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HIGGS BUNDLES AND REPRESENTATION SPACES
ASSOCIATED TO MORPHISMS

Indranil Biswas and Carlos Florentino

Abstract. Let G be a connected reductive affine algebraic group defined over
the complex numbers, and K ⊂ G be a maximal compact subgroup. Let X, Y
be irreducible smooth complex projective varieties and f : X → Y an algebraic
morphism, such that π1(Y ) is virtually nilpotent and the homomorphism
f∗ : π1(X)→ π1(Y ) is surjective. Define

Rf
(
π1(X), G

)
= {ρ ∈ Hom

(
π1(X), G

)
| A ◦ ρ factors through f∗} ,

Rf
(
π1(X),K

)
= {ρ ∈ Hom

(
π1(X),K

)
| A ◦ ρ factors through f∗} ,

where A : G→ GL(Lie(G)) is the adjoint action. We prove that the geomet-
ric invariant theoretic quotient Rf (π1(X,x0), G)//G admits a deformation
retraction to Rf (π1(X,x0), K)/K. We also show that the space of conjugacy
classes of n almost commuting elements in G admits a deformation retraction
to the space of conjugacy classes of n almost commuting elements in K.

1. Introduction

Let G be a connected reductive affine algebraic group defined over the complex
numbers. Consider an algebraic morphism

f : X → Y

where X and Y are irreducible smooth complex projective varieties, and let

f∗ : π1(X,x0)→ π1
(
Y, f(x0)

)
be the induced morphism of fundamental groups, where x0 ∈ X is a base point. In
certain situations, the representations

ρ : π1(X,x0)→ G

2010 Mathematics Subject Classification: primary 14J60.
Key words and phrases: Higgs bundle, flat connection, representation space, deformation

retraction.
The first author is supported by a J.C. Bose Fellowship. The second author is partially supported

by FCT (Portugal) through the projects EXCL/MAT-GEO/0222/2012, PTDC/MAT/120411/2010
and PTDC/MAT-GEO/0675/2012.

Received July 20, 2015. Editor J. Slovák.
DOI: 10.5817/AM2015-4-191

http://www.emis.de/journals/AM/
http://dx.doi.org/10.5817/AM2015-4-191


192 I. BISWAS AND C. FLORENTINO

that factor through f∗ have special geometric properties. See [9], where necessary
and sufficient conditions for such a factorization are given in terms of the spectral
curve of the G-Higgs bundle associated to ρ.

In this article, we are interested in the whole moduli space of representations
that factor in a similar way, and in its topological properties. Under some assump-
tions on f and Y , we provide a natural deformation retraction between two such
representation spaces, described as follows.

The Lie algebra of G will be denoted by g. Let A : G→ GL(g) be the homomor-
phism given by the adjoint action of G on g. Fix a maximal compact subgroup
K ⊂ G and define:

Rf
(
π1(X,x0), G

)
= {ρ ∈ Hom

(
π1(X,x0), G

)
| A ◦ ρ factors through f∗} ,

Rf
(
π1(X,x0),K

)
= {ρ ∈ Hom

(
π1(X,x0),K

)
| A ◦ ρ factors through f∗} .

We note that the group G (respectively, K) acts on Rf (π1(X,x0), G) (respectively,
on Rf (π1(X,x0),K)) via the conjugation action of G (respectively, K) on itself.
The quotient Rf (π1(X,x0),K)/K is contained in the geometric invariant theoretic
quotient Rf (π1(X,x0), G)//G.

We prove the following in Theorem 2.6:
Suppose that the fundamental group of Y is virtually nilpotent, and the ho-

momorphism f∗ is surjective. Then Rf (π1(X,x0), G)//G admits a deformation
retraction to the subset Rf (π1(X,x0),K)/K.

In Section 3, we consider spaces of almost commuting elements in K and in G.
Define:

ACn(K) = {(g1, . . . , gn) ∈ Kn | gigjg−1
i g−1

j ∈ ZK ∀ i , j} ,

where ZK denotes the center of K. The moduli space of conjugacy classes:

ACn(K) /K ,

where K acts by simultaneous conjugation, was studied in [6], [8], and plenty of
information is known in the cases n = 2 and n = 3. For instance, the number of
components of AC3(K) /K has been related in [6] to the Chern-Simons invariants
associated to flat connections on a 3-torus.

