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Prym varieties of pairs of coverings
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(Communicated by K. Strambach)

Abstract. The Prym variety of a pair of coverings is defined roughly speaking as the comple-
ment of the Prym variety of one morphism in the Prym variety of another morphism. We show
that this definition is symmetric and give conditions when such a Prym variety is isogenous to
an ordinary Prym variety or to another such Prym variety. Moreover in order to show that
these varieties actually occur we compute the isogeny decomposition of the Jacobian variety of
a curve with an action of the symmetric group S5.
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1 Introduction

Let X be a smooth projective curve over an algebraically closed field k and G a finite
group of automorphisms of X . This induces an action of G on the Jacobian JX of X
which can be used to decompose JX into a product of smaller dimensional abelian
varieties up to isogeny:

JX @Bd1

1 � � � � � Bdr
r

The abelian subvarieties Bi correspond one-to-one to the irreducible Q-
representations of the group G, which also determine the numbers di. One would like
to understand the decomposition in terms of the curve and its group action itself. In
fact, for many small groups the Bi’s can be interpreted as Prym varieties of coverings
XM ! XN , where MHN are subgroups of G and XM and XN denote the quotients
X=M and X=N. This is the case for example for the groups S3;S4;A4;A5;Dp;WD4

and Q8 (see [7], [8], [2] and [5]).
For other groups such as S5 (see Theorem 4.1 below) or the dihedral groups Dn,

(see [1] Remark 8.8) not for every Bi there is such a Prym variety. Another type of
abelian variety turns up: Let M;N1 and N2 be subgroups of G with MHN1 and
MHN2. This gives the following diagram of coverings:
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XM

f1 . & f2

XN1
XN2

ð1:1Þ
g1 & . g2

XN

where N ¼ hN1;N2i, the subgroup generated by N1 and N2. Let Pð fiÞ denote the
Prym variety of the covering fi. Similarly PðgiÞ is defined for i ¼ 1; 2. Then f �2 Pðg2Þ
is an abelian subvariety of Pð f1Þ. Since the canonical polarization of JX induces a
polarization of Pð f1Þ, the complementary abelian subvariety of f �2 Pðg2Þ in Pð f1Þ is
well defined. Similarly the complementary abelian subvariety of f �1 Pðg1Þ in Pð f2Þ is
well defined. It turns out that both complementary abelian subvarieties coincide as
subvarieties of JXM . We denote this subvariety by Pð f1; f2Þ or PðXN1

 XM ! XN2
Þ

and call it the Prym variety of the pair of coverings ð f1; f2Þ.
In Section 2 we introduce the Prym variety Pð f1; f2Þ slightly more generally for any

pair of coverings of smooth projective curves ð f1 : X ! X1; f2 : X ! X2Þ and prove
its main properties. In Section 3 we prove some auxiliary results on group actions
needed in the last section, where we work out the decomposition of JX in the case of
an action of the symmetric group S5 of degree 5.

2 Definition of P( f 1, f 2)

Let f : X ! Y be a morphism of degree n of smooth projective curves over an alge-
braically closed field k. Denote by JX :¼ Pic0ðXÞ and JY :¼ Pic0ðY Þ the Jacobians of
X and Y . Pulling back line bundles defines a homomorphism

f � : JY ! JX :

f � has finite kernel and is an embedding if and only if f does not factor via a cyclic
étale cover of degreed 2 (see [4], Proposition 11.4.3). The norm map of line bundles
(see [3], Section 6.5) defines a homomorphism

Nf : JX ! JY :

The Prym variety Pð f Þ of the morphism f is defined to be the abelian subvariety

Pð f Þ :¼ kerðNf Þ0

of JX where the 0 means the connected component containing 0. Note that Nf is not
necessarily a Prym variety in the classical sense, i.e. the canonical polarization of JX
does not necessarily induce a multiple of a principal polarization on Pð f Þ. Suppose
g : Y ! Z is a second morphism of smooth projective curves, say of degree m. The
Prym varieties of f ; g and gf are related as follows:

