compact subgroup of PG. We have $q^{-1}(PK) = K$.

Fix a positive integer n. Define

$$AC^{n}(G) = \{(g_{1}, \dots, g_{n}) \in G^{n} \mid g_{i}g_{j}g_{i}^{-1}g_{j}^{-1} \in Z_{G} \ \forall \ i, j\}.$$

It is a subscheme of the affine variety G^n . The group G acts on $AC^n(G)$ as simultaneous conjugation of the n factors. Let

$$ACE^n(G) := AC^n(G) // G$$

be the geometric invariant theoretic quotient. Also, define

$$AC^{n}(K) = \{(g_1, \dots, g_n) \in K^n \mid g_i g_j g_i^{-1} g_j^{-1} \in Z_G \quad \forall i, j\}.$$

So $AC^n(K) = AC^n(G) \bigcap K^n$. Let

$$ACE^n(K) := AC^n(K)/K$$

be the quotient for the simultaneous conjugation action of K on the n factors. Note that the inclusion of K in G produces an inclusion

$$ACE^n(K) \hookrightarrow ACE^n(G)$$
.

Proposition 3.1. Let G be semisimple. Then, the topological space $ACE^{n}(G)$ admits a deformation retraction to the above subset $ACE^{n}(K)$.

Proof. When G is semisimple, Z_G is a finite subgroup of G, so that the map (3.1) is a Galois covering. Also, $Z_G \subset K$. Define $AC^n(PG)$ and $ACE^n(PG)$ by substituting PG in place of G in the above constructions. Note that $AC^n(PG)$ parametrizes commuting n elements of PG because the center of PG is trivial. Similarly, define $AC^n(PK)$ and $ACE^n(PK)$ by substituting PK in place of K. So $AC^n(PK)$ parametrizes commuting n elements of PK. The projection

$$(3.2) \qquad \beta \colon \operatorname{ACE}^n(G) \to \operatorname{ACE}^n(PG)$$

constructed using the projection q in (3.1) is a Galois covering with Galois group Z_G^n . However it should be mentioned that $ACE^n(G)$ need not be connected. Let

$$\gamma \colon \operatorname{ACE}^n(K) \to \operatorname{ACE}^n(PK)$$

be the projection constructed similarly using q. Clearly, γ coincides with the restriction of β to $ACE^n(K) \subset ACE^n(G)$.

There is a deformation retraction of $ACE^{n}(PG)$ to $ACE^{n}(PK)$

$$\varphi \colon \operatorname{ACE}^n(PG) \times [0,1] \to \operatorname{ACE}^n(PG)$$

[7, Theorem 1.1] (see also [4]). In particular, $\varphi|_{ACE^n(PG)\times\{0\}}$ is the identity map of ACEⁿ(PG).

Applying the homotopy lifting property to the covering β in (3.2), there is a unique map

$$\widetilde{\varphi} \colon \operatorname{ACE}^n(G) \times [0,1] \to \operatorname{ACE}^n(G)$$

such that

- (1) $\beta \circ \widetilde{\varphi} = \varphi \circ (\beta \times \mathrm{Id}_{[0,1]})$, and
- (2) $\widetilde{\varphi}|_{ACE^n(G)\times\{0\}}$ is the identity map of $ACE^n(G)$.

This map $\widetilde{\varphi}$ is a deformation retraction of $ACE^n(G)$ to $ACE^n(K)$, because φ is a deformation retraction.

Proposition 3.1 remains valid in the more general situation when G is reductive.

Theorem 3.2. Let G be a connected reductive affine algebraic group over \mathbb{C} . Then, $ACE^{n}(G)$ admits a deformation retraction to the subset $ACE^{n}(K)$.

Proof. First, note that Proposition 3.1 is clearly valid if G is a product of copies of the multiplicative group \mathbb{C}^* . Hence it remains valid for any G which is a product of a semisimple group and copies of \mathbb{C}^* . For a general connected reductive group G, consider the natural homomorphism

$$\eta \colon G \to PG \times (G/[G,G])$$
.

It is a surjective Galois covering map, the quotient $PG := G/Z_G$ is semisimple, while the quotient G/[G, G] is a product of copies of \mathbb{C}^* . As mentioned above Proposition 3.1 is valid for $PG \times (G/[G, G])$. Using this and the above homomorphism η it follows that Proposition 3.1 is valid for G.

3.1. Deformation retraction of the space of n commuting elements. Finally, we note that the analogous result is also verified for the space of n commuting elements, $AC^{n}(G)$.

Theorem 3.3. Let G be a connected reductive affine algebraic group over \mathbb{C} . Then, the space $AC^n(G)$ admits a deformation retraction to the subset $AC^n(K)$.

Proof. Since PG and PK have trivial center, the spaces $AC^n(PG)$ and $AC^n(PK)$ consist of n commuting elements: If $(g_1, \ldots, g_n) \in AC^n(PG)$, then

 $g_i g_j = g_j g_i$, for all $i, j \in \{1, \ldots, n\}$.

Therefore, it is known that $AC^n(PG)$ admits a deformation retraction to $AC^n(PK)$ [10, p. 2514, Theorem 1.1]. In view of this, imitating the proof of Proposition 3.1 it follows that $AC^n(G)$ admits a deformation retraction to $AC^n(K)$.

References

- Anchouche, B., Biswas, I., Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001), 207–228.
- Biswas, I., Bruzzo, U., On semistable principal bundles over a complex projective manifold. II, Geom. Dedicata 146 (2010), 27–41.
- [3] Biswas, I., Florentino, C., Character varieties of virtually nilpotent Kähler groups and G-Higgs bundles, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1405.0610.
- [4] Biswas, I., Florentino, C., Commuting elements in reductive groups and Higgs bundles on Abelian varieties, J. Algebra 388 (2013), 194–202.
- [5] Biswas, I., Gómez, T.L., Connections and Higgs fields on a principal bundle, Ann. Global Anal. Geom. 33 (2008), 19–46.
- [6] Borel, A., Friedman, R., Morgan, J.W., Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), no. 747.
- [7] Florentino, C., Lawton, S., Topology of character varieties of Abelian groups, preprint arXiv:1301.7616.

- [8] Kac, V.G., Smilga, A.V., Vacuum structure in supersymmetric Yang-Mills theories with any gauge group, preprint arXiv hep-th/9902029, 1999.
- Katzarkov, L., Pantev, T., Representations of fundamental groups whose Higgs bundles are pullbacks, J. Differential Geom. 39 (1994), 103–121.
- [10] Pettet, A., Souto, J., Commuting tuples in reductive groups and their maximal compact subgroups, Geom. Topol. 17 (2013), 2513–2593.
- [11] Simpson, C.T., Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. 75 (1992), 5–95.

SCHOOL OF MATHEMATICS, TATA INSTITUTE OF FUNDAMENTAL RESEARCH, HOMI BHABHA ROAD, BOMBAY 400005, INDIA *E-mail*: indranil@math.tifr.res.in

DEPARTAMENTO MATEMÁTICA, IST, UNIVERSITY OF LISBON, AV. ROVISCO PAIS, 1049-001 LISBON, PORTUGAL *E-mail*: carlos.florentino@tecnico.ulisboa.pt