In a similar fashion, we define ACn(G)//G, the moduli space of conjugacy classes
of n almost commuting elements in G. For example, if G has trivial center, then
AC2n(G)//G coincides with

Hom(π1(X,x0), G)//G ,

where X is an abelian variety of complex dimension n. In Proposition 3.1, we show
that ACn(G) /G admits a deformation retraction to ACn(K) /K, and that the
same holds for ACn(G) and ACn(K), extending one of the main results in [7] and
[4].
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2. Representation spaces associated to a morphism

Let X be an irreducible smooth complex projective variety. Fix a point x0 ∈ X.
Let

f : X → Y

be an algebraic morphism, where Y is also an irreducible smooth complex projective
variety, such that:

(1) the fundamental group π1(Y, f(x0)) is virtually nilpotent, and
(2) the homomorphism of fundamental groups induced by f

(2.1) f∗ : π1(X,x0)→ π1
(
Y, f(x0)

)
is surjective.

Using the homomorphism f∗ in (2.1), we will consider π1(Y, f(x0)) as a quotient
of the group π1(X,x0).

Let G be a connected reductive affine algebraic group defined over C. The Lie
algebra of G will be denoted by g. Let

(2.2) A : G→ GL(g)

be the homomorphism given by the adjoint action of G on g. The affine algebraic
variety (not necessarily irreducible) of representations

ρ : π1(X,x0)→ G

will be denoted by Hom(π1(X,x0), G).

Definition 2.1. Let ρ ∈ Hom(π1(X,x0), G). We sat that A ◦ ρ factors through
f∗ in (2.1) (or that A ◦ ρ factors geometrically through f : X → Y , see [9]) if there
exists a homomorphism ρ′ ∈ Hom(π1(Y, f(x0)),GL(g)) such that

(2.3) ρ′ ◦ f∗ = A ◦ ρ .

Remark 2.2. (1) Clearly, if ρ itself factorizes as ρ = ρ̃ ◦ f∗ for some
ρ̃ ∈ Hom(π1(X,x0), G), then A ◦ ρ factorizes through f∗ as in the definition; the
converse is not always true.

(2) It is clear that A ◦ ρ ∈ Hom(π1(X,x0),GL(g)) factors through f∗ as in
(2.3), if and only if A ◦ ρ is trivial on the kernel of f∗. Moreover, when A ◦ ρ factors
through f∗, a homomorphism ρ′ ∈ Hom(π1(Y, f(x0)),GL(g)) satisfying equation
(2.3) is unique, because f∗ is surjective.

In the framework of non-abelian Hodge theory, there is a correspondence between
semistable G-Higgs bundles over X and representations in Hom(π1(X,x0), G), [11],
[5]. Denote by (Eρ, θρ) the semistable G-Higgs bundle on X associated to ρ under
this correspondence. We note that (Eρ, θρ) is semistable with respect to every
polarization on X.

Lemma 2.3. Let ρ ∈ Hom(π1(X,x0), G) be such that A ◦ ρ factors through f∗.
Then, the above principal G-bundle Eρ on X is semistable.
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Proof. Let
ad(Eρ) := Eρ ×A g→ X

be the adjoint vector bundle of Eρ. The Higgs field on ad(Eρ) induced by θρ will
be denoted by ad(θρ).