Proposition 2.1. Pð f Þ and f �PðgÞ are abelian subvarieties of Pðgf Þ and the addition

map gives an isogeny
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Pð f Þ � f �PðgÞ ! Pðgf Þ:

Proof. The addition map yields an isogeny

Pðgf Þ � ðgf Þ�JZ ! JX :

Combing the analogous isogenies Pð f Þ � f �JY ! JX and f �PðgÞ � ðgf Þ�JZ !
f �JY we obtain that the addition map gives an isogeny

Pð f Þ � f �PðgÞ � ðgf Þ�JZ ! JX :

Since Pð f Þ and f �PðgÞ are obviously abelian subvarieties of Pðgf Þ, this implies the
assertion. r

Now suppose that we are given a commutative diagram of finite morphisms of
smooth projective curves:

X
f1 . & f2

X1 X2 ð2:1Þ
g1 & . g2

Y

Then we have

Proposition 2.2. Suppose g1 and g2 do not both factorize via the same morphism

Y 0 ! Y of degreed 2. Then the Prym variety f �2 Pðg2Þ is an abelian subvariety of the

Prym variety Pð f1Þ.

Proof. First assume that f1 and f2 do not both factorize via a morphism f : X ! X 0.
The universal property of the fibre product over Y yields a diagram

X?y
X1 �Y X2

p1 . & p2

X1 X2

g1 & . g2

Y

where n : X ! X1 �Y X2 denotes the normalization map and pi : X1 �Y X2 ! Xi the
projection maps and fi ¼ pin for i ¼ 1 and 2. According to [3], Proposition 6.5.8 we
have

Np1
p�2 ðLÞ ¼ g�1Ng2

ðLÞ
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for any line bundle L on X2. But the norm map of line bundles is also defined for the
map n (see [3] Section 6.5, condition II is satisfied) and we have

Nf1ð f �2 ðLÞÞ ¼ Np1
Nnðn�p�2 ðLÞÞ ¼ Np1

p�2 ðLÞ:

Both equations together imply the assertion is this case.
In the general case suppose fi factorizes as fi ¼ f 0i f with some morphism of

smooth projective curves f : X ! X 0 and f 0i : X 0 ! Xi for i ¼ 1 and 2. By what we
have just shown, f 0�2 Pðg2Þ is an abelian subvariety of Pð f 01 Þ. So f �2 Pðg2Þ is an abelian
subvariety of f �Pð f 01 Þ which is an abelian subvariety of Pð f1Þ according to Proposi-
tion 1.1. r

Remark 2.3. The assumption that g1 and g2 do not factorize via the same mor-
phism Y 0 ! Y is necessary for the validity of Proposition 1.2. To give an example,
let h : Y ! P1 be a finite covering. Replace gi by hgi for i ¼ 1; 2. Then Pðhg2Þ ¼ JX2

and and it is easy to give an example of a diagram (1.1) where f �2 JX2 is not an abe-
lian subvariety of Pð f1Þ.

The canonical principal polarization induces a polarization on Pð f1Þ. Hence the
complementary abelian subvariety P1 of the abelian subvariety f �2 Pðg2Þ in Pð f1Þ is
well defined (see [4], Section 5.3). The addition map induces an isogeny of polarized
abelian varieties

P1 � f �2 Pðg2Þ ! Pð f1Þ:

In the same way the canonical principal polarization of JX induces a polarization
on Pð f2Þ. Hence the complementary abelian subvariety P2 of f �1 Pðg1Þ in Pð f2Þ is well
defined and the addition map induces an isogeny of polarized abelian varieties

f �1 Pðg1Þ � P2 ! Pð f2Þ:

P1 and P2 are both abelian subvarieties of JX with induced polarizations, say H1 and
H2. We have:

Proposition 2.4. The polarized abelian subvarieties ðP1;H1Þ and ðP2;H2Þ of JX coin-

cide.