Let ρ′ : π1(Y, f(x0))→ GL(g) be the unique homomorphism satisfying equation
(2.3); the uniqueness of ρ′ is a consequence of the surjectivity of f∗ as remarked
above. Let (E′, θ′) be the semistable Higgs vector bundle on Y associated to this
homomorphism ρ′. Since the fundamental group of Y is virtually nilpotent, we
know that the vector bundle E′ is semistable [3, Proposition 3.1]. Let ci(E′), i ≥ 0,
be the sequence of Chern classes of the bundle E′. Then, ci(E′) = 0 for all i > 0
because the C∞ complex vector bundle underlying E′ admits a flat connection (it
is isomorphic to the C∞ complex vector bundle underlying the flat vector bundle
associated to ρ′). Therefore, by [2, p. 39, Theorem 5.1], the vector bundle E′ admits
a filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ V`−1 ⊂ V` = E′

of holomorphic subbundles such that each successive quotient Vi/Vi−1, 1 ≤ i ≤ `,
admits a flat unitary connection. Consider the pulled back filtration

(2.4) 0 = f∗V0 ⊂ f∗V1 ⊂ · · · ⊂ f∗V`−1 ⊂ f∗V` = f∗E′ .

A flat unitary connection on Vi/Vi−1 pulls back to a flat unitary connection on

f∗Vi/(f∗Vi−1) = f∗(Vi/Vi−1) .

Since each successive quotient for the filtration of f∗E′ in (2.4) admits a flat unitary
connection, we conclude that the holomorphic vector bundle f∗E′ is semistable.

From (2.3) it follows that

(2.5)
(

ad(Eρ), ad(θρ)
)

= (f∗E′, f∗θ′) .

Since f∗E′ is semistable, from (2.5) it follows that ad(Eρ) is semistable. This implies
that the principal G-bundle Eρ is semistable [1, p. 214, Proposition 2.10]. �

Lemma 2.3 has the following corollary:

Corollary 2.4. For any Higgs field θ, the G-Higgs bundle (Eρ, θ) is semistable.

Let

(2.6) ρλ : π1(X,x0)→ G

be a homomorphism corresponding to the Higgs G-bundle (Eρ, λ · θρ), which is
semistable by Corollary 2.4. We note that although ρλ is not uniquely determined
by (Eρ, λ · θρ), the point in the quotient space

Hom(π1(X,x0), G)/G

given by ρλ does not depend on the choice of ρλ. In other words, any two different
choices of ρλ differ by an inner automorphism of the group G.

Lemma 2.5. For every λ ∈ C, the homomorphism A◦ρλ factors through f∗, where
ρλ is defined in (2.6).
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Proof. Let (ad(Eρ)λ, ad(θρ)λ) be the Higgs vector bundle associated to the homo-
morphism A◦ρλ. We note that (ad(Eρ)λ, ad(θρ)λ) is isomorphic to (f∗E′, f∗(λ·θ′)),
because the Higgs bundle (E′, θ′) corresponds to ρ′, and (2.3) holds. We saw in
the proof of Lemma 2.3 that E′ is semistable with ci(E′) = 0 for all i > 0. Since
(ad(Eρ)λ, ad(θρ)λ) is isomorphic to the pullback of a semistable Higgs vector bundle
on Y such that all the Chern classes of positive degrees of the underlying vector
bundle on Y vanish, it can be deduced that A ◦ ρλ factors through the quotient
π1(Y, f(x0)). In fact, if

δ : π1(Y, f(x0))→ GL(g)
is a homomorphism corresponding to the Higgs vector bundle (E′, λ · θ′), then
• the homomorphism A ◦ ρλ factors through the quotient π1(Y, f(x0)), and
• the homomorphism π1(Y, f(x0))→ GL(g) resulting from A ◦ ρλ differs from
δ by an inner automorphism of GL(g).

This completes the proof. �

Fix a maximal compact subgroup

K ⊂ G .

Define

Rf
(
π1(X,x0), G

)
= {ρ ∈ Hom(π1(X,x0), G) | A ◦ ρ factors through f∗} ,

Rf (π1(X,x0), K) = {ρ ∈ Hom(π1(X,x0), K) | A ◦ ρ factors through f∗} .

Since π1(X,x0) is a finitely presented group, the affine algebraic structure of G
produces an affine algebraic structure on Rf (π1(X,x0), G). The group G acts on
Rf (π1(X,x0), G) via the conjugation action of G on itself. Let

Rf (π1(X,x0), G)//G

be the corresponding geometric invariant theoretic quotient. We note that this
geometric invariant theoretic quotient Rf (π1(X,x0), G)//G is a complex affine
algebraic variety. Let

Rf (π1(X,x0), K)/K
be the quotient of Rf (π1(X,x0), K) for the adjoint action of K on itself.

The inclusion of K in G produces an inclusion of Rf (π1(X,x0),K) in
Rf (π1(X,x0), G), which, in turn, gives an inclusion

(2.7) Rf (π1(X,x0), K)/K ↪→ Rf (π1(X,x0), G)//G .

Instead of working with the Zariski topology on Rf (π1(X,x0), G)//G, we consider
on it the Euclidean topology which is induced from an embedding of this space
in a complex affine space. Indeed, such an embedding can always be obtained by
considering a finite set of generators of the algebra of G-invariant regular functions
on Rf (π1(X,x0), G). Moreover, this topology is independent of the choice of such
embedding, and compatible with the inclusion (2.7).

Theorem 2.6. The topological space Rf (π1(X,x0), G)//G admits a deformation
retraction to the above subset Rf (π1(X,x0), K)/K.
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Proof. Two elements of Hom(π1(X,x0), G) are called equivalent if they differ by
an inner automorphism of G. Points of Rf (π1(X,x0), G)//G correspond to the
equivalence classes of homomorphisms ρ ∈ Hom(π1(X,x0), G) such that the action
of π1(X,x0) on g given by A ◦ ρ is completely reducible, meaning that g is a direct
sum of irreducible π1(X,x0)-modules. Let (Eρ , θρ) be the semistable G-Higgs
bundle corresponding to the above homomorphism ρ, and let (ad(Eρ) , ad(θρ))
be the semistable adjoint Higgs vector bundle associated to (Eρ , θρ). The above
condition that the action of π1(X,x0) on g given by A ◦ ρ is completely reducible is
equivalent to the condition that the semistable Higgs vector bundle (ad(Eρ) , ad(θρ))
is polystable.

Let
φ :
(
Rf (π1(X,x0), G)//G

)
× [0 , 1]→ Rf

(
π1(X,x0), G

)
//G

be the map defined by (ρ, λ) 7−→ ρ1−λ (defined in (2.6)), where ρ ∈ Hom(π1(X,x0),
G) satisfies the condition that the action of π1(X,x0) on g given by A ◦ ρ is
completely reducible. It is easy to see that φ is well-defined. We note that the
point in the geometric invariant theoretic quotient Rf (π1(X,x0), G)//G given by
ρ lies in the subset Rf (π1(X,x0),K)/K if and only if the Higgs field θρ on the
principal G–bundle Eρ vanishes identically (as before, (Eρ, θρ) is the Higgs G-bundle
corresponding to ρ).

The following are straightforward to check:
• φ(z , 0) = z for all z ∈ Rf (π1(X,x0), G)//G,
• φ(z, 1) ∈ Rf (π1(X,x0),K)/K for all z ∈ Rf (π1(X,x0), G)//G, and
• φ(z, λ) = z for all z ∈ Rf (π1(X,x0),K)/K and λ ∈ [0, 1].

Therefore, the above map φ produces a deformation retraction ofRf (π1(X,x0), G)//
G to Rf (π1(X,x0),K)/K. �

Remark 2.7. Lemma 2.3 and Theorem 2.6 are also valid for morphisms f : X → Y
in the category of compact Kähler manifolds, under the same assumptions on Y
and f∗. The proofs of these results are analogous, by replacing semistability with
the notion of pseudostability (see [5], [3]).

3. Deformation retraction of the space
of almost commuting elements

Again, let G be a connected complex reductive group, and K be a maximal
compact subgroup. Let

ZG ⊂ G
be the center of G and let

PG := G/ZG

be the quotient group. We note that the center of PG is trivial. Let
(3.1) q : G→ PG

be the quotient map. The image
PK := q(K) ⊂ PG



HIGGS BUNDLES AND REPRESENTATION SPACES ASSOCIATED TO MORPHISMS 197

is a maximal compact subgroup of PG. We have q−1(PK) = K.
Fix a positive integer n. Define

ACn(G) = {(g1, . . . , gn) ∈ Gn | gigjg−1
i g−1

j ∈ ZG ∀ i, j} .