Proof. It su‰ces to show that P1 ¼ P2 since the polarizations are induced by the ca-
nonical principal polarization of JX . By definition of the Prym varieties the addition
maps induce isogenies

f �1 g
�
1JY � f �1 Pðg1Þ � f �2 Pðg2Þ � P1 ! f �1 JX1

� Pð f1Þ ! JX

and

f �2 g
�
2JY � f �2 Pðg2Þ � f �1 Pðg1Þ � P2 ! f �2 JX2

� Pð f2Þ ! JX
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where all abelian varieties are subvarieties of JX . Obviously we have f �1 g
�
1JY ¼

f �2 g
�
2JY . So if Z denotes the image of f �1 g

�
1JY � f �1 Pðg1Þ � f �2 Pðg2Þ in JX the addi-

tion map gives isogenies

Z � P1 ! JX and Z � P2 ! JX :

Now the corresponding decompositions of the tangent spaces are orthogonal with
respect to the hermitian form associated to the canonical polarization of JX . This
implies that on the one hand P1 and on the other hand P2 is the complement of the
abelian subvariety Z in JX . Since the complement is uniquely determined, this implies
the assertion. r

We call the abelian variety P1 ¼ P2 or more precisely the polarized abelian va-
riety ðP1;H1Þ ¼ ðP2;H2Þ the Prym variety of the pair of coverings ð f1; f2Þ and denote
it by Pð f1; f2Þ or PðX1  X ! X2Þ. Note that Pð f1; f2Þ is defined for any pair
ð f1 : X ! X1; f2 : X ! X2Þ of coverings of smooth projective curves. Given ð f1; f2Þ,
the curve Y in the diagram (2.1) is the smooth projective curve corresponding to
the function field kðX1ÞV kðX2Þ. If for example f1 ¼ f2 then we have obviously
Pð f1; f1Þ ¼ 0.

Applying the Hurwitz formula, it is easy to compute the dimension of Pð f1; f2Þ.
We do this only in the most important case where the function fields satisfy
kðX1ÞkðX2Þ ¼ kðXÞ and kðX1ÞV kðX2Þ ¼ kðY Þ, i.e. the hypotheses of Proposition 2.2
are satisfied and X is the normalization of X1 �Y X2. Then we have d1 :¼ degð f1Þ ¼
degðg2Þ and d2 :¼ degð f2Þ ¼ degðg1Þ. Moreover for any covering f of smooth pro-
jective curves let Qf denote the degree of the ramification divisor of f . Then we have

Proposition 2.5.

dimPð f1; f2Þ ¼ ðd1 � 1Þðd2 � 1ÞðgðYÞ � 1Þ þ 1=2½Qf1 þ ðd1 � 1ÞQg1
� Qg2

�:

3 Isogenies between Prym varieties and Prym varieties of pairs

Let again G be a finite group acting on a smooth projective curve X . If MHN and
M 0HN 0 are two pairs of subgroups of G, it may happen that the Prym varieties
PðXM=XNÞ and PðXM 0=XN 0 Þ are isogenous. Similarly this may happen for Prym vari-
eties of pairs. In this section we give a criterion for this. Since we need this only in
the case of the symmetric group S5, we will assume in this section and without further
notice that every irreducible Q-representation of the group G is absolutely irreduc-
ible. We will see that then the Prym varieties and Prym varieties of pairs depend only
on the induced representations of the trivial representations of the subgroups in
question. For a general group we will come to this question in a subsequent paper.

The action of G on the curve X induces an action on its Jacobian JX and thus an
algebra homomorphism

r : Q½G� ! EndQðJXÞ:
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If e denotes any idempotent of the algebra Q½G �, we define

ImðeÞ :¼ ImðrðmeÞÞJ JX

where m is some positive integer such that me A Z½G �. ImðeÞ is an abelian subvariety
of JX , which certainly does not depend on the chosen integer m.

Let W1; . . . ;Wr denote the irreducible Q-representations of G. We assume in the
sequel that W1 is the trivial representation and that di ¼ dimWi for i ¼ 1; . . . ; r. If ei
denotes the central idempotent of Q½G� associated to Wi and Ai ¼ ImðeiÞ the corre-
sponding abelian subvariety of JX for i ¼ 1; . . . ; r, then the addition map induces an
isogeny (see [5], Proposition 2.1)

m : A1 � � � � � Ar ! A: ð3:1Þ

If di > 1 the abelian variety Ai can be decomposed further: Since Wi is absolutely
irreducible, it admits up to a positive constant a uniquely determined G-invariant
scalar product (see [9]). Fix one of these for every i and denote it by ð ; Þ. Let
fwi;1; . . . ;wi;dig be a basis of Wi, orthogonal with respect to ð ; Þ, and define

pwi; j
:¼ di

jGj � kwi; jk2

X

g AG

ðwi; j; gwi; jÞg:

Schur’s character relations (see [9], Chapter 2, Corollary 3 of Proposition 4) can be
translated into terms of idempotents as follows (see [5], Proposition 3.3): pwi; 1

; . . . ;
pwi; di

are orthogonal idempotents in Q½G � satisfying

pwi; 1
þ � � � þ pwi; di

¼ ei:

This implies that if Bi; j :¼ Imðpwi; j
Þ, the addition map induces an isogeny

mi : Bi;1 � � � � � Bi;di ! Ai: ð3:2Þ

Moreover, since the minimal left ideals of Q½G � generated by the idempotents pwi; j

are pairwise isomorphic for a fixed i, it follows that the abelian varieties Bi;1; . . . ;Bi;di

are pairwise isogenous (see [5]). Combining everything we obtain:
There are abelian subvarieties B1; . . . ;Br and an isogeny

JX @Bd1

1 � � � � � Bdr
r : ð3:3Þ

The action of G on JX induces an action on the tangent space T0JX . Denoting Vi ¼
Wi nC, we obtain a decomposition

T0JX FV n1

1 � � � � � V nr
r : ð3:4Þ

Comparing this with the decomposition (3.3) implies T0ðBdi
i ÞFV ni

i . This gives di �
dimBi ¼ ni � dimVi. But dimVi ¼ di and thus
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ni ¼ dimBi:

Let H denote the canonical polarization of JX . It can be considered as a positive
definite hermitian form on T0JX . Since the group G of automorphisms of JX is in-
duced by the automorphism group G of the curve X , it preserves the polarization H.
This implies that we may change the isomorphism (3.4) in such a way that H restricts
to the scalar product ð ; Þ on Wi HVi for all i ¼ 1; . . . ; r. We fix this isomorphism in
the sequel. Using this we can show:

Proposition 3.1. Let MHN be subgroups of the group G. Then

PðXM=XNÞ@Bs2

2 � � � � � Bsr
r

with si ¼ dimWM
i � dimWN

i for i ¼ 2; . . . ; r.

Note that in the special case M ¼ f1g and N ¼ G Proposition 3.1 gives the well
known fact

PðX=YÞ@Bd2

2 � � � � � Bdr
r

since dimW
f1g
i � dimWG

i ¼ dimWi ¼ di for i ¼ 2; . . . ; r.

Proof. For i ¼ 1; . . . ; r choose an orthogonal basis

fwi;1; . . . ;wi; ti ;wi; tiþ1; . . . ;wi; tiþsi ;wi; tiþsiþ1; . . . ;wi;dig

of Wi in such a way that

WN
i ¼ hwi;1; . . . ;wi; tii and WM

i ¼ hwi;1; . . . ;wi; tiþsii:

Then

WM
i ¼WN

i þ hwi; tiþ1; . . . ;wi; tiþsii;

the sum being orthogonal.
It is easy to see that pwi; j

is the projection of Wi onto the 1-dimensional subspace
spanned by wi; j (see [6], Remarque (2), page 53). It follows that