It is a subscheme of the affine variety Gn. The group G acts on ACn(G) as
simultaneous conjugation of the n factors. Let

ACEn(G) := ACn(G)//G
be the geometric invariant theoretic quotient. Also, define

ACn(K) = {(g1, . . . , gn) ∈ Kn | gigjg−1
i g−1

j ∈ ZG ∀ i, j} .

So ACn(K) = ACn(G)
⋂
Kn. Let

ACEn(K) := ACn(K)/K
be the quotient for the simultaneous conjugation action of K on the n factors. Note
that the inclusion of K in G produces an inclusion

ACEn(K) ↪→ ACEn(G) .

Proposition 3.1. Let G be semisimple. Then, the topological space ACEn(G)
admits a deformation retraction to the above subset ACEn(K).

Proof. When G is semisimple, ZG is a finite subgroup of G, so that the map
(3.1) is a Galois covering. Also, ZG ⊂ K. Define ACn(PG) and ACEn(PG) by
substituting PG in place of G in the above constructions. Note that ACn(PG)
parametrizes commuting n elements of PG because the center of PG is trivial.
Similarly, define ACn(PK) and ACEn(PK) by substituting PK in place of K. So
ACn(PK) parametrizes commuting n elements of PK. The projection
(3.2) β : ACEn(G)→ ACEn(PG)
constructed using the the projection q in (3.1) is a Galois covering with Galois
group ZnG. However it should be mentioned that ACEn(G) need not be connected.
Let

γ : ACEn(K)→ ACEn(PK)
be the projection constructed similarly using q. Clearly, γ coincides with the
restriction of β to ACEn(K) ⊂ ACEn(G).

There is a deformation retraction of ACEn(PG) to ACEn(PK)
ϕ : ACEn(PG)× [0, 1]→ ACEn(PG)

[7, Theorem 1.1] (see also [4]). In particular, ϕ|ACEn(PG)×{0} is the identity map
of ACEn(PG).

Applying the homotopy lifting property to the covering β in (3.2), there is a
unique map

ϕ̃ : ACEn(G)× [0, 1]→ ACEn(G)
such that

(1) β ◦ ϕ̃ = ϕ ◦ (β × Id[0,1]), and
(2) ϕ̃|ACEn(G)×{0} is the identity map of ACEn(G).
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This map ϕ̃ is a deformation retraction of ACEn(G) to ACEn(K), because ϕ is a
deformation retraction. �

Proposition 3.1 remains valid in the more general situation when G is reductive.

Theorem 3.2. Let G be a connected reductive affine algebraic group over C. Then,
ACEn(G) admits a deformation retraction to the subset ACEn(K).

Proof. First, note that Proposition 3.1 is clearly valid if G is a product of copies
of the multiplicative group C∗. Hence it remains valid for any G which is a product
of a semisimple group and copies of C∗. For a general connected reductive group
G, consider the natural homomorphism

η : G→ PG× (G/[G,G]) .
It is a surjective Galois covering map, the quotient PG := G/ZG is semisimple, while
the quotient G/[G,G] is a product of copies of C∗. As mentioned above Proposition
3.1 is valid for PG × (G/[G,G]). Using this and the above homomorphism η it
follows that Proposition 3.1 is valid for G. �

3.1. Deformation retraction of the space of n commuting elements. Fi-
nally, we note that the analogous result is also verified for the space of n commuting
elements, ACn(G).

Theorem 3.3. Let G be a connected reductive affine algebraic group over C. Then,
the space ACn(G) admits a deformation retraction to the subset ACn(K).

Proof. Since PG and PK have trivial center, the spaces ACn(PG) and ACn(PK)
consist of n commuting elements: If (g1, . . . , gn) ∈ ACn(PG), then

gigj = gjgi , for all i, j ∈ {1, . . . , n} .
Therefore, it is known that ACn(PG) admits a deformation retraction to ACn(PK)
[10, p. 2514, Theorem 1.1]. In view of this, imitating the proof of Proposition 3.1 it
follows that ACn(G) admits a deformation retraction to ACn(K). �
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