WM
i ¼

Xtiþsi

j¼1

pwi; j
ðWiÞ and WN

i ¼
Xti

j¼1

pwi; j
ðWiÞ:

Since the sums are orthogonal, this implies

WM
i ¼WN

i þ
Xtiþsi

j¼tiþ1

pwi; j
ðWiÞ:
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This equation immediately yields, if we again denote Vi ¼Wi nC:

VM
i ¼ VN

i þ
Xtiþsi

j¼tiþ1

pwi; j
ðViÞ

the sums being orthogonal.
On the other hand the tangent map at the origin to pwi; j

: JX ! JX is
pwi; j

: T0JX ! T0JX . So the tangent space at the origin of the subvarietyPr
i¼1

P tiþsi
j¼1 Im pwi; j

H JX is
Pr

i¼1

P tiþsi
j¼1 pwi; j

ðT0JX Þ. But

Xr

i¼1

Xtiþsi

j¼1

pwi; j
ðT0JXÞ ¼ ðT0JX ÞM ¼ T0JXM :

It follows that

JXM @
Xr

i¼1

Xtiþsi

j¼1

Im pwi; j

(which is the image of the sum map U
r
i¼1U

tiþsi
j¼1 Bi; j ! JXÞ. Similarly we have

JXN @
Xr

i¼1

Xti

j¼1

Im pwi; j
:

Hence, since t1 ¼ d1ð¼ 1Þ and thus s1 ¼ 0, we obtain the orthogonal decomposition

JXM @ JXN �
Xr

i¼2

Xtiþsi

j¼tiþ1

Im pwi; j
:

On the other hand, by definition of the Prym variety we have the orthogonal decom-
position

JXM @ JXN � PðXM ! XNÞ:

Comparing both, orthogonal cancellation gives

PðXM ! XNÞ@
Xr

i¼2

Xtiþsi

j¼tiþ1

Im pwi; j
: ð3:5Þ

This implies the assertion, since Bi is isogenous to Im pwi; j
for all j. r

For any subgroup M of G let QðG=MÞ denote the induced representation of
the trivial representation of M in G. Note that for subgroups MHN of G,
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QðG=NÞ is a subrepresentation of QðG=MÞ so that QðG=MÞ �QðG=NÞ is in fact a
Q-representation.

Corollary 3.2. Suppose QðG=MÞ �QðG=NÞF0r

i¼2
W si

i . Then

PðXM ! XNÞ@Bs2

2 � � � � � Bsr
r :

Proof. For any representation W of G let wW denote its character. Since any irre-
ducible representation of G is absolutely irreducible, we may apply Frobenius reci-
procity, to give for any j ¼ 1; . . . ; r

dimWM
j � dimWN

j ¼ ðwQðG=MÞ�QðG=NÞ; wWj
Þ

¼
Xr

i¼1

si � ðwWi
; wWj
Þ ¼ sj:

Hence Proposition 3.1 gives the assertion. r

Applying Corollary 3.2 twice we obtain

Corollary 3.3. Let Mi HNi be subgroups of G such that the representations

QðG=MiÞ �QðG=NiÞ are isomorphic for i ¼ 1 and 2. Then

PðXM1
! XN1

Þ@PðXM2
! XN2

Þ:

Now suppose we are given the following diagram of subgroups of G

N1

% &
M N ¼ hN1;N2i! G

& %
N2

where all the maps are the canonical inclusions. This induces the diagram (1.1) of
coverings of curves. The equation N ¼ hN1;N2i implies that g1 and g2 do not both
factorize via a morphism Y 0 ! XN of degreed 2. With the notation of above we
have

Proposition 3.4. Pð f1; f2Þ@Bs2

2 � � � � � Bsr
r with

si ¼ dimWM
i þ dimWN

i � dimWN1

i � dimWN2

i for i ¼ 2; . . . ; r:

Note that MHN1 and MHN2 imply WN1 þWN2 HWM and N ¼ hN1;N2i
implies WN1 VWN2 ¼WN . Hence

dimWN1 þ dimWN2 � dimWN
c dimWM :
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So si d 0. This in turn implies that QðG=MÞ þQðG=NÞ �QðG=N1Þ �QðG=N2Þ is
actually a representation.

One can also state the inequality as:

dimWN2 � dimWN
c dimWM � dimWN1

which is the reason why we can choose the basis the way we do in the proof below.

Proof. For i ¼ 1; . . . ; r we choose an orthogonal basis fwi;1; . . . ;wi; ti ;wi; tiþ1; . . . ;
wi; tiþs1

i
;wi; tiþs1

i
þ1; . . . ;wi; tiþs1

i
þs2

i
;wi; tiþs1

i
þs2

i
þ1; . . . ;wi;dig of Wi in such a way that

WN
i ¼ hwi;1; . . . ;wi; tii; WN1

i ¼ hwi;1; . . . ;wi; tiþs1
i
i;

WN2

i ¼ hwi;1; . . . ;wi; ti ;wi; tiþs1
i
þ1; . . . ;wi; tiþs1

i
þs2

i
i and

WM
i ¼ hwi;1; . . . ;wi; tiþs1

i
þs2

i
; . . . ;wmi:

By (3.5) we have

f �N2
PðXN2

=XNÞ@
Xr

i¼2

Xtiþs1
i þs2

2

j¼tiþs1
i
þ1

Im pwi; j

all sums being orthogonal with respect to the polarization induced by the canonical
polarization H of JX . Since fN2

¼ f2 � fM and f �M is an isogeny, this gives

f �2 PðXN2
=XNÞ@

Xr

i¼2

Xtiþs1
i þs2

2

j¼tiþs1
i
þ1

Im pwi; j
:

In the same way we get

PðXM=XN1
Þ@

Xr

i¼2

Xm

j¼tiþs1
i
þ1

Im pwi; j
:

Since all sums are orthogonal and Pð f1; f2Þ is by definition the orthogonal comple-
ment of f �2 PðXN2

=XNÞ in PðXM=XN1
Þ, this implies

Pð f1; f2Þ@
Xr

i¼2

Xm

j¼tiþs1
i
þs2

i
þ1

Im pwi; j
:

Since Im pi; j is isogenous to Bi for all j and moreover (3.1) and (3.2) are isogenies, we
obtain

Pð f1; f2Þ@
Yr

i�2

Ym

j¼tiþs1
i
þs2

i
þ1

Bi:
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Now the assertion follows from m� ti � s1
i � s2

i ¼ dimWM
i þ dimWN

i � dimWN1

i

� dimWN2

i . r

It is easy to see that QðG=MÞ þQðG=NÞ �QðG=N1Þ �QðG=N2Þ is actually a rep-
resentation. Hence in the same way that Corollary 3.2 follows from Proposition 3.1,
Proposition 3.4 implies:

Corollary 3.5. Let ðMHN1;MHN2Þ be a triple of subgroups of G and N ¼
hN1;N2i. If

QðG=MÞ þQðG=NÞ �QðG=N1Þ �QðG=N2ÞF 0
r

i¼2

W si
i

then

Pð f1; f2Þ@Bs2

2 � � � � � Bsr
r

Finally Corollaries 3.2 and 3.5 imply

Corollary 3.6. (a) If M 0HN 0 is another pair of subgroups of G such that the repre-

sentation QðG=MÞ þQðG=NÞ �QðG=N1Þ �QðG=N2Þ is isomorphic to the represen-

tation QðG=M 0Þ �QðG=N 0Þ, then

Pð f1; f2Þ@PðXM 0 ! XN 0 Þ:

(b) If ðM 0HN 01;M
0HN 02Þ is another triple of subgroups of G and N 0 ¼ hN 01;N

0
2i

such that the representations QðG=MÞ þQðG=NÞ �QðG=N1Þ �QðG=N2Þ and

QðG=M 0Þ þQðG=N 0Þ �QðG=N 01Þ �QðG=N 02Þ are isomorphic and f 01 : XM 0 ! XN 0
1

and f 02 : XM 0 ! XN 0
2
denote the corresponding coverings, then

Pð f1; f2Þ@Pð f 01 ; f 02 Þ:

In somewhat vague terms Corollaries 3.3 and 3.6 can be expressed by saying: The
induced representations of the trivial representations determine the isogeny decom-
position.

4 Example: The symmetric group of degree 5

Let X be smooth projective curve with an action of the symmetric group S5 of degree
5. The group action induces the decomposition (3.3) of the Jacobian JX . Note that if
we assume that gðX=S5Þd 2, then every abelian subvariety Bi occurring in (3.3) is
positive dimensional according to [5] Theorem 4.1. In this section we apply the results
of Section 3 in order to express the abelian subvarieties Bi of decomposition (3.3) in
terms of Prym varieties of subgroups and pairs of subgroups of S5.

We consider S5 as the group of permutations of the set of integers f1; . . . ; 5g. In
order to state the result consider the following subgroups of S5:
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A5 :¼ hð1; 2; 3; 4; 5Þ; ð3; 4; 5Þi of order 60,

S4 :¼ hð2; 3Þ; ð2; 4Þ; ð2; 5Þi of order 24,

A4 :¼ hð2; 3Þð4; 5Þ; ð2; 4Þð3; 5Þ; ð3; 4; 5Þi of order 12,

D5 :¼ hð1; 2; 3; 4; 5Þ; ð2; 5Þð3; 4Þi of order 10,

D4 :¼ hð2; 3Þ; ð2; 4; 3; 5Þi of order 8,

K :¼ hð2; 3Þ; ð4; 5Þi of order 4,

L :¼ hð2; 3Þ; ð4; 5Þ; ð1; 2; 3Þi of order 12 and

M :¼ hð1; 2; 3; 4; 5Þ; ð2; 5Þð3; 4Þ; ð2; 4; 5; 3Þi of order 20.

For any subgroup M of S5 let XM :¼ X=M denote the quotient curve of X by
the action of M and denote Y :¼ X=S5. If MHN is any pair of subgroups of S5,
we denote by PðXM ! XNÞ the Prym variety of the associated covering XM ! XN .
Similarly for any triple of subgroups ðMHN1;MHN2Þ let PðXN1

 XM ! XN2
Þ

denote the Prym variety of the pair of morphisms ðXM ! XN1
;XM ! XN2

Þ. With this
notation we have:

Theorem 4.1.

JX @ JY � PðXA5
! YÞ � PðXS4

! Y Þ4 � PðXA5
 XA4

! XS4
Þ4

� PðXM  XD5
! XA5

Þ5 � PðXM ! Y Þ5 � PðXD4
 XK ! XLÞ6

There is no pair of subgroups MHN of S5 whose associated Prym variety

PðXM ! XNÞ is isogenous to a Prym variety of a pair of morphisms occurring in this

decomposition.

Proof. Let U ;U 0;V ;V 0;W ;W 0;52
V denote the irreducible C-representations of S5.

They are determined by the following character table:

1 (12) (12)(34) (123) (12)(345) (1234) (12345)

# 1 10 15 20 20 30 24

U 1 1 1 1 1 1 1

U 0 1 �1 1 1 �1 �1 1

V 4 2 0 1 �1 0 �1

V 0 4 �2 0 1 1 0 �1

W 5 1 1 �1 1 �1 0

W 0 5 �1 1 �1 �1 1 0

52
V 6 0 �2 0 0 0 1

Observe that all irreducible representations are defined over Q. Hence according to
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Equation (3.3) there are abelian subvarieties BU 0 ;BV ;BV 0 ;BW ;BW 0 and B52V of JX ,
uniquely determined up to isogeny, such that

JX @ JY � BU 0 � B4
V � B4

V 0 � B5
W � B5

W 0 � B6
52V :

We have to identify BU 0 ; . . . ;B52V in terms of Prym varieties.
(a) BU 0 : Using the above character table one easily checks:

QðS5=A5Þ �QðS5=S5ÞFU 0:

So Corollary 3.2 implies BU 0 @PðXA5
! Y Þ.

(b) BV : One checks QðS5=S4Þ �QðS5=S5ÞFV . So Corollary 3.2 implies BV @
PðXS4

! Y Þ.
(c) BW 0 : QðS5=MÞ �QðS5=S5ÞFW 0. Hence Corollary 3.2 implies BW 0 @

PðXM ! Y ).
(d) BV 0 : Consider the diagram

XA4

. &
XA5

XS4

& .
Y

One checks hS4;A5i ¼ S5 and QðS5=A4Þ þQðS5=S5Þ �QðS5=S4Þ �QðS5=A5ÞFV 0.
So Corollary 3.5 yields BV 0 @PðXA5

 XA4
! XS4

Þ.
(e) BW : Consider the diagram

XD5

. &
XM XA5

& .
Y

One checks hM;A5i ¼ S5 and QðS5=D5Þ þQðS5=S5Þ �QðS5=MÞ �QðS5=A5ÞF
W . So Corollary 3.5 implies BW @PðXM  XD5

! XA5
Þ.

(f ) B52V : Consider the diagram

XK

. &
XD4

XL

& .
Y

One checks hD4;Li ¼ S5 and QðS5=KÞ þQðS5=S5Þ �QðS5=D4Þ �QðS5=LÞF52V .
So Corollary 3.5 gives B52V @PðXD4

 XK ! XLÞ.
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It remains to show that BV 0 ;BW and B52V are not isogenous to a Prym variety of a
covering associated to a pair of subgroups MHN of S5. For this we computed the
Prym varieties of all conjugacy classes of pairs of such subgroups. The computations
are a little too long to repeat them here. r

Finally let us give some examples of isogenous Prym varieties as well as Prym vari-
eties of pairs which are isogenous to Prym varieties of coverings. For this consider the
following subgroups of S5:

C2 :¼ hð2; 5Þð3; 4Þi of order 2,

C3 :¼ hð3; 4; 5Þi of order 3,

C5 :¼ hð1; 2; 3; 4; 5Þi of order 5,

N :¼ hð3; 4; 5Þ; ð1; 2Þð4; 5Þi of order 6,

S3 :¼ hð4; 5Þ; ð3; 4; 5Þi of order 6 and

K1 :¼ hð2; 3Þð4; 5Þ; ð2; 4; 3; 5Þi of order 4.

Examples 4.2. (a) PðXD5
! XA5

Þ@PðXD4
! XS4

Þ.
(b) PðXC5

 X ! XC2
Þ@PðXC2

! XD5
Þ.

(c) PðXN  XC3
! XA4

Þ@PðXC5
! XD5

Þ.
(d) PðXA4

 XC3
! XS3

Þ@PðXK1
! XD4

Þ.

Note that in (a) XD5
! XA5

is of degree 6 whereas XD4
! XS4

is of degree 3.

Proof. We have QðS5=D5Þ �CðS5=A5ÞFW lW 0FQðS5=D4Þ �QðS5=S4Þ. So
Corollary 3.3 implies (a). As for (b), note first that hC5;C2i ¼ D5. Then we have
QðS5=ð1ÞÞ þ QðS5=D5Þ � QðS5=C2Þ � QðS5=C5ÞFV þ V 0 þW þW 0 þ ð52VÞ2 F
QðS5=C2Þ �QðS5=D5Þ. So Corollary 3.6 (a) implies the assertion. The proof of (c)
and (d) is similar. r
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